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Abstract The present work was focused on the study of the three-dimensional (3D) structural

requirements for the highly potent bioactivity of dipeptidyl peptidase (DPP) IV’s inhibitor. At first,

molecular dynamic and mechanic (MD/MM) simulations were performed to research the

conformations of the potent DPP IV’s inhibitor 5-(aminomethyl)-6-(2,4-dichlorophenyl)-2-(3,5-

dimethoxy-phenyl)pyrimidin-4-amine. Using the MD/MM-determined molecular conformers as

templates, the 3D quantitative structure activity relationship (QSAR) studies were carried out

based on a set of arylmethylamine DPP IV inhibitors with the comparative molecular field analysis

(CoMFA) approach. The best 3D-QSAR model was constructed with good statistic values of rcv
2

and R2 using PLS analyses (CoMFA: rcv
2
¼0.660, R2

¼0.953). The generated 3D-QSAR model was

proved to be reliable by internal and external validations. Docking studies were further performed

to analyze the interaction mode between the highly potent or low potent arylmethylamine

derivatives and DPP IV. Our flexible docking results also confirmed the possible bioactive

conformation obtained from the 3D-QSAR model, of arylmethylamine-based DPP IV inhibitors.

The 3D-QSAR model may provide information of pharmacophoric features for further design and

optimization of new scaffold compounds with high inhibitory activity to DPP IV.
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1. Introduction

Diabetes mellitus is a principle and growing public health

problem in the world. It was estimated that the number of

people suffering from diabetes would increase to 300 million

by 20251. Currently, the oral monotherapy or combination

therapeutics with other drugs are main methods to aid in the

control of diabetes by using all kinds of available antidiabetic

agents in the clinical anti-diabetes therapy2. However, these

agents are considered to be induction of severe adverse effects

and chronic complications3,4. Such a situation promotes

people to develop novel antidiabetic drug with good potency

and low toxicity.

Dipeptidyl peptidase IV (DPP IV) is a serine protease that

cleaves an endogenous oligopeptide at the second residue, which

is the typical amino acid of alanine or proline, from its N-

terminus5. The peptidic hormone glucagon-like peptide 1 (GLP-

1) is one kind of such oligopeptides degradated by DPP IV

protease. GLP-1 plays an important role in the regulation of

insulin release to control the level of blood sugar in human

body6,7. Several studies have demonstrated that the inhibition of

DPP IV can increase the amount of circulating GLP-1 to

improve the secretion of insulin in the body8,9. Therefore, it

has been regarded as an attractive and promising target to

develop novel drug for the treatment of type 2 diabetes. So far, a

couple of identified DPP IV inhibitors, such as sitagliptin and

saxagliptin, have been approved to be used clinically as anti-

diabetic drugs by FDA10–13. However, there is still a need for

more potent, selective and safer DPP IV inhibitor, which does

not have the inspecificity and side effect possessed by the

presently available inhibitors14, because of worldwide problem

of type 2 diabetes. Therefore, it is reasonable for researcher to

put a lot of efforts to study the new DPP IV ligands for the

development of the novel anti-diabetes drug.

In the past few years, a large number of compounds were

synthesized and evaluated as DPP IV inhibitors, including

peptidomimetic series and non-peptidomimetic series2. So far,

the SAR and QSAR studies were mainly focused on the

peptidomimetic series. Actually, a couple of ligand-based

models have been constructed to clarify the structure–

activity relationship of peptidomimetic inhibitors of DPP IV.

For example, Zeng et al.15 developed 3D-QSAR models on a

series of fluoropyrrolidine amides to investigate the interaction

between DPP IV’s inhibitors and their receptor by using

comparative molecular field analysis (CoMFA) and compara-

tive molecular similarity indices analysis (CoMSIA) methods.

3D-QSAR method was also applied for building a predictive

model based on a series of triazolopiperazine amides as DPP

IV inhibitors16. In these 3D-QSAR studies, the lowest energy

conformation of compound was directly searched to be a

template for structural alignment. Although this methodology

offers an appropriate molecular superimposition, it is still a

doubt whether the conformation with global minimum energy

was an exactly bioactive one. Moreover, these generated 3D-

QSAR models were not applicable for ligands with different

binding modes. On the other hand, QSAR studies have not

been reported to the non-peptidomimetic series of DPP IV’s

inhibitors, which can be an attractive point guiding us to

design novel DPP IV inhibitors.

In the present study, a series of arylmethylamino derivatives,

which were developed to be potent DPP IV inhibitors17, were

used to generate a 3D-QSAR model for non-peptidomimetic
compounds using the CoMFA approach. For such a purpose,

33 compounds were selected from literature17 and divided into

a training database and a test database. Among them, a highly

potent arylmethylamine compound 5-(aminomethyl)-6-(2,4-

dichlorophenyl)-2-(3,5-dimethoxyphenyl)pyrimidin-4-amine

(27) was first chosen to do MD/MM modeling for its possible

local minimum conformations. Each of MD/MM simulated

conformation was applied to be a starting conformational

template for structural alignments of the compounds in both

training and test databases. Partial Least-Squares (PLS) ana-

lyses were then performed to get cross-validated rcv
2 and no-

cross-validated R2 describing statistical correlation between

inhibitors’ bioactivities and their CoMFA-calculated electro-

static and steric fields based on their conformations. The

bioactive conformation of ligand was derived by improving

the squared correlation coefficient rcv
2 on the basis of Partial

Least-Squares analyses18. A good 3D-QSAR model was pro-

duced with rcv
2 bigger than 0.6. The generated 3D-QSAR model

was also evaluated by its prediction of bioactivities of com-

pounds in both training and test databases. Our result eluci-

dated structural requirements for enhancing ligand’s bioactivity

to inhibit DPP IV. Furthermore, the flexibly docking simula-

tions were performed to reveal the interaction mode between

inhibitors and DPP IV. The docking results demonstrated that

the binding conformation of arylmethylamino derivative was

congruent with the one obtained from the CoMFA studies. Our

research indicated that the established QSAR model could be

reliable in identifying potential lead compounds with DPP IV

inhibitory activity. The CoMFA contoured trends for the steric

and electrostatic fields can be used as guides for the generation

of a consistent pharmaocphore model employed for in silico

search new chemical scaffold of DPP IV’s inhibitor. The

corresponding 3D-QSAR model provides a means for predict-

ing the bioactivity of untested compound.
2. Methods

2.1. Data preparation

The quality of the biological data under investigation as well as

the structural diversity of the data set is important foundations

for successful 3D-QSAR studies. In the present work, total 33

DPP IV inhibitors were collected from literature published by

Peters et al.17 to do the 3D-QSAR studies using the method of

comparative molecular field analysis. Table 1 lists their chemical

structures and corresponding inhibitory IC50 data. Fig. 1 illus-

trates the common structure of pyrimidine core of the selected

arylmethylamino derivatives with different substituent groups,

including methyl, methoxyl, halogenic, trifoloromethyl groups,

on the phenyl rings B or C. These substituent groups have

different hydrophobic and electrostatic properties. Furthermore,

all of the compounds have significant variation of their IC50

values ranging seven orders of magnitude, which would be useful

to generate a good 3D-QSAR model. Their inhibitory values

were converted into the corresponding pIC50 (-logIC50) values to

be used as dependent variables in the CoMFA study. The

compounds of the training and test sets were carefully selected

in order to ensure appropriate property coverage on the entire

range of pIC50 values. As listed in Table 1, the data set was

divided into a training set of 27 compounds, enclosing com-

pounds 1–27, for the 3D-QSAR model construction and a test



Table 1 Molecular structures and bioactivity IC50 values of arylmethylamine-based DPP IV inhibitors in the training set

(compounds 1–27) and test set (compounds 28–33) used to construct the 3D-QSAR model.

Compound R IC50 (mM) Compound R IC50 (mM)

1 H 42 18 m-Cl 0.24

2 o-Me 1.5 19 m-OMe 0.34

3 o-Cl 2.5 20 m-CF3 0.13

4 o-OMe 1.5 21 p-Cl 0.053

5 o-F 14 22 p-OMe 0.10

6 m-Me 20 23 p-F 0.0002

7 m-Cl 31 24 p-CF3 0.18

8 m-OMe 80

25

� 10

9 m-F 40

26

� 0.003

10 m-CF3 170

27

� 0.0001

11 p-OMe 47 28 o-CF3 14

12 p-F 18 29 p-Me 1.0

13 p-CF3 1.1 30 p-Cl 1.4

14 H 0.01 31 m-Me 0.0009

15 o-Me 1.75 32 m- F 0.0002

16 o-OMe 0.35 33 p-Me 0.09

17 o-F 0.047
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Figure 1 Common structure of arylmethylamino derivatives. The

atoms for alignment are marked with an asterisk.
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set of 6 compounds, including compounds 28–33, for external

model validation based on the principle of structural diversity.

Since the 8-amine group was reported to have direct interaction

with two acid residues, E205 and E206, of DPP IV, the amino

group of all compounds in both training and test sets was applied

to be in protonation state for our generation of 3D-QSAR

model. The highly potent compound 27 was chosen as the

template molecule for the later structural alignment in our

CoMFA analysis.
2.2. Computer molecular modeling

Molecular modeling was carried out using Tripos Sybyl mole-

cular modeling package19,20. MD/MM simulations were first
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performed to sample the compound 27’s conformations at the

local minima of the energy landscape with the Tripos force field

and Gasteiger–Hückel atomic charges. Initially, the Sybyl/Sketch

module was applied for building a starting conformation of

compound 27. The energy optimization process was then

completed to get its local stable conformer with a distance-

dependent dielectric function and a convergence criterion of

0.001 kcal/mol/Å. MD simulations were performed to mimic the

movement of molecular fragments at the temperature of 2,000 K

with the time length of 300 ps and the step of 1 fs. Total 300

snapshots were collected at a rate of 1 snapshot per ps. Each

snapshot was finally optimized with the procedures and para-

meters as mentioned in the previous publication21 to get the

conformation at the local minima energy.

Based on each of compound 27’s conformations obtained

from MD/MM simulations, conformations of other com-

pounds in both training set and test set were constructed by

modifying corresponding substitution group R listed in

Table 1 using the molecular fragments library provided within

Sybyl� 1.3. These obtained conformers of each compound

were then energy-minimized using the same parameters as

compound 27’s minimization.

2.3. Structural alignment

Since there is a critical requirement of structure alignment in

CoMFA analysis to generate a 3D-QSAR model, the align-

ment rule remains to be a crucial and controversial process in

3D-QSAR analyses. Because of the closely structural similar-

ity of compounds in our CoMFA studies, all of the com-

pounds in both training set and test set were assumed to

interact with DPP IV through the same binding motifs. Each

MD/MM simulated conformation of compound 27 was

regarded as a structural template for the molecular super-

imposition because of its highly inhibitory activity to DPP IV.

On the basis of the common structure and the reported SAR

analyses of the arylmethylamino derivates as DPP IV inhibi-

tors17, it was chosen of the heavy atoms on the aromatic rings

A, B, and C, respectively, illustrated in Fig. 1, for the

structural alignment. It is reasonable to assume that inhibitors

do not necessarily binding to DPP IV in their global minimum

energy conformations because some degree of bond rotation

may be required to adapt electrostatic and H-bonding dis-

tances that would have their good interaction. Therefore, MD/

MM simulated conformation of all compounds were regarded

as a starting points and single bond rotations were allowed to

all of compounds in our studies for a good structural

alignment. On the other hand, it is important to note that

the permitted pharmacophoric conformations of different

compounds must be restricted to those that can be obtained

upon bind within reasonable energy limits. It was acceptable

of a 10 kcal/mol cutoff difference between the local minimum

and the aligned conformational energy of each compound

upon single bond rotation for superimposition21.

2.4. CoMFA Partial Least-Squares analysis

After structural alignment of molecules in the training set, the 3D-

QSAR models were generated using the CoMFA program of

Sybylx1.320. CoMFA analyses were performed for each combina-

tion of steric and electrostatic fields calculated according to the
molecular conformation. All of the molecules in the training set

were placed in a rectangular grid box with the size of extension of

4 Å to all compounds in the X, Y, and Z directions of Cartesian

coordinate system. The steric and electrostatic (AM1 charge) field

energies were computed using a probe atom of sp3 hybridized

carbon atom with þ1 charge and a distance-dependent dielectric

constant in all of regularly grid space (2.0 Å). Both steric and

electrostatic cutoffs were set to the default 30 kcal/mol. PLS

analysis was then carried out to generate quantitative relationship

between bioactive values (pIC50) and steric and electrostatic fields

using default parameters in Sybyl/CoMFAmodule. The minimum

column filtering was set as 2.0 kcal/mol to improve the signal-to-

noise ratio. The optimum number of components was determined

through Leave-One-Out procedure. The final model (non-cross-

validated conventional analysis) was developed to produce the no

validated correlation coefficient R2 using the optimum number of

component obtained from the model with the highest cross-

validated rcv
2 .

2.5. Docking studies of interaction between arylmethylamine

derivative and DPP IV

Flexible docking calculation was further carried out to simulate

the interaction mode between arylmethylamino derivative and

DPP IV. For such a purpose, two compounds, the highly potent

compound 23 and the low potent compound 10, were chosen

to do docking simulation using the FlexiDock module of

Sybyl 6.919. The X-ray co-crystal structure of the compound

27-DPP IV complex was obtained from the Protein Data Bank

(entry 1RWQ). The arylmethylamino derivative 23 or 10 was

individually put into the binding cavity of DPP IV to replace the

bound ligand 27 in the co-crystal structure of complex. A binding

pocket was then defined to enclose all of the amino acid residues

within 4 Å radius sphere centered by the docked compound in

the initial compound-DPP IV complex. In the continued docking

process, all of the single bonds of residues’ side chains within the

defined DPP IV binding pocket were regarded as rotatable or

flexible bonds, and the docked compound 23 or 10 was allowed

to rotate on all single bonds and move flexibly within the

tentative binding pocket. The atomic charges were recalculated

using the Kollman all-atom approach for DPP IV and the

Gasteiger–Hückel approach for the docked compound 23 or 10.

The H-bonding sites were marked for suitable atoms, which are

able to act as H-bond donors or acceptors, of both ligand and

residues within the defined DPP-IV active site region. According

to Sybyl/Flexidock method19, the binding interaction energy was

calculated to include the terms of van der Waals, electrostatics,

and torsion energy defined in the Tripos force field. The structure

optimization was performed for 50,000-generations using a

genetic algorithm, and the 20 best-scoring ligand–protein com-

plexes were kept for further analyses. The structure with lowest

energy was selected as a final model to analyze the composition

of key amino acid residues of DPP IV involved in the interaction

with its inhibitor.
3. Results and discussion

3.1. Molecular modeling

Fig. 2 illustrates six representative conformations of com-

pound 27 obtained from MD/MM simulations. MD/MM



Figure 2 Molecular graphic representation of six favored conformations of compound 27 on the basis of the energy minimization of

structures occurring along the molecular dynamics trajectory.

Figure 3 F120-based structural alignment of compounds in the

training set and test set.
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simulations were carried out to search for the possible local

low-energy conformations of compound 27. Dynamic motions

were simulated at temperature of 2,000 K to look for the

probability of inducing conformational transitions past any

possible high-energy barrier. The dynamic simulations were

performed with time steps of 1 fs for 300 ps, and the data were

recorded at 1 ps intervals to get a total of 300 frames. MM

energy minimizations were then carried out for each of these

300 conformers. All 300 conformers were then superimposed

with each other. The conformations with root mean square

(RMS) less than 1.0 Å were classified into the same structural

family. This operation resulted in a convergence of these 300

conformers into six families represented in Fig. 2 by six local

minimum-energy conformations which were sampled during

the MD simulation and then followed by energy minimization.

The energy difference of these six conformers is less than

2 kcal/mol. All of these conformations are potentially present

in the nature.

3.2. CoMFA analyses of arylmethylamine-based derivatives

binding to DPP IV

On the basis of MD/MM simulated conformations of com-

pound 27, the CoMFA method was employed to build a good

3D-QSAR model for arylmethylamino derivatives based on

their observed inhibitory activities (IC50 values) for the DPP

IV receptor. Although the co-crystal structure of compound

27 with DPP IV has been resolved to determine its bioactive

conformation, it would be needed of verifying that this

bioactive conformation would be only one for the generation

of a good 3D-QSAR model with the conformation-based

CoMFA studies. For such a purpose, the MD/MM simulated

conformers F099, F102, F120, F255, F281, and F290 of

compound 27 were individually selected to be an initial

template for the structural alignment of all compounds in

the training set. In the alignment schemes, several variations

were considered by superimposing the common or similar

pharmacophore features, which were detailed in the section of

Methods. Although it has been reported of the co-crystal

structure of 27 with DPP IV, it would helpful to induce

structural requirement for DPP IV inhibitor by comparing
different 3D-QSAR model based on each of 27’s potential

conformation obtained from MD/MM simulation. Such pro-

tocol would also make us to characterize 27’s bioactive

conformation interacting with DPP IV by its conformation

analyses and to lead more clues for the drug design of novel

DPP IV’s inhibitor. The best results involved not only a

reasonably good overlap of the relevant pharmacophoric

groups but also statistically significant 3D-QSAR models

from CoMFA analyses. For example, Fig. 3 shows the 3D

view of corresponding structural alignment of compounds in

the training set of compounds using conformation F120 as a

structural template.

In all instances, cross-validated PLS analyses were run to

determine the optimal number of components in the model

and to evaluate the robustness of the model based on how well

it predicts data. Table 2 lists the cross-validation rcv
2 values and

corresponding optimum component numbers in all CoMFA

analyses on the basis of the six conformers, respectively, of

compound 27. There is a generally accepted criterion for

CoMFA statistical validity of 0.7Zrcv
2
Z0.6 and optimal

component from 3 to 5 for the PLS method. Our results

indicated that the PLS analysis only based on F120 exceeded



Table 2 Cross-validated analyses of the CoMFA models based on six conformers of compound 27 as structural templates.

No. Template conformation rcv
2 Optimal component

1 F099 0.757 6

2 F102 0.572 5

3 F120 0.660 4

4 F255 0.703 4

5 F281 0.665 1

6 F290 0.814 4

Table 3 Experimental (obsd) and CoMFA-predicted

(pred) pIC50 values of molecules in both training set and

test set.

DPP IV CoMFA model

R2 0.953

Standard error of

estimate

0.390

F 111.180

Compound pIC50

(obsd)

pIC50

(pred)

Residual

1 4.38 4.32 �0.06

2 5.82 6.03 0.20

3 5.60 5.45 �0.15

4 5.82 5.69 �0.14

5 4.85 4.89 0.04

6 4.70 4.11 �0.59

7 4.51 4.16 �0.35

8 4.10 3.96 -0.14

9 4.40 4.32 �0.08

10 3.77 4.32 0.55

11 4.33 4.78 0.45

12 4.74 5.27 0.52

13 5.96 5.99 0.03

14 8.00 8.16 0.16

15 5.76 5.76 0.00

16 6.46 6.25 �0.21

17 7.33 7.91 0.58

18 6.62 7.21 0.59

19 6.47 6.37 �0.10

20 6.89 6.54 �0.34

21 7.28 7.39 0.12

22 7.00 7.16 0.16

23 9.70 8.73 �0.97

24 6.74 6.40 �0.34

25 5.00 5.05 0.05

26 8.52 8.55 0.03

27 10.00 10.01 0.01

28 4.85 5.73 0.88

29 6.00 6.48 0.48

30 5.85 6.55 0.69

31 9.05 9.03 �0.02

32 9.70 8.99 �0.71

33 7.05 6.54 �0.51
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this criterion, thus the predictions obtained with this model

was reliable. The non-cross-validated PLS analysis gave a

good correlation coefficient R2 of 0.953 with the training set of

compounds. In the generated CoMFA model, the contribu-

tions of steric and electrostatic fields were 0.819 and 0.181,

respectively. Furthermore, other six compounds in test set

were used to validate the CoMFA model. The non-cross-

validated PLS analysis was also performed including all of

compounds in both training set and test set. It conferred a

good correlation coefficient R2 of 0.941 with a standard error

of estimate (SEE) of 0.390. F-value stands for the degree of

statistical confidence on the developed models and the model

has good value of 111.18. At the same time, the generation of

consistent statistical models depends on the proper selection of

both training and test sets in terms of structural diversity and

property values distribution. The values of pIC50 from training

set and test set span approximately seven orders of magnitude

and are acceptably distributed across the pIC50 range values.

The derivative of arylmethylamine-based DPP IV inhibitors

has substantial structural diversity. The ring B and ring C have

variously different substituent groups. From the original data

set of 33 inhibitors, 27 compounds (1–27, Table 1) were

selected as members of the training set for model construction,

and the other 6 compounds (28–33, Table 1) as members of

the test set for external model validation, in the ratio of about

4:1 (approximately 20%). Table 3 lists the CoMFA-calculated

pIC50 values of total 33 compounds, showing a good linear

relationship. On the basis of the appropriate representation of

chemical diversity and distribution of property values

(Table 1), the training and test set meet the requirements for

the purpose of internal and external model validation. Fig. 4

illustrates the good correlation between experimental and

CoMFA model-predicted bioactivities of compounds in both

training set and test set. The high R2 reflect robustness of the

models, devoid of any chance factors. Therefore, it is a good

3D-QSAR model generated on the basis of conformer F120 of

compound 27, and it can be used to predict the bioactivity of

unknown compound. F120 could be the preferred conforma-

tion of compound 27, which is assumed to be a bioactive

conformation of arylmethylamine compounds to interact with

DPP IV. As discussed lately, F120 is actually consistent to the

one of compound 27 in the crystal structure of complex with

DPP IV. Moreover, when the conformer F120 with highest rcv
2

was generated and validated, it can be used as criteria to solve

the problem of other compounds’ spatial orientations to make

sure that the results of 3D-QSAR are reliable and credible.

Fig. 5 illustrates CoMFA-generated contour maps of both

steric (A) and electrostatic (B) fields around compound 27. The

contour maps reveal that essential regions in the steric and

electrostatic fields around ligand might affect the binding of
arylmethylamine derivatives in the active pocket of DPP IV. As

shown in Fig. 5A, the green polyhedrons characterize the regions

where a steric bulky group would increase bioactivity, whereas

yellow contours depict regions where steric substituent would not

be tolerated. Favored and disfavored levels of steric field are



Figure 4 Plots of predicted versus experimental pIC50 values of training and test set for the CoMFA model.

Figure 5 CoMFA contour maps for the (A) steric field: Green/ yellow contours indicate regions where steric bulky groups increase/

decrease activity. Favored and disfavored levels of these displayed fields are fixed at 75% and 15%, respectively. (B) electrostatic field:

Red/blue contours indicate regions where negative charge increase/decrease activity. Favored and disfavored levels of these displayed

fields are fixed at 93% and 7%, respectively.
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fixed at 75% and 25%, respectively. On the other hand, the blue

or red contours in Fig. 5B indicate the regions of favored

positively or negatively charged, respectively, function group

would increase inhibitory activity of ligand for DPP IV. Favored

and disfavored levels of electrostatic field are fixed at 93% and

7%, correspondingly. The abundance of the red–blue region to

the yellow–green region points out that electrostatic properties

have more significant impact on DPP IV binding potency than

the steric properties. This result is consistent with the statistical

data of the contributions of steric and electrostatic fields

mentioned above.

As shown in Fig. 5A, the yellow polyhedra areas are

primarily present around para-site in 3-phenyl ring (ring B)

attaching to the pyrimidine ring A, indicating that these areas

would prefer a small branch rather than a bulky substituent. It

is cleared that compound 23 is more bioactive than compound
21 because of the different size of the fluoro- and chloro-

groups. We can also make the similar conclusion by compar-

ing the bioactivities of compound 23 and compounds 22 and

24. Fig. 5A also illustrates a large yellow contour around the

ortho position of ring B. Comparing compounds 14 and 17,

introducing a bulky substituent such as methyl and methoxyl

(compounds 15 and 16) would decrease bioactivity. At mean

time, this contour also indicates inducing a bulky group might

lose a ligand’s bioactivity, of 1-amino and 6-methylamino

groups. On the contrary, a small green region around the para-

position of the phenyl ring C indicates that a steric bulky

group at the corresponding position would enhance the

inhibitory activity. For example, compound 14 has the pIC50

value of 8.00 with the steric-favored 2,4-dichlorine group on

the phenyl ring C but compound 1 has the pIC50 value of 4.38

without any substituent on the ring C. It also demonstrates
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that this region would prefer a bulky group with the fact that

compound 29 (pIC50¼6.00) with a p-methyl group on the 5-

phenyl ring shows better inhibitory activity for DPP IV than

compound 12 (pIC50¼4.74) with a p-F moiety. It is indeed

consistent with the results obtained from the previous studies

that the bulky group occupied a hydrophobic S1 pocket of

DPP IV with a large volume22.

In the electrostatic contour maps shown in Fig. 5B, the red

contour is next to the substituent around meta and ortho

position of the ring B. It implies that a negative charge within

these areas of molecules would increase the binding affinity.

This could explain why compound 23 with a fluorine group on

the 3-phenyl ring B is more potent than compound 33 with a

p-CH3 group on the ring B. On the other hand, a red contour

near ring C indicates that introduction of the relatively

negative groups would be favorable to the molecular bioac-

tivity. This hypothesis is clearly demonstrated by a compar-

ison of bioactivities of compounds 15–24. Among these

compounds, the ones having a halogen atom or –CF3 group

in ring C usually show higher bioactivity than ones with

methyl or methoxyl group. In addition, it is obvious that a

large blue contour is around on the pyrimidine ring A. We can

deduce the similar results according to the later docking

simulation of inhibitor-DPP IV interaction with the electron-

deficient moieties, such as amino or methylamino group, can

make good interaction with the important residues, such as

Glu205 and Glu206. These results can make sure that the

conformations of other compounds which were generated

from compound 27 are reasonable and close to the bioactive

conformations. Meanwhile, the good linear relationship and

the CoMFA-generated contour maps also show that the 3D-

QSAR methods can reflect the good relationship of bioactive

data between known and unknown effectively.
Figure 6 The docking simulated interaction modes of high

potent compound 23 (A) and low potent compound 10 (B),

respectively. In the mean time, the CoMFA-generated conforma-

tions (red colored) of these compounds were superimposed onto

their docked conformations individually. The superimposition

indicates the molecular conformations in 3D-QSAR model are

consistent with the docking ones.
3.3. Docking analyses of arylmethylamine-based derivatives

binding to DPP IV

Fig. 6A illustrates the docking simulated 3D structural model

of compound 23-DPP IV complex by using Sybyl/FlexiDock

module19. In this figure, the amino acid residues in DPP IV

were displayed with a ‘‘ball-sticks’’ mode and the docked

compound was exhibited with a ‘‘sticks-only’’ style. In the

mean time, the important residues were labeled to have direct

interaction with inhibitor. The docking results indicate that

the best score is �4,493 kcal/mol for the DPP IV-compound

23 interaction, incorporating the sum of the van der Waals,

electrostatics, and torsional energy terms within the Tripos

force field. Fig. 6A represents the most stable binding

conformation of compound 23 well docked into the active

pocket of DPP IV. The simulated model of compound 23-DPP

IV complex indicated the hydrophobic and hydrophilic inter-

actions present between ligand and enzyme. The –NH2 group

of compound 23 can form two H-bonds to the oxygen atoms

of carboxyl group of Glu205 with the bond lengths and angles

of 2.252 Å, 160.871 and 2.924 Å, 146.431, respectively. Another

two H-bond interactions are also formed between protons of

the methylamino group and oxygen atoms of the carboxyl

functional group in both amino acids of Glu205 and Glu206

with the bond lengths and angles of 2.045 Å, 151.371 and

2.026 Å, 122.991, respectively. These H-bond interactions

reveal that the residues Glu205 and Glu206 play critical roles
in the binding of arylmethylamine derivatives to the DPP IV

enzyme. Furthermore, our docking results also indicate that

the cation-p interaction is present between Arg125 and the

compound’s pyrimidine ring A with a distance of 3.823 Å.

The 2, 4-dichlorophenyl group insert into the hydrophobic

S1 pocket, which is composed by the residues Ser630,

Tyr631, Val656, Trp659, Tyr662, Tyr666 and Val711.

Although the co-crystal structure of compound 27-DPP IV

has been published17, the interaction mode of compound

27-DPP IV was also simulated by using Sybyl/FlexiDock

to evaluate the docking results of arylmethylamine- based

derivatives binding to DPP IV. The interaction score is

�4,699 kcal/mol for the interaction of compound 27-DPP

IV. The simulated interaction mode of compound 27-DPP IV
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is quite similar to their X-ray co-crystal structure. The

inhibitory potency of compound 23 is close to 27, since the

docking results show that compound 23 fit very well to the

binding pocket of DPP IV like compound 27.

Fig. 6B illustrates the docking simulated 3D structural

model of low potent compound 10 binding to DPP IV. The

FlexiDock results indicate that the best score is -4,319 kcal/

mol for the DPP IV-compound 10 interaction, incorporating

the sum of the van der Waals, electrostatics, and torsional

energy terms in the Tripos force field. Although the interaction

mode between compound 10 and DPP IV is like to the

docking results of compound 27-DPP IV, the former interac-

tion energy is obviously weaker than latter one from the score

result of FlexiDock. Furthermore, there is also a noticeable

difference between compound 27 or 23 and 10 in the S1 pocket

position. The torsion of ring C of compound 27 is 104.81 at

C6-C5-C16-C21 while the torsion of ring C of compound 10 is

88.51 (compound 23 is 103.91). Moreover, the ring C of

compound 23 with a p-Cl substituent group on ring C can

stretch into the S1 pocket, which encloses couples of aromatic

ring-contained residues, like Tyr631, Trp659, Tyr662, and

Tyr666, deeper than the ring C of compound 10. Because

p-Cl is a hydrophobic group, it can improve the hydrophobic

interaction between the ring C and the S1 pocket. By contrast,

there is no hydrophobic group in the p-position of ring C in

compound 10 which may decrease the hydrophobic interaction

between the ring C and S1 pocket. This result can explain why

the potency of compound 10 is lower than compound 27, even

compound 23 reasonably. For the inhibition of DPP IV, it is

vital of whether the relevant substituting group on the ring C

can fit the S1 pocket very well. In the mean time, since a

hydrophilic 12-CF3 group is attached to the ring C of

compound 10, its phenyl ring C is pushed out from pocket

S1 to have less hydrophobic interaction with lipophilic

residues in the pocket S1 of DPP IV than compound 27 or

23 in their docking simulated complexes with DPP IV. It may

influence the inhibitory activity of compound 10 to DPP IV.

Comparing the docking simulated 3D structures of com-

pounds 10 and 23, the conformation of substituting group at

S1 pocket should be paid more attention when to design new

DPP IV inhibitors. From these results, it is concluded that the

consistency between the QSAR and binding conformations is

high. It is reasonable that the conformations of the modified

compounds are advisable.
3.4. Comparison of the generated 3D-QSAR model and the

docking model

In order to examine the reliability of 3D-QSAR model

obtained from the previous CoMFA studies of the DPP IV

inhibitors, we superimposed the conformation of compound

23 from 3D-QSAR model (red one) onto its docked one

(colored one) as shown in the Fig. 6A. The results indicate that

the 3D-QSAR model is congruent with the results of docking

simulation very well. As it is observed from the superimposi-

tion, there is a general correlation between the conformation

of compound used in the generated QSAR model and its best

docking-simulated binding conformation. For example,

RMSD values between these two conformations were calcu-

lated to be 0.246 Å for compound 23 when superimposing

its conformation in the generated 3D-QSAR model and
docking-simulated one by all heavy atoms. However, it should

be noted that some small differences have been observed to

orientations of the phenyl ring C in compound 23 between

these conformations. The torsion angle C6–C5–C16–C21 is

84.71 in QSAR conformation, while it is 103.91 in the binding

conformation. It is reasonable to hypothesize that a ligand

may not have its global minimum energy conformation to

bind on its receptor protein. It is because the lowest energy

ligand-protein complex would be formed under some degree of

bond rotations required to form suitable electrostatic and H-

bonding interaction between protein and ligand.

In Fig. 5A, the CoMFA yellow contours appearing around

methylamino and amino groups indicate that a steric bulky

substituent might have negative effect on the bioactivity of the

ligands. As shown in Fig. 6A, our docking results illustrate a

narrow space around the acidic residues of Glu205 and

Glu206, which can form tight H-bond interactions with

methylamino and amino groups as discussed in the previous

section. Therefore, there is unnecessary modification for both

methylamino and amino groups in arylmethylamine-based

DPP IV inhibitors. Similarly, the green contour appearing

around the phenyl ring C approaches the lipophilic region

near S1 pocket, which plays an important role in suppressing

the ability of DPP IV when it is occupied by hydrophobic

group. It suggests that a bulkier group will increase the

biological activity of an inhibitor. By comparing Figs. 5B

and 6A, it can also be concluded that molecular electrostatic

contribution in the generated 3D-QSAR model is consistent to

the electrostatic interaction mode from the docking simulation

of the complex between arylmethylamine derivatives and DPP

IV. For example, blue colored contour maps are oriented

towards the electronegative groups of DPP IV’s acidic residues

like Glu205 and Glu206. The blue contour around the

methylamino and amino groups covers the space enclosing

the residues of Glu205 and Glu206 which are acidic amino

acids. The potency of inhibitor can be increased while

electropositive groups are introduced, since the H-bond or

salt bridge interaction can be formed between the –NH2

groups and the carboxyl group of Glu205 and Glu206.

Moreover, the blue contour around the ring A points to the

residue of Tyr547 mainly because of the –OH group of Tyr547

which is a polar group. Equally no modification was made in

the pyrimidine ring which is an alkalescent group, so it is

reasonable to present a large blue contour below the ring A.

Furthermore, there are red contours present around the ring

B. Considering the surrounding polar amino acids, like Ser552

and Gln553, it is reasonable that the same effect would be

obtained whether electropositive or electronegative groups

are added.

Therefore, the performed docking studies not only highlight

the consistency between the QSAR and binding conformations

but also provide the knowledge about crucial interactions with

the active site of DPP IV for enhanced activity. In this study,

we preferred to generate energy minimized conformation(s),

get bioactive conformations by 3D-QSAR method and vali-

date the method through the docking model. Because the

conformations generated by QSAR methods are consistent

with bound conformations. It is convinced that through

QSAR and docking methods, we can find some relationship

between energy minimized conformation and bound confor-

mation. At the same time, these results also validated that the

bioactive conformation can be generated by QSAR studies.



Chaoyi Jiang et al.420
When QSAR and docking studies are integrated, it is useful

for us to explain the difference between the conformation and

inhibition, which can lead us to further design new compounds

reported in our patent application 23, with high potentially

inhibitory activity for DPP IV.
4. Conclusions

The global purpose of this work is to produce a 3D-QSAR

model for the prediction of arylmethylamine analogs. We

report here the first establishment of 3D-QSAR model and

docking model on a series of arylmethylamine-based non-

peptidomimetic DPP IV inhibitor. The constructed models

revealed statistical significance and good predictive abilities by

using CoMFA and docking studies. Moreover, on the basis of

the CoMFA model contour maps, significant regions for

steric, electrostatic, hydrophobic, H-bond interactions were

identified to enhance bioactivity. At the same time, CoMFA

studies were combined with the docking results based on the

known X-ray crystal structure of DPP IV to evaluate the

reliability of the generated 3D-QSAR. The correlation of the

results obtained from docking and QSAR studies lead to

better understanding of the structural requirements for

enhanced activity. The obtained results can be used as a

guideline to design and predict new potent DPP IV inhibitors,

which could be an effective way to find novel leads for the

development of antidiabetic drug.
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