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KEYWORDS Abstract Unsteady Taylor—Couette flows of an Oldroyd-B fluid, which fills a straight circular

cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which
is given on the cylinder surface. As a novelty, authors used in this paper the governing equation
related to the tension field. The closed forms of the shear stress and velocity fields corresponding
to the flow problems are obtained by means of the integral transforms method. Expressions for
the azimuthal tension and fluid velocity were written as sums between the “permanent component”
(the steady-state component) and the transient component. By customizing values of parameters
from the mathematical model were obtained the corresponding solutions of other types of fluids,
namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress,
the fluid behavior has been analyzed. The necessary time to achieve the “‘steady-state” was, also,
determined.
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1. Introduction

The Oldroyd-B fluid model is very important among the fluids
of rate type due to its special behavior. Also, this model con-
tains the Newtonian fluid model and Maxwell fluid model as
special cases. The Oldroyd-B fluid model [1,2] considers the
memory effects and elastic effects exhibited by a large class
of fluids, such as the biological and polymeric liquids. Guillope
and Saut [3] and Fontelos and Friedman [4] established the sta-
bility, existence and uniqueness results for some shearing flows
of such fluids. Exact solutions for some simple flows of
Oldroyd-B fluids were presented by many authors, See, for
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example, Rajagopal and Bhatnagar [5], Hayat et al. [6,7].
Recently, various problems regarding flows of Oldroyd-B
fluids through cylindrical domains have been studied. Singh
and Varshney [8] have considered the unsteady laminar flow
of an electrically conducting Oldroyd fluid through a circular
cylinder boundary by permeable bed under the influence of
an exponentially decreasing pressure gradient in porous
medium. Burdujan [9] studied Taylor—Couette flows of the
Oldroyd-B fluid with fractional derivatives within the annular
region between two infinitely coaxial circular cylinders due to a
time-dependent axial tension given on the surface of the inner
cylinder. The unsteady unidirectional transient flow of
Oldroyd-B fluid with fractional time derivatives, in an annular
domain, produced by a constant pressure gradient and a
translation with constant velocity of the inner cylinder was
studied by Mathur and Khandelwal [10]. Liu et al. [11] studied
some helical flows of an Oldroyd-B fluid with time-fractional
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derivatives, between two infinite concentric oscillating cylin-
ders and within an infinite circular oscillating cylinder. Most
existing solutions in the literature correspond to problems with
boundary conditions on the velocity. There are several practi-
cal problems with the specified force on the boundary [12-14].
For example in [12], Renardy has studied the motion of a Max-
well fluid across a strip bounded by parallel plates and proved
that, in order to formulate a well posed problem it is necessary
to impose the boundary conditions on the stresses at the inflow
boundary. In [13], Renardy explained how well posed
boundary value problems can be formulated using boundary
conditions on stresses. Waters and King [15] were among the
first specialists who used the shear stress on the boundary to
find exact solutions for motions of rate type fluids. Other inter-
esting problems regarding flows of non-Newtonian fluids, in
various geometry or boundary conditions, can be finding in
the references [17-23]. Our goal is to investigate unsteady flows
of Oldroyd-B fluids in an infinite circular cylinder. In the pre-
sent paper the governing equation of the flow is related to the
azimuthal tension and we considered the boundary conditions
on the shear stress. The flow of the fluid is due to rotation of
the cylinder around its axis, under the action of oscillating
shear stress fH(z) sin(w?) or fH(t) cos(wt) given on the bound-
ary. Finally, solutions of the Maxwell fluid flows are obtained
as particular cases of our general results. Also the comparison
between models is underlined by graphical illustrations.

2. Problem formulation

The constitutive equations for an Oldroyd-B fluid [1] are

T= pr+S,S+/1(§7LSfSLT)

A
= M{A—M, (CZ—Z—LA—ALT>}7

where T is Cauchy stress tensor, —pl is indeterminate spherical
stress, S is extra stress tensor, L is velocity gradient, u is the
dynamic viscosity, A =L + L7 is first the Rivilin—Erickson
tensor, 4 and 4, (0 < 4, < 4) are relaxation and retardation
time. Assume an infinite circular cylinder of radius R with axis
of rotation along z-axis. Cylinder is filled with an Oldroyd-B
fluid which is at rest at time ¢ = 0. After time ¢ = 0" the cylin-
der applies an oscillating rotational shear stress fH(t) sin(w?)
or fH(t)cos(wt) to the fluid, /> 0 is constant and w is the
angular frequency of oscillations. We assume that, the fluid
is incompressible and homogeneous. Furthermore we assume
that velocity field and extra-stress tensor are of the form

V=V(rt)=w(rt)ey, S=S(r1), (2)
where ey is the unit vector in the 0 direction of the cylindrical

coordinate system. Since the fluid and the cylinder are at rest at
time ¢ = 0, therefore,

w(r,0) =0, S(r,0) =0. (3)

(1)

Introducing (2) in (1), and by using (3) we get
S, =S.. =89 =S8.. =0, along with the following meaningful
partial differential equation

(1 + A%) w(r, 1) = u(l + g) (g - %) w(r, 1), 4)

where t(r,7) = S,o(r, ) is one of the nonzero component of
extra stress tensor. The balance of linear momentum in the
absence of body forces reduces to [§]

pang;, fn_ (%4-%)1@, 0, (5)

7. (r, 1) p being the constant density of the fluid. By eliminating
w(r, t) between Egs. (4) and (5) we get the following governing
equation for the shear stress [24]

9\ Ox(r,1) AN/ 10 4
(1HE> ot ”(1+if@)(ﬁ+;5—r—z)r(m)7
(6)

where v = % is the kinematic viscosity of the fluid. The appro-

priate initial and boundary conditions are

at(r, 1)
(ryt)|,_o = =0, 7
0o =5 ™)
(R, 1) = fH(t) sinwt or (R, t) = fH(t) cos wt, (8)

H(t) being the Heaviside unit step function. Converting our
problem (6)—(8) into the complex field (r = 1. + it;, with 1,
and 7, being solutions for cosine, respectively sine boundary
conditions), we have

9\ ox(r,1) N/ 10 4
(1+AE) 81 —V(l-i‘j.,a) (ﬁ'ﬁ‘;a—r—z)f(r,o (9)

at(r, 1)

t = =0 10
'L'(V, )lt:O at o ( )
(R, 1) = fH(t)e™, [>0. (11)
By introducing the following dimensionless quantities

t roo.w T Mo A,
l*:17r*:§7w)5:7077*:?7 U0:p_£7ﬁ :7760 = Jw,
(12)

Eqgs. (5), (9)-(11) becomes (dropping the star notation)

ow(r 0
él’ 0 _ (7+§>r(r7 ), (13)
9\ or(r, 1) ON(O 10 4\
(1)), = 01((9}[ 2 =0 wlr0)=0 (15)
7(1,¢) = H(t)e™, (16)

where Re = % is the Reynolds number.

3. Solution of the problem

In order to determine the exact analytical solution, we shall use
the Laplace and finite Hankel transforms [25]. By applying the
temporal Laplace transform to Egs. (14) and (16) and using
the initial conditions (15) we get the following transformed
forms,

Re(1 + q)qr(r.q) = 1+ o) (55 = 5 )ema), (17)

ror r?



Unsteady rotational flows of an Oldroyd-B fluid

975

1

(g == (18)
where 7(r,q) = L{t(r,t)} and ¢ is the Laplace transform
parameter. In order to find the solution of the problem (17)
and (18), we use the finite Hankel transform of the order
two (see (A.1) from Appendix A) along with relation (B.3)
from Appendix B. We obtain the following expression for
the Hankel transforms of function 7(r, ¢)

1 Pg+1
(¢ — i®) Req® + (Re + Br2)g + 12’

fH(rmq) = _rnJl(rn) (19)
In order to apply the inverse Laplace transform [26] we

rewrite Eq. (19) into the suitable equivalent form

_ B 1 (¢ +3%)
TH(rnaq):rnJl(rn){Re i = by \2
9= (g 455" — (35)
2Re — Pa, 1 b
+ ;bﬁ“ (o) - 2}, (20)
€0n 7= i (q + 2‘;’(16) (21ge)
where a, = Re + r?, bi =@ —4Rer’. Now, applying the

inverse Laplace transform [26], using the formulae (B.4) and
(B.5) and the convolution theorem [25] we get

'!,'H(V,,7 l) = 7’71‘,1 (}‘n){(Al,, JrlB],,)Sth (2b (,) (37%

. b”t —ant i
+(A2n + lBZn) cosh (2Re) 2Re — (AZn + len) ! }7 (21)

where
4 (12 — Rew?)(Br2 — Re) + w’ay(a,f — 2Re)
. b,{(r2 — Rear?)* + (wa,)’}
B — —wa,(Brr — Re) + w(a,p — 2Re)(r> — Rew?)
! b3 = Rew?)” + (0a,)’} ’
—r? + Rew* — w*a,f
= 02 2> (22)
(r? — Rea?)” + (way,)
B — of(—r2 + Reo?) + wa,
2n (2 — Rea?)’ + (wa,)’
Using the identity
1 1 1
o= = A (23)
with
4o Rea?r? + rla, o — w*(a® + Re*w?)
o r2{(r2 — R.ewz)2 + (a)a,,)z} ’
we get

byt bt ayt
Ty (rnyt) = —raJ1(ry) H (Al,, sinh (2 ) + A5, cosh (2R ))e’ﬁ

. 1
+(As,coswt + By, sinwt) + = cos wt}

. byt byt
+i{ (BI,, sinh ( ) + B,,cosh (2R ))e’m

. 1.
+(45, smwtfBg,,coswt)+—2$mwt}]. (24)
,

n

Now applying inverse Hankel transform (Eq. A.2) to
Eq. (24) and using identity (Eq. (B.6)) with condition
J(r,) =0 and identity (Eq. (B.7))), [27], separating real
and imaginary parts we get the exact expression for shear
stresses corresponding to considered problems. For cosine
oscillation,

t.(r, 1) = Real part {t(r, 1)} = t(r,t) + t(r, 1), >0,
(25)
where
Tes(r, 1) = 1? cos ot — 22 Jj]((r’:")) ¥u (A3, cos wt + By, sin wt),
(26)
To(ryt) = —ZZJJZI({;)) u (Al,, sinh (2bR ) + A, cosh ( b t))e’%.
27)
For sine oscillation,
7,(r, t) = Imiginary part {t(r, )} = t(r, 1) + t(r, 1), >0,
(28)

where

1(r, 1) = 1 sinwt —

(A3, sin wt — By, cos wt),

(29)

_ > Jz()‘r,l) | . b,,l b,,t _ant

T (r,t) = 2; Jl(rn)ln By, sinh 2Re + B,,cosh 2Re e ke,
(30)

It is important to point out that solutions (25) and (28) are
written as sums between the steady-state and transient solu-
tions. By replacing Egs. (25) and (28) in Eq. (13), integrating
with respect to time ¢ and using the initial condition (15), we
get velocity corresponding to cosine and sine oscillation of
Oldroyd-B fluid respectively,

n=1

=y (rr)r | e % byt
o(rt)==2 . A1y + b, As,) sinh
we(r, 1) Z ) | 2e —(ay A1, + by Az,) sin Re

bn[ 1 .
—(byAy, + a,As,) cosh <m> } + P (As,sin(wt) — By, cos(wt))}

Ji(rra)r,
-2
; J](rn

1 Bzy, 4r
{2’% (bu Aty + ayAz,) + > } + sin(wt),

(31

722J| (r)’,,

s ot byt
—(aBi,+ by By,)sinh | —
2 [21% { (anBin+ 2n) SIN <2Re>

byt 1 .
—(buBin + ayBay) cosh <2Re) } +$(7A3n cos(wt) — Bz,,sm(wr))}

,ZJI

n=1

1 A”;” 4r
— (b, B B — —(1— .
{2’% (b B1y+ayBay) + > }+w( cos(wt))

(32)



976

A. Rauf et al.

02 I'=0.5' T T

01

Transient shear stress

-0.1 oo w=0524 -
000 w=0.785

-02 aat o=1571 |

-035 2 4 A

{a) for cosine oscillations

03 T T T
r=05

Transient shear stress

) 2 4 6 8
(b) for sine oscillations

Figure 1 Decay time of transient component for the shear stress 7., (r, #) and 7,(r, ) of Oldroyd-B fluids given by Egs. (27) and (30) for

Re =25, = 0.5 and different values of angular frequency .
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Figure 2 Decay time of transient component for the shear stress t.,(r, t) and 7 (r, #) of Oldroyd-B fluids given by Egs. (27) and (30) for

Re = 50, w = 0.393 and different values of the ratio /.

By now letting w — 0 into Egs. (25) and (31), as it was to be
expected, we recover the known results [16, Egs. (15) and (17)]
corresponding to the motion induced by the flat plate that
applies a constant shear fH(¢) to the fluid.

4. Limiting cases

4.1. The case f — 0 (Maxwell fluids)

By taking f — 0 into Egs. (25)-(32) we get exact expressions of
the shear stress and velocity for both, cosine and sine cases cor-
responding to the motion of a Maxwell fluid in an infinite cir-
cular cylinder which is rotating under the boundary conditions

(16)

2 2
< 1y (rr) ) (Re” —4Rer,)t
M1t :—25 g Ay,sinh | 4—————
e (1) AR S 2Re

(Re* —4Rer?)t )
+dozycosh | ——o—— | | e

+(A33,c0801 + By, sinwt)} +r*coswt, >0, (33)

(Re* —4Rer?)t
2Re

S (1 .
‘L'SM(I‘J) = 722 2(”’ )}’n B”nsmh

(Re* —4Rer?)t )
+BZZn cosh T e 2k
e

+(A33,8in 0t — By, coswt)} +r’sinwt, >0, (34)

ot —
th r, l *22 Jl |:2}”2]{ (REAH” (R624R€Vf,)A2271>

(Re —4Rer?)t
sinh —4Rer? )An,, + ReAy,

Re 74Rel
cosh A33,1 sin(w?) — By, cos(wt))
1 / By,
_Z J] {2— < (R€2_4R€ri)A11,,+R€A22n> —+ 6202 }

4r .
+; sin(w?), (35)

L
e 2

T {7 (ReBm +1/(Re* — 4Rer§)322,,>

(Re® —4Rer?)t
sinh T re | (Re2 74Rer,2,)BH,, + ReBy,
e

(Re* —4Rer?)t 1
cosh <2Re> } +5 < — Azz,cos(wt) — By, sin(mz)) :|
- 22 Wy { < (Reé* —4Rer?)Byy, + ReBy ) +A33"}
n n n ®

+45(l —cos(wt)), (36)

J
wan (1, 1) 722 l(rr,,)/
=

where

Rer? + Re*o?
1 — 4Rer?{(r2 — Rear)’ + ?}

Alln = -
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Figure 3 Decay time of transient component for the shear stress t.,(r, ) and 7,(r, ) of Oldroyd-B fluids given by Egs. (27) and (30) for

o = 0.785, f = 0.6 and different values of the Reynolds number Re.
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Figure 4  Profiles of both cosine and sine shear stress for Oldroyd-B fluid and Maxwell fluid for f = 0.6, @ = 0.785, r = 0.5 and different

values of Reynolds number.

wRe{Re — 2Re(r} — Rew?)}

Blln = )
1 - 4Rer5{(rﬁ - Rew2)2 + w?}
—1?2 4+ Rew?
App = —"—5——, (37)
(r2 — Rew?)” + ?
wRe
BZZM - —27
(r2 — Rea?)” + o?
Rea?r? — w*Re*(1 + o?)
A3z,

(02— Rea?) + o}

5. Numerical results and discussion

Generally, in the rheological measurements, the transient parts
of the starting solutions are neglected. Practically, it is of
interest to find the required time to reach the large-time state
for solutions, consequently, to approximate the time after
which the fluid is moving according to the large-time state is
an important problem regarding the technical relevance of
the solutions. In our problem the required time for the decay
of transient part of solutions for both cosine and sine shear
stresses depends only of three quantities, namely, o the angu-
lar frequency of oscillations, f§ the ratio of the retardation time
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and the relaxation time and Re the Reynolds number. Fig. 1
depicts that the decaying of transient part for the solutions
(27) and (30), corresponding to both cosine and sine shear
stresses is faster for increasing angular frequency w. Fig. 2
shows that the decay time of transient part for the solutions
(27) and (30), corresponding to both cosine and sine shear
stresses decreases with the increase of ratio 5. Fig. 3 depicts
that the decay time of transient part for the solutions (27)
and (30), corresponding to both cosine and sine shear stresses
increases with the increase in Reynolds number. In each of the
examined cases, it can be determined from the chart, the
approximate values of the time ¢ after which the transient solu-
tions can be neglected. Fig. 4 shows the comparison between
Oldroyd-B and Maxwell fluids. It shows that the amplitude
of the wave cycle for shear stress corresponding to Oldroyd-
B and Maxwell fluids decreases with increasing the Reynolds
number Re. Moreover, amplitude of wave cycle for Oldroyd-
B fluids is always lesser in comparison with that of Maxwell
fluids for both sine and cosine shear stresses.

Also, it is important to note that, for a short time-interval,
the flow of Maxwell fluid exhibits instability for cosine oscilla-
tions. In the case of sine oscillations, for a short time interval,
the Maxwell fluid is not moving. The length of this interval
increases for increasing of Reynold’s number.

6. Conclusions

In this paper we have studied unsteady flows on Oldroyd-B flu-
ids through a circular cylinder on whose boundary was given
the azimuthal tension in the form fsin(w?) or fcos(wz). If, usu-
ally in literature the governing equation of the flow is related at
the velocity field, in the present paper, the basic flow equation
is related at the azimuthal tension. Solutions of the initial-
boundary value flow problem have been obtained by means
of the Laplace and Hankel transforms. Expressions of the
shear stress corresponding to both types of oscillations have
been written as a sum between ‘‘the steady-state” (or perma-
nent solution) and the transient solution which tends to zero
for large values of the time z.

Analyzing some specific situations, the decreasing of tran-
sient solutions was studied. The approximate values of the
time for which the transient solution can be neglected were
determined. Corresponding solutions for Maxwell fluids have
been obtained as particular case and a comparison between
both models was presented. The roots of the equations
J>(x) = 0, numerical calculations and graphs were obtained
using subroutines from Mathcad15.
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Appendix A. For the function g(r) the finite Hankel transform
of order 2 [25] is defined by

Hy{g(r)} = gp(r) = / rg(r)a(rr.)dr, (A1)

where J,(-) is the Bessel function of the first kind of order 2
and 0 <r; <r, <... are the positive roots of the equation
J>(r) = 0. The inverse finite Hankel transform of order 2 of
function g,(r,) is defined by

H e} = 5l0) =25

where the summation is defined over all positive roots of
Jz(l‘) =0.

&), (A2)

Appendix B. By using the following formulae [27,28] and
definition of finite Hankel transform of order 2 (A.1)

w - {mir) Tm(r)] = Ja[m(r)] }m’(r), (B.1)
dlm(r)] 2 ,
RO )]+ 0] ), (B2)
we get
R A A VRN
/0 r(w—o—r—z E—r—z)r(r,q) o (rry)dr
= _rrzﬁH(rm q) - l‘,ﬁ(l, q)']l (’”n)~ (B3)
/e‘” cosh(bs)ds = zeasbz {acosh(bs) — b
2
x sinh(bs)}, @ # b’ (B.4)
/ o sinh(bs)ds — zembz {asinh(bs) — b
2
x cosh(bs)}, @ # b (B.5)
T 4 Js(r) = s (r). (B.6)

n

For finite inverse Hankel transform of order 2 with J5(r,) =0
we have the following identity

1
Hz’l{—r—Jl(rn)} =

Proof Since,

(B.7)

1
Hz{rz}z/ Py (rry)dr.
0

Replace z = rr,, then

H{r} :% / S h(2)de.
0

Using [ £Js(0)dt = 22J5(z) [28] and Jy(r,) =0 along with
Ji(z) =2Js(z) — Ji(2) [28] we get,

1
Hz{}’z} = —7‘]1 (V,,).

Hence,

Hz’l{—rlJl(rn)} =
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