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Abstract

A new approach is proposed for reconstruction of images from Radon projections. Based on Fourier ex-
pansions in orthogonal polynomials of two and three variables, instead of Fourier transforms, the approach
provides a new algorithm for the computed tomography. The convergence of the algorithm is established
under mild assumptions.
© 2006 Elsevier Inc. All rights reserved.

MSC: 42A38; 42B08; 42B15

Keywords: Reconstruction of images; Radon projections; Polynomials of two variables; Algorithms

1. Introduction

The fundamental problem of the computed tomography (CT) is to reconstruct an im-
age from its Radon projections (X-rays). To be more precise, let us consider the case of
a two dimensional image, described by a density function f (x, y) defined on the unit disk
B2 = {(x, y): x2 + y2 � 1} of the R

2 plane. A Radon projection of f is a line integral,

Rθ (f ; t) :=
∫

I (θ,t)

f (x, y) dx dy, 0 � θ � 2π, −1 � t � 1,
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where I (θ, t) = {(x, y): x cos θ + y sin θ = t} ∩ B2 is a line segment inside B2. The reconstruc-
tion problem of CT requires finding f from its Radon projections. This question is completely
solved if the complete data is given, that is, if projections for all t and θ are given. In practice,
however, only a finite number of projections can be measured. Hence, the essential problem of
CT is to find an effective algorithm that produces a good approximation to f based on a finite
number of Radon projections. The arrangement of the projections is referred as scanning geom-
etry since it is determined by the design of the scanner.

Currently, the most important method in CT is the filtered backprojection (FBP) method
which, like several other methods, is based on techniques of Fourier transforms. In principle,
the FBP method works for banded limited functions. It requires choosing a function Wb (a low-
pass filter with cut-off frequency b) that approximates the δ-distribution, and it includes steps of
linear interpolation and a discrete convolution that approximates a continuous convolution. Each
of these steps could introduce serious errors in the algorithm. See the discussion in [5,6].

The purpose of the present paper is to develop a direct approach for reconstruction of images
in CT. Instead of using Fourier transforms, we will use orthogonal expansions based on ortho-
gonal polynomials on B2. Let Snf denote the nth partial sum of such an expansion. It turns out
that S2mf satisfies the following remarkable formula

S2m(f ;x, y) =
2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Φν(t;x, y) dt, (1.1)

where φν = 2νπ/(2m + 1) are equally spaced angles along the circumference of the disk and
Φν are polynomials of two variables given by explicit formulas (see Theorem 3.3). Applying
appropriate quadrature formulas to the integrals in (1.1) leads to an approximation, A2mf , of f

that uses discrete Radon data. For example, using an appropriate Gaussian quadrature formula
leads to an A2mf that uses the Radon data{

Rφν

(
f ; cos jπ

2m+1

)
: 0 � ν � 2m, 1 � j � 2m

}
, (1.2)

of the scanning geometry of parallel beams, and the polynomial A2mf is given by an explicit
formula

A2m(f ;x, y) =
2m∑
ν=0

2m∑
j=1

Rφν

(
f ; cos jπ

2m+1

)
Tj,ν(x, y), (1.3)

where Tj,ν(x, y) are polynomials that are given by simple formulas. The operator A2mf provides
a direct approximation to f , which is the essence of our reconstruction algorithm. The new
algorithm can be implemented easily as the Tj,ν are fixed polynomials that can be stored in a
table beforehand. Furthermore, the construction allows us to add a multiplier factor and there is
a natural extension of the algorithm to a cylindrical domain in R

3.
The operator A2m in (1.3) reproduces polynomials of degree 2m − 1. Furthermore, we will

prove that the operator norm of A2m in the uniform norm is O(m log(m+1)), only slightly worse
than the norm of S2m, which is O(m). As a consequence, it follows that the algorithm converges
uniformly on B2 if f is a C2 function. There is no need to assume that f is banded limited.

At the moment the author is working with Dr. Christoph Hoeschen and Dr. Oleg Tischenko,
Medical Physics Group of the National Research Center for Environment and Health, Germany,
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to implement the algorithm numerically. The results that we have obtained so far are very promis-
ing and will be reported elsewhere.

The paper is organized as follows. The background of Radon transforms and orthogonal poly-
nomials is discussed in the next section, where an identity that will play a fundamental role in
the analysis is also proved. The Fourier orthogonal expansions are studied in Section 3, where
the identity (1.1) will be proved. The reconstruction algorithms are presented in Section 4. The
convergence of the basic algorithm for the 2-D reconstruction is proved in Section 5.

2. Radon transform and polynomials

Let B2 = {(x, y): x2 + y2 � 1} denote the unit disk on the plane. It is often convenient to use
the polar coordinates

x = r cos θ, y = r sin θ, r � 0, 0 � θ � 2π.

Let θ be an angle as in the polar coordinates; that is, θ is measured counterclockwise from the
positive x-axis. Let � denote the line �(θ, t) = {(x, y): x cos θ + y sin θ = t} for −1 � t � 1.
Clearly the line is perpendicular to the direction (cos θ, sin θ) and |t | is the distance between the
line and the origin. We will use the notation

I (θ, t) = �(θ, t) ∩ B2, 0 � θ < 2π, −1 � t � 1, (2.1)

to denote the line segment of � inside B2. The points on I (θ, t) can be represented as follows:

x = t cos θ − s sin θ, y = t sin θ + s cos θ,

for s ∈ [−√
1 − t2,

√
1 − t2].

The Radon projection of a function f in the direction θ with parameter t ∈ [−1,1] is denoted
by Rθ (f ; t),

Rθ (f ; t) :=
∫

I (θ,t)

f (x, y) dx dy

=

√
1−t2∫

−
√

1−t2

f (t cos θ − s sin θ, t sin θ + s cos θ) ds. (2.2)

In the literature a Radon projection of a bivariate function is also called an X-ray. The definition
shows that Rθ (f ; t) = Rπ+θ (f ;−t).

Let Π2 denote the space of polynomials of two variables and let Π2
n denote the subspace

of polynomials of total degree n in Π2, which has dimension dimΠ2
n = (n + 1)(n + 2)/2. If

P ∈ Π2
n then

P(x, y) =
n∑ k∑

ck,j x
j yk−j .
k=0 j=0
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Let p be a polynomial in one variable and θ ∈ [0,π]. For ξ = (cos θ, sin θ) and x = (x, y),
the ridge polynomial p(θ; ·) is defined by

p(θ;x, y) := p
(〈x, ξ 〉) = p(x cos θ + y sin θ).

This is a polynomial of two variables and is in Π2
n if p is of degree n. It is constant on lines that

are perpendicular to the direction (cos θ, sin θ). Especially important to us are the polynomials
Uk(θ;x, y), where Uk denotes the Chebyshev polynomial of the second kind,

Uk(x) = sin(k + 1)θ

sin θ
, x = cos θ.

The polynomials Uk , k = 0,1,2, . . . , are orthogonal polynomials with respect to the weight
function

√
1 − x2 on [−1,1]:

2

π

1∫
−1

Uk(x)Uj (x)
√

1 − x2 dx = δk,j , k, j � 0.

Ridge polynomials play an important role in our study of the Radon transform, as can be seen
from the following simple fact.

Lemma 2.1. For f ∈ L1(B2),

∫
B2

f (x, y)Uk(φ;x, y) dx dy =
1∫

−1

Rφ(f ; t)Uk(t) dt. (2.3)

Proof. The change of variables t = x cosφ + y sinφ and s = −x sinφ + y cosφ amounts to a
rotation, which leads to∫

B2

f (x, y)Uk(φ;x, y) dx dy =
∫
B2

f (t cosφ − s sinφ, t sinφ + s cosφ)Uk(t) dt ds

=
1∫

−1

√
1−t2∫

−
√

1−t2

f (t cosφ − s sinφ, t sinφ + s cosφ)dsUk(t) dt,

the inner integral is exactly Rφ(f ; t) by (2.2). �
Let Vk(B

2) denote the space of orthogonal polynomials of degree k on B2 with respect to the
unit weight function; that is, P ∈ Vk(B

2) if P is of degree k and∫
2

P(x, y)Q(x, y) dx dy = 0, for all Q ∈ Π2
k−1.
B
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A set of polynomials {Pj,k: 0 � j � k} in Vk(B
2) is an orthonormal basis of Vk(B

2) if

1

π

∫
B2

Pi,k(x, y)Pj,k(x, y) dx dy = δi,j , 0 � i, j � k.

It is known that the polynomials in Vk(B
2) are eigenfunctions of a second order differential

operator D (see, for example, [2]),

DP = −(k + 2)(k − 1)P, for all P ∈ V(B2);

the operator D is defined by

D := �2 − 〈x,∇〉2 − 2〈x,∇〉, (2.4)

where x = (x, y), ∇ = (∂1, ∂2) is the gradient operator with ∂1 = ∂/∂x and ∂2 = ∂/∂y, and � =
∂2

1 + ∂2
2 is the usual Laplacian. It turns out that the Radon projections of orthogonal polynomials

in Vn(B
2) can be computed explicitly.

Lemma 2.2. If P ∈ Vk(B
2) then for each t ∈ (−1,1), 0 � θ � 2π ,

Rθ (P ; t) = 2

k + 1

√
1 − t2Uk(t)P (cos θ, sin θ). (2.5)

Proof. A change of variable in (2.2) shows that

Rθ (P ; t) =
√

1 − t2

1∫
−1

P
(
t cos θ − s

√
1 − t2 sin θ, t sin θ + s

√
1 − t2 cos θ

)
ds.

The integral is a polynomial in t since an odd power of
√

1 − t2 in the integrand is always ac-
companied by an odd power of s, which has integral zero. Therefore, Q(t) := Rθ (P ; t)/√1 − t2

is a polynomial of degree k in t for every θ . Furthermore, the integral also shows that Q(1) =
P(cos θ, sin θ). By (2.3),

1∫
−1

Rθ (P ; t)√
1 − t2

Uj (t)
√

1 − t2 dt =
∫
B2

P(x, y)Uj (θ;x, y) dx dy = 0,

for j = 0,1, . . . , k − 1, since P ∈ Vk(B
2). Since Q is of degree k, we conclude that Q(t) =

cUk(t) for some constant independent of t . Setting t = 1 and using the fact that Uk(1) = k + 1,
we have c = P(cos θ, sin θ)/(k + 1). �

This lemma was proved in [4]. It plays an important role in our development below. We have
included its short proof in order to make the paper self-contained.
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There are several orthogonal or orthonormal bases that are known explicitly for Vk(B
2)

(see [2]). We will work with a special orthonormal basis that is given in terms of the ridge poly-
nomials defined above. Setting f (x, y) = Uk(θ;x, y) in (2.3) and using (2.5), we derive from
the orthogonality of the Chebyshev polynomials that

1

π

∫
B2

Uk(θ;x, y)Uk(φ;x, y) dx dy = 1

k + 1
Uk

(
cos(φ − θ)

)
. (2.6)

Recall that the zeros of Uk are cos θj,k , 1 � j � k, where θj,k = jπ/(k + 1). As a consequence
of (2.6), we have the following result ([3]; see also [8]):

Proposition 2.3. An orthonormal basis of Vk(B
2) is given by

Pk := {
Uk(θj,k;x, y): 0 � j � k

}
, θj,k = jπ

k + 1
.

In particular, the set {Pk: 0 � k � n} is an orthonormal basis for Π2
n .

The polynomials Uk(φ;x, y) also satisfy a discrete orthogonality. Let

φν := 2πν

2m + 1
, 0 � ν � 2m.

The discrete orthogonality will follow from the following identity:

Proposition 2.4. For k � 0 and θ ∈ [0,2π], φν = 2πν/(n + 1),

1

2m + 1

2m∑
ν=0

Uk(φν; cos θ, sin θ)Uk(φν;x, y) = Uk(θ;x, y), x, y ∈ B2. (2.7)

Proof. In order to prove (2.7) we will need the elementary identities

n∑
ν=0

sinkφν = 0 and
n∑

ν=0

coskφν =
{

0, if k �= 0 modn + 1,

n + 1, if k = 0 modn + 1,
(2.8)

that hold for all nonnegative integers k.
Let us denote by Ik the left-hand side of (2.7). First we consider the case of k = 2l. Since

U2l is an even polynomial, we can write it as U2l (t) = ∑l
j=0 bj t

2j . Using the polar coordinates

x = r cosφ and y = r sinφ, and the fact that (cosψ)2j can be written as a sum of cos 2iψ , we
can rearrange the sum to get

U2l(θ;x, y) = U2l

(
r cos(θ − φ)

) =
l∑

j=0

bj r
2j

(
cos(θ − φ)

)2j

=
l∑

bj (r) cos 2j (θ − φ), (2.9)

j=0
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where bj (r) is a polynomial of degree 2j in r . Furthermore, we have

U2l (φν; cos θ, sin θ) = U2l

(
cos(φν − θ)

) = 1 + 2
l∑

j=1

cos 2j (θ − φν). (2.10)

These two expressions allow us to write

I2l =
l∑

i=0

di

l∑
j=0

bj (r)
1

2m + 1

2m∑
ν=0

cos 2i(θ − φν) cos 2j (φ − φν)

where d0 = 1 and di = 2 for 1 � i � l. The addition formula of the cosine function shows that

2 cos 2i(θ − φν) cos 2j (φ − φν)

= cos 2
(
(i + j)φν − iθ − jφ

) + cos 2
(
(i − j)φν − iθ + jφ

)
= cos 2(i + j)φν cos 2(iθ + jφ) + sin 2(i + j)φν sin 2(iθ + jφ)

+ cos 2(i − j)φν cos 2(iθ − jφ) + sin 2(i − j)φν sin 2(iθ − jφ).

Since n + 1 = 2m + 1 is odd and cos 2(i ± j)φν have even indices, it follows from the above
elementary trigonometric identity and (2.8) that

1

2m + 1

2m∑
ν=0

cos 2i(θ − φν) cos 2j (φ − φν) =
{0, if i �= j,

1
2 cos 2j (θ − φ), if i = j �= 0,

1, if i = j = 0.

Consequently, using (2.9) again, we conclude that

I2l =
l∑

j=0

bj (r) cos 2j (θ − φ) = U2l

(
r cos(θ − φ)

) = U2l (θ;x, y).

This completes the proof for the case k = 2l. For the case k = 2l −1, we need to use the identities

U2l−1(φν;x, y) = U2l

(
r cos(φν − φ)

) =
l∑

j=1

bj (r) cos(2j − 1)(φν − φ),

where bj (r) is a polynomial of degree 2j −1 in r , which is derived using the fact that (cos θ)2j−1

can be written as a sum of cos(2i − 1)θ . Furthermore, we have

U2l−1(φν; cos θ, sin θ) = U2l−1
(
cos(φν − θ)

) = 2
l∑

j=1

cos(2j − 1)(θ − φν).

The rest of the proof will follow as in the case k = 2l. �
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Corollary 2.5. For k � 0 and 0 � i, j � k,

1

2m + 1

2m∑
ν=0

Uk(φν; cos θi,k, sin θi,k)Uk(φν; cos θj,k, sin θj,k) = (k + 1)δi,j . (2.11)

Proof. This follows from setting θ = θi,k , x = cos θj,k and y = sin θj,k in the identity (2.7), and
using the fact that

Uk(θi,k; cos θj,k, sin θj,k) = Uk(cos θi−j,k) = (k + 1)δi,j ,

where in the last step we have used the fact that Uk(0) = (k + 1). �
Remark 2.1. The identity (2.7) is established for the case n = 2m. It should be pointed out that
the result does not hold for n = 2m − 1. In fact, if n = 2m − 1, then following the above proof
leads to an identity analogous to (2.7) only for 0 � k � m − 1. More precisely, we have

1

2m

2m−1∑
ν=0

Uk(φν; cos θ, sin θ)Uk(φν;x, y) = Uk(θ;x, y), x, y ∈ B2,

holds for 0 � k � m − 1. Indeed, in the case m = 2p it can be proved that

1

2m

2m−1∑
ν=0

Um(φν; cos θ, sin θ)Um(φν; cosφ, sinφ) = Um

(
cos(θ − φ)

) + 2Tm

(
cos(θ − φ)

)
,

where Tm(x) = cosmψ , x = cosψ , is the Chebyshev polynomial of the first kind.

There is yet another remarkable identity for Uk(·;x, y), proved in [8], which takes the sum-
mation over θj,k instead of taking over φν :

Lemma 2.6. For k � 0,

k∑
j=0

Uk(θj,k;x, y)Uk(θj,k; cosφ, sinφ) = (k + 1)Uk(φ;x, y). (2.12)

This identity is a consequence of the compact formula for the reproducing kernel of Vn(B
2)

in [7]. It will also play an important role in our development below.
The two remarkable identities (2.7) and (2.12) hold the key for our new algorithms. The ortho-

gonal polynomials in Vn(B
2) are usually studied as a special case of the orthogonal polynomials

with respect to the weight functions Wμ(x, y) := (1 − x2 − y2)μ−1/2, μ � 0. Most of their
properties are shared by orthogonal families associated with Wμ for all μ � 0, and furthermore,
many properties can be extended to higher dimensions (see [2]). The orthogonality in (2.11),
however, is very special; it is not shared by any other orthogonal families associated with Wμ for
μ �= 1/2 and there is no direct extension to higher dimensions; see, for example, the discussion
in [8].
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3. Fourier orthogonal expansions

3.1. Orthogonal expansions on the disk

The standard Hilbert space theory shows that any function in L2(B2) can be expanded as a
Fourier orthogonal series in terms of Vn. More precisely,

L2(B2) =
∞∑

k=1

⊕
Vk

(
B2) : f =

∞∑
k=1

projk f, (3.1)

where projk f is the orthogonal projection of f onto the subspace Vk(B
2). Our reconstruction

algorithm will be based on this Fourier orthogonal expansion. It is well known that projn f can be
written as an integral operator in terms of the reproducing kernel of Vk(B

2) in L2(B2). A com-
pact formula of the reproducing kernel is given in [7]. For our purpose, we seek a formula for
projn f that will relate it to the Radon transform.

In terms of the special orthonormal basis {Pk: k � 0} given in Proposition 2.3, we can write
projk f as

projk f =
k∑

j=0

f̂j,kUk(θj,k; ·), f̂j,k = 1

π

∫
B2

f (x, y)Uk(θj,k;x, y) dx dy. (3.2)

The remarkable identity (2.7) allows us to express the Fourier coefficients in terms of Radon
projections:

Proposition 3.1. Let m be a nonnegative integer. For 0 � k � 2m, the Fourier coefficient f̂j,k

satisfies

f̂j,k = 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Uk(t) dtUk

(
cos(θj,k − φν)

)
. (3.3)

Proof. Let us denote the right-hand side of (3.3) by gj,k . By Eq. (2.3),

gj,k = 1

2m + 1

2m∑
ν=0

1

π

∫
B2

f (x, y)Uk(φν;x, y) dx dyUk

(
cos(θj,k − φν)

)

= 1

π

∫
B2

f (x, y)

[
1

2m + 1

2m∑
ν=0

Uk(φν;x, y)Uk

(
cos(θj,k − φν)

)]
dx dy

= 1

π

∫
B2

f (x, y)Uk(θj,k;x, y) dx dy

by the identity (2.7). Hence, by the definition, f̂j,k , gj,k = f̂j,k . �
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A further application of the identity (2.12) leads us to the expression of the Fourier projection
operator in terms of Radon projections:

Theorem 3.2. For m � 0 and k � 2m, the operator projk f can be written as

projk f (x, y) = 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Uk(t) dt (k + 1)Uk(φν;x, y). (3.4)

Proof. By (3.3) and the identity (2.12) in Lemma 2.6,

projk f (x, y) = 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Uk(t) dt

×
k∑

j=0

Uk

(
cos(θj,k − φν)

)
Uk(θj,k;x, y)

= 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Uk(t) dt (k + 1)U(φν;x, y),

which is what we need to prove. �
We denote the nth partial sum of the expansion (3.1) by Snf ; that is,

Snf (x, y) =
n∑

k=0

projk f (x, y).

The operator Sn is a projection operator from L2(B2) onto Π2
n . An immediate consequence of

Theorem 3.2 is the following result that will play an essential role in deriving the new algorithm:

Corollary 3.3. For m � 0, the partial sum operator S2mf can be written as

S2m(f ;x, y) =
2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Φν(t;x, y) dt (3.5)

where

Φν(t;x, y) = 1

2m + 1

2m∑
k=0

(k + 1)Uk(t)Uk(φν;x, y). (3.6)

The identity (3.5) shows that S2mf can be expressed in terms of Radon projections in 2m + 1
directions. This result, previously unnoticed, holds the key for our new algorithm given in Sec-
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tion 4. It should be pointed out (recall Remark 2.1) that such an identity does not hold for
S2m−1f .

3.2. Summability of orthogonal expansions

Let Lp(B2) denote the usual Lp space on B2 with norm ‖ · ‖p for 1 � p < ∞ and identify it
with C(B2) of continuous functions with uniform norm for p = ∞. If f ∈ Lp(B2), the error of
best approximation by polynomials of degree at most n is defined by

En(f )p := inf
{‖f − P ‖p: P ∈ Π2

n

}
. (3.7)

It is well-known that En(f )p → 0 for f ∈ Lp(B2) as n → ∞. The partial sum Snf of the
orthogonal expansion is the best approximation to f in the L2 norm; that is,

‖f − Snf ‖2 = En(f )2, f ∈ L2(B2).
However, the partial sum Snf does not converge to f point-wisely if f is merely continuous;
see [9] and the discussion below in Section 5.

To study the convergence of our orthogonal expansions we will introduce some summability
methods. Such a method takes the form

∞∑
j=0

aj,nSj (f ), aj,n ∈ R and
∞∑

j=0

aj,n = 1.

Many summability methods, for example, the Poisson means and the Cesàro means, have better
convergence behavior (see [7]). For our purpose we will use methods for which the operators are
polynomials and we would still want to retain the property that polynomials up to certain degree
are preserved.

It turns out that this can be done quite easily using a multiplier function.

Definition 3.4. Let r be a positive integer, and let η ∈ Cr [0,∞). Then η is called a multiplier
function if

η(t) = 1, 0 � t � 1, and suppη ⊂ [0,2].

Let η be a multiplier function. We define an operator S
η
2m by

S
η
2m(f ;x, y) =

2m∑
k=0

η

(
k

m

)
projk f (x, y).

Such an operator was used in the literature for approximation by spherical polynomials on the
unit sphere, and it was been used for various other orthogonal expansions in [10], including the
expansions on the unit disk. The following theorem is essentially contained in [10].
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Proposition 3.5. Let η ∈ C3[0,∞) be a multiplier function. Let f ∈ Lp(B2), 1 � p � ∞. Then

(1) S
η
2mf ∈ Π2

2m and S
η
2mP = P for P ∈ Π2

m;
(2) For m � 0 there is a constant c such that∥∥S

η
2mf

∥∥
p

� c‖f ‖p and
∥∥f − S

η
2mf

∥∥
p

� cEm(f )p.

This means that the operator S
η
2m is very well behaved: it preserves polynomials of degree up

to m and it approximates f as accurate as any polynomial of degree at most m. Using Theo-
rem 3.2 we also have the following:

Theorem 3.6. For m � 0, the operator S
η
2m can be written as

S
η
2m(f ;x, y) =

2m∑
ν=0

1

π

1∫
−1

Rφν (f ; t)Φη
ν (t;x, y) dt (3.8)

where

Φη
ν (t;x, y) = 1

2m + 1

2m∑
k=0

η

(
k

m

)
(k + 1)Uk(tj )Uk(φν;x, y). (3.9)

Remark 3.1. We can also use other summability methods, not necessarily prescribed by the
multiplier function. The essence of Proposition 3.5, however, should be preserved.

3.3. Fourier orthogonal expansion on a cylinder domain

Let L > 0 and let BL be the cylinder region

BL := B2 × [0,L] = {
(x, y, z): (x, y) ∈ B2, z ∈ [0,L]}.

Using the result in Section 3.1 we can also get an expression for the partial sum operator on BL,
which will lead us to a 3D reconstruction algorithm. We consider orthogonal polynomials with
respect to the inner product

〈f,g〉BL
= 1

π

∫
BL

f (x, y, z)g(x, y, z)WL(z) dx dy dz, (3.10)

where WL is a nonnegative function defined on [0,L] with all its moments on [0,L] assumed
finite and normalized so that

∫ L

0 WL(z)dz = 1.
Let Π3

n denote the space of polynomials of total degree at most n in three variables. Let
Vn(BL) denote the subspace of orthogonal polynomials of degree n on BL with respect to the
inner product (3.10); that is, P ∈ Vn(BL) if 〈P,Q〉BL

= 0 for all polynomial Q ∈ Π3
n−1.

Let pk be the orthonormal polynomials with respect to WL on [0,L]. Let Uk(θj,k;x, y) be
defined as in the previous subsection.
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Proposition 3.7. An orthonormal basis for Vn(BL) is given by

Pn := {Pn,k,j : 0 � j � k � n}, Pn,k,j (x, y, z) = pn−k(z)Uk(θj,k;x, y).

In particular, the set {Pl : 0 � l � n} is an orthonormal basis for Π3
n .

This is an easy consequence of the fact that BL is a product of B2 and [0,L]. For f ∈ L2(BL),
the Fourier coefficients of f with respect to the orthonormal system {Pl : l � 0} are given by

f̂l,k,j = 1

π

∫
BL

f (x, y, z)Pl,k,j (x, y, z) dx dy WL(z) dz, 0 � j � k � l.

Let Snf denote the Fourier partial sum operator,

Snf (x, y, z) =
n∑

l=0

l∑
k=0

k∑
j=0

f̂l,k,jPl,k,j (x, y, z).

Just like its counterpart in two variables, this is a projection operator and is independent of the
particular choice of the bases of Vn(BL).

We retain the notation Rφ(g; t) for the Radon projection of a function g : B2 → R. For a fixed
z in [0,L], we define

Rφ

(
f (·, ·, z); t) :=

∫
I (φ,t)

f (x, y, z) dx dy, (3.11)

which is the Radon projection of f in a disk that is perpendicular to the z-axis.
The following is an analogue of Theorem 3.3 for the cylinder BL.

Theorem 3.8. For m � 0,

S2mf (x, y, z)

= 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

L∫
0

Rφν

(
f (·, ·,w); t)Φν(w, t;x, y, z)WL(w)dw dt (3.12)

where

Φν(w, t;x, y, z) =
2m∑
k=0

(k + 1)Uk(t)Uk(φν;x, y)

2m−k∑
l=0

pl(w)pl(z). (3.13)

Proof. Using Proposition 3.1 and the product nature of the region,

f̂l,k,j = 1

2m + 1

2m∑
ν=0

1

π

1∫
Rφν (fl−k; t)Uk(t) dt Uk

(
cos(θj,k − φν)

)
,

−1
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where

fl(x, y) = 1

π

L∫
0

f (x, y,w)pl(w)WL(w)dw, l � 0.

Substituting this expression of f̂l,k,j into the formula of S2mf and using the identity (2.12) in
Lemma 2.6, we then obtain

S2mf (x, y, z) = 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

2m∑
l=0

l∑
k=0

Rφν (fl−k; t)Uk(t) dt

× (k + 1)Uk(φν;x, y)pl−k(z)

= 1

2m + 1

2m∑
ν=0

1

π

1∫
−1

2m∑
k=0

2m−k∑
l=0

Rφν (fl; t)pl(z)(k + 1)Uk(φν;x, y)Uk(t) dt,

where in the second equality we have exchanged the two inner summations. From (3.11) and the
definition of fl it is easy to see that

Rφν (fl; t) = 1

π

L∫
0

Rφν

(
f (·, ·,w); t)pl(w)WL(w)dw,

from which the proof follows upon rearranging terms in the summation. �
Remark 3.2. Clearly one can also consider summability of orthogonal expansions on BL. For
example, one can define the operator with multiplier factors just as in the case of orthogonal
expansion on B2. We shall not elaborate.

4. New reconstruction algorithms

4.1. Reconstruction algorithm for 2D images

The identity (3.5) expresses S2mf in terms of the Radon projections Rφν (f ; t) of 2m + 1
equally spaced angles φν , 0 � ν � 2m, along the circumference of the disk. These Radon pro-
jections are defined for all parameters t . In order to make use of the Radon data from the parallel
geometry, we will use a quadrature rule to get a discrete approximation of the integrals

1∫
−1

Rφν (f ; t)Uk(t) dt =
1∫

−1

Rφν (f ; t)√
1 − t2

Uk(t)
√

1 − t2 dt

in (3.5). The result will be our algorithm.
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If f is a polynomial then the equation (2.5) shows that Rφ(f ; t)/√1 − t2 is also a polyno-
mial. Hence, we choose a quadrature rule for the integral with respect to

√
1 − x2 on [−1,1].

Let us denote such a quadrature rule by Ing; then

2

π

1∫
−1

g(t)
√

1 − t2 dt ≈
n∑

j=1

λjg(tj ) := In(g), (4.1)

where t1, . . . , tn are distinct points in (−1,1) and λj are real numbers such that
∑n

j=1 λj = 1. If
equality holds in (4.1) whenever g is a polynomial of degree at most ρ, then the quadrature rule
is said to have the degree of exactness ρ.

Among all quadrature rules with a fixed number of nodes, the Gaussian quadrature has the
highest degree of exactness. It is given by

1

π

1∫
−1

g(t)
√

1 − t2 dt = 1

n + 1

n∑
j=1

sin2 jπ

n + 1
g

(
cos

jπ

n + 1

)
:= IG

n (g) (4.2)

for all polynomials g of degree at most 2n − 1; that is, its degree of exactness is 2n − 1. Note
that jπ/(n + 1) are zeros of the Chebyshev polynomial Un.

Using quadrature formula in (3.5) gives our reconstruction algorithm, which produces a poly-
nomial A2mf defined below.

Algorithm 4.1. Let the quadrature rule be given by (4.1). For m � 0 and (x, y) ∈ B2,

A2m(f ;x, y) =
2m∑
ν=0

n∑
j=1

Rφν (f ; tj )Tj,ν(x, y), (4.3)

where

Tj,ν(x, y) = λj

2(2m + 1)
√

1 − t2
j

Φν(tj ;x, y).

For a given f , the approximation process A2mf uses the Radon data{
Rφν (f ; tj ): 0 � ν � 2m, 1 � j � n

}
of f . The data consists of Radon projections on 2m + 1 equally spaced directions along the
circumference of the disk (specified by φν ) and there are n parallel lines (specified by tj ) in
each direction. If these parallel Radon projections are taken from an image f , then the algorithm
produces a polynomial A2mf which gives an approximation to the original image.

The polynomial A2m is particularly handy for numerical implementation, since one could
save Tj,ν in a table beforehand. This provides a very simple algorithm: given the Radon data, one
only has to perform addition and multiplication to evaluate A2m in (4.3) to get a reconstruction
of image.
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A good choice of the quadrature rule is Gaussian quadrature. We choose in particular n = 2m

so that the nodes of the quadrature rule (4.2) becomes tj = cos θj,2m = cos jπ/(2m + 1). In this
case, our algorithm takes a particular simple form.

Algorithm 4.2. For m � 0, (x, y) ∈ B2,

A2m(f ;x, y) =
2m∑
ν=0

2m∑
j=1

Rφν (f ; cos θj,2m)Tj,ν(x, y), (4.4)

where

Tj,ν(x, y) = 1

(2m + 1)2

2m∑
k=0

(k + 1) sin
(
(k + 1)θj,2m

)
Uk(φν;x, y). (4.5)

Remark 4.1. It is tempting to choose n = 2m + 1 in the Gaussian quadrature. In fact, such a
choice has one advantage: the operator A2m will be a projection operator onto Π2

2m. We choose

n = 2m so that φν = 2νπ
2m+1 and θj,2m = jπ

2m+1 have common denominator. It also turns out that
this choice works perfectly with the fan beam geometry of the projections, which will be reported
elsewhere.

The convergence of the algorithm will be discussed in the following section. Here we state
one result that is a simple consequence of the definition.

Theorem 4.3. The operator A2m in Algorithm 4.1 preserves polynomials of degree σ . More pre-
cisely, A2m(f ) = f whenever f is a polynomial of degree at most σ . In particular, the operator
A2m in Algorithm 4.2 preserves polynomials of degree at most 2m − 1.

Proof. The polynomial A2mf is obtained by applying quadrature rule (4.1) to (3.5). If f is a
polynomial of degree at most σ , then so is Rφν (f ; t)/√1 − t2 for every ν. Furthermore, the
polynomial Φν(t;x, y) is a polynomial of degree 2m in t . Hence, when we apply the quadrature
rule (4.1) to the integral (3.5), the result is exact. Therefore, A2mf = S2mf = f . �

If the quadrature rule is the Gaussian quadrature in (4.2), then the polynomials preserved by
the operator A2m have the highest degrees among all quadrature rules that use the same number
of nodes. Such a choice will ensure better approximation behavior of A2m.

Remark 4.2. Using the angles φν , another projection operator, call it J2mf , has been constructed
in [1] based on the parallel geometry. For almost all choices of {tj ∈ (−1,1): 0 � j � m}, the
operator J2m is the unique polynomial of degree 2m determined by the conditions

Rφμ(J2mf ; ti) = Rφμ(f ; ti ), 0 � ν � 2m, 0 � j � m.

However, the construction of I2m requires solving a family of linear system of equations whose
coefficient matrices, depending on the choice of tj , appear to be badly ill-conditioned.
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4.2. Reconstruction algorithm for 2D images with a multiplier function

Instead of using (3.5), we can also start from the summability with the multiplier factor (3.8).
The result is another reconstruction algorithm. Here we state the resulting algorithm only for the
Gaussian quadrature (4.2) with n = 2m.

Algorithm 4.4. For m � 0, (x, y) ∈ B2,

Aη
2m(f ;x, y) =

2m∑
ν=0

2m∑
j=1

Rφν (f ; cos θj,2m)T
η
j,ν(x, y), (4.6)

where

T
η
j,ν(x, y) = 1

(2m + 1)2

2m∑
k=0

η

(
k

m

)
(k + 1) sin

(
(k + 1)θj,2m

)
Uk(φν;x, y).

For a given f , the approximation process Aη
2mf uses the same Radon data of f as A2mf .

It also has the same simple structure for numerical implementation. Its approximation behavior
appears to be better than that of A2mf . We conclude this subsection with the following analogous
of Theorem 4.3:

Theorem 4.5. The operator Aη
2m preserves polynomials of degree m. More precisely, Aη

2m(f ) = f

whenever f is a polynomial of degree at most m.

We can obtain other reconstruction algorithms using different summability methods; see, how-
ever, Remark 3.1.

4.3. Reconstruction algorithm for 3D images

In order to get a reconstruction algorithm for 3D images on the cylinder region BL, we choose
the weight function to be

WL(z) = 1

π

1√
z(L − z)

, z ∈ [0,L],

which is the Chebyshev weight function on the interval [0,L], normalized so that its integral
over [0,L] is 1. Let Tk be the Chebyshev polynomial of the first kind. Define T̃k by

T̃0(z) = 1, T̃k(z) = √
2Tk(2z/L − 1), k � 1.

The polynomials T̃k are orthonormal polynomials with respect to WL on [0,L].
To obtain an algorithm using parallel Radon projections, we start from (3.12) and apply

quadrature rules on its integrals. For the integral in z, we use the Gaussian quadrature for WL.
Set

ξi,n = (2i + 1)π
and zi = 1 + cos ξi,n

, 0 � i � n − 1,

2n 2
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where zi are zeros of Tn(z); then the Gaussian quadrature on [0,L] takes the form,

1

π

L∫
0

g(z)
dz√

z(L − z)
= 1

n

n−1∑
i=0

g(zi), (4.7)

which holds whenever g is a polynomial of degree at most 2n− 1. For the integral in t , we could
use the quadrature rule (4.1). For simplicity, however, we will only use the Gaussian quadrature
(4.1).

This way we get an algorithm for reconstruction of images on BL. The algorithm produces a
polynomial B2m of three variables as follows:

Algorithm 4.6. Let γν,j,i = Rφν (f (·, ·, zi); cos θj,2m). For m � 0,

B2mf (x, y, z) :=
2m∑
ν=0

2m∑
j=1

n−1∑
i=0

γν,j,iTν,j,i(x, y, z),

where

Tν,j,i(x, y, z) = 1

n(2m + 1)
Φν(zi, cos θj,2m;x, y, z).

For a given function f , the approximation process B2m uses the Radon data{
Rφν

(
f (·, ·, zi; cos θj,2m)

)
: 0 � ν � 2m, 1 � j � 2m, 0 � i � n − 1

}
of f . The data consists of Radon projections on n disks that are perpendicular to the z-axis (speci-
fied by zi ); on each disk the Radon projections are taken in 2m + 1 equally spaced directions
along the circumference of the disk (specified by φν ) and 2m parallel lines (specified by cosψj )
in each direction. We can use this approximation for the reconstruction of the 3D images from
parallel X-ray data. In practice, the integer n of z direction should be chosen so that the resolution
in the z direction is comparable to the resolution on each disk to achieve isotropic result.

The following theorem is an analogous of Theorem 4.3 for BL.

Theorem 4.7. If n � 2m, then the operator B2m in Algorithm 4.6 preserves polynomials of degree
2m − 1. More precisely, B2m(f ) = f whenever f is a polynomial of degree at most 2m − 1.

Proof. If f is a polynomial of degree at most 2m − 1, then Rφ(f (·, ·,w); t)/√1 − t2 is a poly-
nomial of degree at most 2m − 1 both in the t variable and in the w variable. The function
Φν(w, t;x, y, z) is of degree 2m in both the t variable and the w variable. Hence, when we use
the quadrature rules for S2mf in (3.12), the result is exact if the quadrature rules are exact for
polynomials of degree 4m − 1. For the quadrature rule (4.7) this holds if n � 2m. �
Remark 4.3. In the z direction, we choose the weight function (z(1− z))−1/2 instead of constant
weight function. The reason lies in the fact that the Chebyshev polynomials of the first kind are
simple to work with and the corresponding Gaussian quadrature (4.7) is explicit. If we were to
use constant weight functions, we would have to work with Legendre polynomials, whose zeros
(the nodes of Gaussian quadrature) can be given only numerically.
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5. Convergence of the reconstruction algorithm

In this section we study the convergence behavior of the reconstruction algorithm for 2D
images and we work with A2m in (4.4), for which the quadrature rule is chosen to be Gaussian
quadrature.

5.1. Convergence of 2D reconstruction algorithm

Let us consider the uniform norm ‖ · ‖∞ of continuous functions on B2. Convergence in
the uniform norm guarantees the point-wise convergence of the reconstruction. First we give a
formula for the operator norm. Let us denote by

ψj := θj,2m = jπ/(2m + 1), 0 � j � 2m.

Proposition 5.1. Let ‖A2m‖∞ denote the operator norm of A2m as an operator from C(B2) into
C(B2). Then

‖A2m‖∞ = max
(x,y)∈B2

Λm(x, y), Λm(x, y) :=
2m∑
ν=0

2m∑
j=1

sinψj

∣∣Tj,ν(x, y)
∣∣. (5.1)

Proof. By the definition of Rφ(f ; t) we evidently have∣∣Rφ(f ; t)∣∣ �
√

1 − t2‖f ‖∞, 0 � φ � 2π, −1 < t < 1,

as seen from the second equality of (2.2). It follows immediately that∣∣A2m(f ;x, y)
∣∣ � ‖f ‖∞Λm(x, y), where (x, y) ∈ B2. (5.2)

Taking maximum in both side proves that ‖A2m‖∞ � max(x,y)∈B2 |Λm(x, y)|. To show that the
equality holds, let (x0, y0) be a point in B2 at which Λm(x, y) attains its maximum over B2.
Recall that I (θ, t) denote a line segment (2.1) inside B2. Let Σ denote the set of intersection
points of any two line segments I (φν, cosφj ) and I (φμ, cosψi),

Σ := {
(x, y): I (φν, cosψj) ∩ I (φμ, cosψi), (i,μ) �= (j, ν)

}
.

The set contains only finitely many points. Let ε > 0 be small enough so that a disk centered at a
point in Σ of radius ε contains no other points in Σ . Let Σε denote the union of all such ε disks.
We construct a function fε ∈ C(B2) as follows:

f (x, y) = sinψj signTj,ν(x0, y0), (x, y) ∈ I (φν, cosφj ) \ (
I (φν, cosφj ) ∩ Σ

)
for all j, ν and ‖fε‖∞ = 1. Then Rφν (fε, cosψj) = signTj,ν(x0, y0) + cj,νε for some con-
stant cj,ν . Since there are only finitely many points in Σ , this shows that

‖A2m‖∞ �
∣∣A2mfε(x0, y0)

∣∣ = Λm(x0, y0) − c ε = max
(x,y)∈B2

Λm(x, y) − c ε,

where c is a constant that depends on m. Taking ε → 0 completes the proof. �
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In the following we shall use the notation A ≈ B to mean that there exist two positive constants
c1 and c2 such that c1A � B � c2A.

Recall that A2mf is obtained from the partial sum S2mf of the Fourier orthogonal expansion,
upon using Gaussian quadrature. It is proved in [9] that the operator norm for the partial sum
operator S2m is

‖S2m‖∞ ≈ m. (5.3)

One would expect that the operator norm of A2m is worse than O(m) due to the additional step
of using Gaussian quadrature. Our main result in this section shows that the norm of A2m does
not grow much worse.

Theorem 5.2. For A2m defined in (4.4),

‖A2m‖∞ ≈ m log(m + 1).

This shows that the price we pay for using Gaussian quadrature to get to A2m is just a
log(m + 1) factor. This theorem will be proved in the following subsection.

For f ∈ C(B2), the quantity En(f )∞ defined in (3.7) denotes the error of best approximation
of f by polynomials of degree at most n. It is proved in [10] that if f ∈ C2r (B2), r ∈ N, then

En(f ) � cn−2r
∥∥Drf

∥∥∞, n � 0, (5.4)

where D is a second order partial differential operator defined in (2.4).
As a consequence of Theorem 5.2, we have the following result:

Theorem 5.3. If f ∈ C2(B2), then A2mf converges to f uniformly. In fact, let r be a positive
integer; then for f ∈ C2r (B2),

‖Amf − f ‖∞ � c
log(m + 1)

m2r−1

∥∥Drf
∥∥∞.

Proof. Let p be the best approximation for f from Π2
2m. By the definition of the operator norm,

the fact that A2m preserves polynomials of degree up to 2m − 1, and the triangle inequality we
see that

‖A2mf − f ‖∞ �
∥∥CA2m(f − p)

∥∥∞ + ‖f − p‖∞
�

(
1 + ‖A2m‖∞

)
E2m−1(f )∞ � cm log(m + 1)E2m−1(f )∞

from which the stated inequality follows from (5.4). �
This theorem shows that the Algorithm 4.2 does converge whenever f is a C2(B2) function. In

other words, if the original image is C2 smooth then the reconstruction algorithm 4.2 converges to
the image point-wisely and uniformly. The speed of the convergence depends on the smoothness
of the function.

The algorithm with multiplier function will likely have better convergence behavior (recall
Proposition 3.5), but the estimate is more difficult to establish. We will report results along this
line in future communications.



408 Y. Xu / Advances in Applied Mathematics 36 (2006) 388–420
5.2. Proof of Theorem 5.2, lower bound

First we need a compact formula for the functions Tj,ν in (4.5). The notation

cos θν(x, y) = x cosφν + y sinφν, φν = 2πν/(2m + 1)

will be used throughout the rest of this paper.

Proposition 5.4. For 0 � ν � 2m and 1 � j � 2m,

(2m + 1)2Tj,ν(x, y) = − sinψj [1 − (−1)j T2m+1(cos θν(x, y))]
2(cos θν(x, y) − cosψj)2

− (−1)j sinψj

(2m + 1)U2m(cos θν(x, y))

2(cos θν(x, y) − cosψj)
. (5.5)

Proof. To derive the formula, we start with the elementary trigonometric identity:

2m∑
k=0

(k + 1) cos
(
(k + 1)θ

) = −1 + (2m + 2) cos((2m + 1)θ) − (2m + 1) cos((2m + 2)θ)

4 sin2(θ/2)
.

Let θ = θν(x, y) in this proof. We apply the above identity to

sin θ(2m + 1)2Tj,ν(x, y) =
2m∑
k=0

(k + 1) sin
(
(k + 1)ψj

)
sin

(
(k + 1)θ

)

= 1

2

2m∑
k=0

(k + 1)
[
cos

(
(k + 1)(θ − ψj)

) − cos
(
(k + 1)(θ + ψj )

)]
and combine the two terms together as one fraction. The denominator of the fraction is

2 · 4 sin2 ψj + θ

2
sin2 ψj − θ

2
= 2(cos θ − cosψj)

2

and the numerator of the fraction is

N(θ) := sin2 θ + ψj

2
hj,m(θ − ψj) − sin2 θ − ψj

2
hj,m(θ + ψj)

where

hj,m(θ) = −1 + (2m + 2) cos
(
(2m + 1)θ

) − (2m + 1) cos
(
(2m + 2)θ

)
.

We write N(θ) as a sum of two terms,

N(θ) = N1(θ) − (2m + 1)N2(θ).
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For the first term we use the identities

cos
(
(2m + 1)(θ ± ψj )

) = (−1)j cos
(
(2m + 1)θ

)
,

and 2 sin2(θ/2) = 1 − cos θ to get

N1(θ) : = sin2 θ + ψj

2

(−1 + (2m + 2) cos
[
(2m + 1)(θ − ψj )

])
− sin2 θ − ψj

2

(−1 + (2m + 2) cos
[
(2m + 1)(θ + ψj )

])
= (−1 + (2m + 2)(−1)j cos

[
(2m + 1)θ

])(
cos(θ − ψj) − cos(θ + ψj )

)
/2

= (−1 + (2m + 2)(−1)j cos
[
(2m + 1)θ

])
sin θ sinψj .

For the second term, we use

cos
(
(2m + 2)(θ ± ψj)

) = (−1)j cos
(
(2m + 2)θ ± ψj

)
,

2 sin2(θ/2) = 1 − cos θ and the addition formula of the cosine function to obtain

N2(θ) := sin2 θ + ψj

2
cos

(
(2m + 2)(θ − ψj)

) − sin2 θ − ψj

2
cos

(
(2m + 2)(θ + ψj )

)
= (−1)j

2

[
cos

(
(2m + 2)θ − ψj

) − cos
(
(2m + 2)θ + ψj

)]
+ (−1)j

2

[
cos(θ − ψj) cos

(
(2m + 2)θ − ψj

) − cos(θ + ψj ) cos
(
(2m + 2)θ + ψj

)]
= (−1)j sinψj sin

(
(2m + 1)θ

) + (−1)j

2

[− cos(θ − ψj ) sin(θ + ψi) sin
(
(2m + 1)θ

)
+ cos(θ + ψj) sin(θ − ψi) sin

(
(2m + 1)θ

)]
= (−1)j sinψj sin

(
(2m + 2)θ

) + (−1)j+1 sin
(
(2m + 1)θ

)
sinψj cosψj ,

where we have used the double angle formula for sine in the last step. Using the addition formula
sin((2m + 2)θ) = sin((2m + 1)θ) cos θ + cos((2m + 1)θ) sin θ , we obtain

N2(θ) = (−1)j sinψj

[
sin

(
(2m + 1)θ

)
(cos θ − cosψj ) + cos

(
(2m + 1)θ

)
sin θ

]
.

Putting the two terms together we obtain

N(θ) = − sin θ sinψj + (−1)j sinψj

[
(2m + 2) sin θ cos

(
(2m + 1)(θ)

)
− (2m + 1)

(
sin

(
(2m + 1)θ

)
(cos θ − cosψj) + cos

(
(2m + 1)θ

)
sin θ

)]
= − sin θ sinψj

[
1 − (−1)j cos

(
(2m + 1)θ

)]
− (2m + 1)(−1)j sinψj sin

(
(2m + 1)θ

)
(cos θ − cosψj ).
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Consequently, we have proved that

sin θ(2m + 1)2Tj,ν(x, y) = − sin θ sinψj [1 − (−1)j cos((2m + 1)θ)]
2(cos θ − cosψj )2

− (2m + 1)(−1)j sinψj sin((2m + 1)θ)

2(cos θ − cosψj)
.

Hence, using the fact that Tn(cos θ) = cosnθ and Un(cos θ) = sin(n + 1)θ/ sin θ , we conclude
that

(2m + 1)2Tj,ν(x, y)

= − sinψj [1 − (−1)j T2m+1(cos θ)]
2(cos θ − cosψj)2

− (2m + 1)(−1)j sinψjU2m(cos θ)

2(cos θ − cosψj)
,

which completes the proof. �
Throughout the rest of this section and in the following section, we will use the convention

that c denotes a generic constant, independent of f and m, its value may change from line to
line. The elementary facts

2

π
t � sin t � t, for 0 � t � π

2
, and cosα − cosβ = 2 sin

(β−α
2

)
sin

(α+β
2

)
will be used repeatedly without further mention.

We now use the expression (5.5) to derive the lower bound for the estimate.

Proposition 5.5.

‖A2m‖∞ � Λm

(
cos

π

4m + 2
, sin

π

4m + 2

)
� cm log(m + 1).

Proof. Let x = cos π
4m+2 and y = sin π

4m+2 . Then we have cos θν(x, y) = cos (2ν−1/2)π
2m+1 , so that

sin(2m + 1)θν(x, y) = 1 and cos(2m + 1)θν(x, y) = 0. Let θν = (2ν−1/2)π
2m+1 . Then by (5.5),

(2m + 1)2Tj,ν(x, y) = − sinψj

2

[
1

(cos θν − cosψj )2
+ 2m + 1

sin θν(cos θν − cosψj )

]
.

We will use the fact that 0 < θν < π and 0 < ψj < π/2 for 0 � ν, j � m. Furthermore, for
0 < θν � π/2 and 0 < ψ < π/2 we have

sinψj

sin
ψj +θν

2

= 2 sin
ψj

2 cos ψ
2

sin
ψj +θν

2

� 2 cos
ψj

2
� 2,

which also holds for π/2 � θν � π and 0 < ψ < π/2, since then π/4 � ψj +θν

2 � 3π/4 and

sin
ψj +θν �

√
2/2. Hence, we have
2
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1

(2m + 1)2

m∑
ν=0

m∑
j=1

sin2 ψj

(cos θν − cosψj)2
� 1

(2m + 1)2

m∑
ν=0

m∑
j=1

1

sin2 θν−ψj

2

�
m∑

ν=0

m∑
j=1

1

(2ν − j − 1/2)2
� cm.

Consequently, it follows that

Λm(x, y) � 1

(2m + 1)2

m∑
ν=0

m∑
j=1

sinψj

∣∣Tj,ν(x, y)
∣∣

� 1

2m + 1

m∑
ν=0

m∑
j=1

sin2 ψj

| sin θν(cos θν − cosψj )| − cm.

The sum in the last expression is bounded below by

8

π2

1

2m + 1

m∑
ν=1

m∑
j=1

ψ2
j

θν |θν − ψj |(θν + ψj)

= 8

π3

m∑
ν=1

m∑
j=1

j2

(2ν − 1/2)|2ν − j − 1/2|(2ν + j − 1/2)

� 1

π3

m/2∑
ν=1

2ν−1∑
j=ν

1

2ν − j
= 1

π3

m/2∑
ν=1

ν∑
j=1

1

j
= 1

π3

m/2∑
j=1

m/2 − j + 1

j

� 1

π3

(
m

2
+ 1

) m/2∑
j=1

1

j
− m

2π3
� cm log(m + 1).

This completes the proof. �
5.3. Proof of Theorem 5.2, upper bound

We will also use expression (5.5) to estimate Λm(x, y) in (5.1) from above for all (x, y) ∈ B2.
In the following we write Λ(x,y) = Λm(x, y).

It is easy to see that the function Λ(x,y) is invariant under the dihedral group I2m+1; that
is, it is invariant under the rotation of a angle φν for ν = 0,1, . . . ,2m. Hence, it suffices if we
establish the estimate assuming (x, y) is in the wedge

Γm := {
(x, y): x = r cosφ,y = r sinφ, r � 0, |φ| � εm

}
, εm = π/2

2m + 1
.

Note that the set Γm is symmetric with respect to the y axis.
We start with a number of reductions. The fact that φ2m+1−ν = 2π −φν shows cosφ2m+1−ν =

cosφν and sinφ2m+1−ν = − sinφν , which implies that θ2m+1−ν(x, y) = θν(x,−y). Hence, using
that θ0(x, y) = x, we can write
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Λ(x,y) =
2m∑
j=1

sinψj

[∣∣T0,ν(x, y)
∣∣ +

m∑
ν=1

(∣∣Tj,ν(x, y)
∣∣ + ∣∣Tj,ν(x,−y)

∣∣)]

:= H0(x, y) +
m∑

ν=1

(
Hν(x, y) + Hν(x,−y)

)
.

Since (x, y) ∈ Γm, we only need to consider the sum over Hν(x, y).
Equation (5.5) shows that Tj,ν is naturally split as a sum of two functions,

T
(1)
j,ν := − sinψj [1 − (−1)j T2m+1(cos θν(x, y))]

2(cos θν(x, y) − cosψj )2
, (5.6)

T
(2)
j,ν := −(−1)j sinψj

(2m + 1)U2m(cos θν(x, y))

2(cos θν(x, y) − cosψj)
. (5.7)

We shall denote the corresponding splitting of Hν(x, y) by H
(i)
ν (x, y) and the splitting of Λ(x,y)

(only the sum over Hν(x, y) by Λ(i)(x, y)). Thus,

Λ(i)(x, y) :=
m∑

ν=1

H(i)
ν (x, y) and H(i)

ν (x, y) :=
2m∑
j=1

sinψj

∣∣T (i)
j,ν (x, y)

∣∣, i = 1,2.

Next we split H
(i)
ν as two sums; the first one is over j = 1,2, . . . ,m and the second one is

over j = m + 1,m + 2, . . . ,2m. Since ψ2m+1−j = π − ψj , we have cosψ2m+1−j = − cosψj so
that we can write

H(i)
ν (x, y) = H

(i)
ν,1(x, y) + H

(i)
ν,2(x, y), (5.8)

where, using that 1 − (−1)j cos(2m + 1)θ = 1 − cos(2m + 1)(θ − ψj ),

H
(1)
ν,1 = 1

(2m + 1)2

m∑
j=1

sin2 ψj

∣∣∣∣1 − cos(2m + 1)(θ − ψj)

2(cos θν(x, y) − cosψj)2

∣∣∣∣,
H

(1)
ν,1 = 1

(2m + 1)2

m∑
j=1

sin2 ψj

∣∣∣∣1 − cos(2m + 1)(θ − ψj)

2(cos θν(x, y) + cosψj)2

∣∣∣∣, (5.9)

and, using the fact that (−1)j sin(2m + 1)θ = sin(2m + 1)(θ − ψj ),

H
(2)
ν,1(x, y) = 1

2m + 1

m∑
j=1

sin2 ψj

∣∣∣∣ sin(2m + 1)(θν(x, y) − ψj)

2 sin θν(x, y)(cos θν(x, y) − cosψj)

∣∣∣∣,
H

(2)
ν,2(x, y) = 1

2m + 1

m∑
sin2 ψj

∣∣∣∣ sin(2m + 1)(θν(x, y) − ψj)

2 sin θν(x, y)(cos θν(x, y) + cosψj)

∣∣∣∣. (5.10)

j=1
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Let us denote the corresponding split of Λ(i) by Λ
(i)
j ; that is,

Λ(i) := Λ
(i)
1 + Λ

(i)
2 , where Λ

(i)
j :=

m∑
ν=1

H
(i)
ν,j , i, j = 1,2.

We only need to estimate one of the two terms. To see this, let us define

φ̃ν := (2ν − 1)π/(2m + 1), 1 � ν � m.

Then cosφm+1−ν = cos(π − φ̃ν) = − cos φ̃ν and sinφm−ν+1 = sin φ̃ν . Consequently,

cos θm−ν+1(x, y) = −x cos φ̃ν + y sin φ̃ν = − cos θ̃ν(x,−y),

where θ̃ν(x, y) = x cos φ̃ν + y sin φ̃ν . We will also use the notation H̃
(i)
ν,1 and Λ̃

(i)
j when θν(x, y)

is replaced by θ̃ν(x, y) in H
(i)
ν,1. It then follows from (5.10) that

H
(i)
m−ν+1,2(x, y) = H̃

(i)
ν,1(x,−y), 1 � ν � m,

and, consequently, Λ
(i)
2 (x, y) = Λ̃

(i)
1 (x,−y). Hence, the estimate for Λ

(i)
2 will be similar to the

estimate for Λ
(2)
1 . In fact, set

Γ̃m := {
(x, y): x = r cosφ,y = r sinφ, r � 0, |π − φ| � εm

}
, εm = π/2

2m + 1
;

then the estimate of Λ
(i)
2 (x, y) over Γ̃m will be exactly the same as the estimate of Λ

(i)
1 (x, y)

over Γm. Thus, we only need to estimate one sum, which we choose to be Λ
(i)
1 .

We use Eqs. (5.9) and (5.10) to carry out the estimate. The inequality

∣∣Un(cos t)
∣∣ =

∣∣∣∣ sin(n + 1)t

sin t

∣∣∣∣ � n + 1, 0 � t � π, (5.11)

will be used several times. The estimate is divided into several cases.

Lemma 5.6. There exist constants c1 and c2 such that

H
(1)
0 (x, y) � c1 and H

(2)
0 (x, y) � c2

(
m + 1

2

)
log(m + 1)

for (x, y) ∈ Γm, where c1 < π2(2 + π2/12) and c2 < π2/2 + 1.

Proof. Since cos θ0(x, y) = x and (x, y) ∈ Γm, we can write θ = θν(x, y) with 0 � θ � π/2.
We estimate the term H

(2)
ν first. Since cosψj > 0 for 1 � j � m and cos θ � 0, it follows

from (5.11) that
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H
(2)
0,2 (x, y) �

m∑
j=1

sin2 ψj

cosψj

�
m∑

j=1

1

cosψm−j

=
m∑

j=1

1

sin (j+1/2)π
2m+1

� π

2

m∑
j=1

2m + 1

(j + 1/2)π
�

(
m + 1

2

)
log(m + 1).

For the term H
(2)
0,1 , we need to consider the position of θ relative to that of ψj , which is divided

into several further cases.
(A) If 0 � θ � εm = π/(4m + 2), then by (5.11)

H
(2)
0,1 (x, y) �

m∑
j=1

sin2 ψj

4 sin
ψj −θ

2 sin
ψj +θ

2

� π2
m∑

j=1

ψ2
j

ψ2
j − θ2

� π2
m∑

j=1

ψ2
j

ψ2
j − ε2

m

� π2
m∑

j=1

j2

(j2 − 1/4)
� π2

(
m + 1

4

m∑
j=1

1

(j2 − 1/4)

)
� π2

(
m + 1

2

)
.

(B) If ψl − εm � θ � ψl + εm, where 1 � l � m, then using the fact that

∣∣∣∣ sin(2m + 1)(θ − ψ)

sin θ−ψl

2

∣∣∣∣ � 2

∣∣∣∣ sin(2m + 1)
θ−ψ

2

sin θ−ψl

2

∣∣∣∣ � 2m + 1

we obtain that

H
(2)
0,1 (x, y) � sin2 ψl

4 sin θ sin θ+ψl

2

+
(

l−1∑
j=1

+
m∑

j=l+1

)
sin2 ψj

4 sin θ sin
|ψj −θ |

2 sin
ψj +θ

2

� π2

8

ψ2
l

θ(ψl + θ)
+ π3

8(2m + 1)

(
l−1∑
j=1

+
m∑

j=l+1

)
ψ2

j

θ |θ − ψj |(θ + ψj)

� π2

8

l

l − 1/2
+ π3

8(2m + 1)θ

(
l−1∑
j=1

j

l − j − 1/2
+

m∑
j=l+1

j

j − l − 1/2

)
.

The first sum in the last expression is bounded by

π3

8(2m + 1)θ

l−1∑
j=1

j

l − j − 1/2
� π2(l − 1)

8(l − 1/2)

l−1∑
j=1

1

l − j − 1/2
� π2

4
(logm + 2),

and the second sum is bounded by
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π3

8(2m + 1)θ

m∑
j=l+1

j

j − l − 1/2
� π2

8(l − 1/2)

m−l∑
j=1

j + l

j − 1/2

� π2m

4

m−l∑
j=1

1

j − 1/2
� π2m

4
(logm + 2).

Putting these estimates together and use (5.8), we complete the proof for H
(2)
0 .

The proof for H
(1)
0 does not need require the splitting argument. By definition and (5.6),

H
(1)
0 (x, y) = 1

(2m + 1)2

2m∑
j=1

sin2 ψj

1 − cos((2m + 1)(θ − ψj ))

8 sin2 θ−ψj

2 sin2 θ+ψj

2

= 1

(2m + 1)2

2m∑
j=1

sin2 ψj

sin2((2m + 1)
θ−ψj

2

)
4 sin2 θ−ψj

2 sin2 θ+ψj

2

.

Let θ be fixed and |θ − ψk| � εm for some k. Then by (5.11),

H
(1)
0 (x, y) � sin2 ψk

4 sin2 θ+ψk

2

+ 1

(2m + 1)2

∑
j �=k

sin2 ψj

4 sin2 θ−ψj

2 sin2 θ+ψj

2

� π2

4

(
1 +

k−1∑
j=1

1

(k − j − 1/2)2
+

m∑
j=k+1

1

(j − k − 1/2)2

)

� π2

2

(
4 + π2

6

)
.

This completes the proof. �
Putting all pieces together, it is readily seen that the proof of the Theorem 5.2 follows from

the conclusion of the following lemma.

Lemma 5.7. There exist constants c1 and c2 such that

Λ
(1)
1 (x, y) � c1 (m + 1) and Λ

(2)
1 (x, y) � c2 (m + 1) log(m + 1)

for (x, y) ∈ Γm, where c1 < π2/96 + 7π2/24 + 1/2 and c2 < (3/2)π2 + π + 1.

Proof. Again we consider the estimate for the sum Λ
(2)
1 first, which is more difficult than

the estimate for Λ
(1)
1 . Using the polar coordinates x = r cosφ and y = r sinφ, we can write

cos θν(x, y) = r cos(φ − φν). For (x, y) ∈ Γm, |φ| � εm, so that

(2ν − 1/2)π � φν − φ � (2ν + 1/2)π
,

2m + 1 2m + 1
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from which we conclude that cos θν(x, y) � 0 for 1 � ν � m/2 and that cos θν(x, y) � 0 for
m/2 + 1 � ν � m.

We shall break the sum in Λ
(i)
1 into two parts,

Λ
(i)
1 (x, y) = L

(i)
1 (x, y) + L

(i)
2 (x, y),

where the first one has the sum taken over 1 � ν � m/2 and the second one has the sum taken
over m/2 + 1 � ν � m.

Case 1. We consider the estimate of L
(i)
2 (x, y). Note that cos θν(x, y) � 0 and cosψj � 0 for the

terms in L
(i)
2 (x, y). If sin θν(x, y) �

√
2/2, then

L
(2)
2 (x, y) = 1

2m + 1

m∑
ν=m/2+1

m∑
j=1

sin2 ψj

∣∣∣∣ sin((2m + 1)θν(x, y))

2 sin θν(x, y)(cos θν(x, y) − cosψj)

∣∣∣∣
� 1

2m + 1

m∑
ν=m/2+1

m∑
j=1

1√
2

sin2 ψj

cosψj

� 1

4
√

2

m∑
j=1

1

sin (j+1/2)π
2m+1

� 2m + 1

8
√

2

m∑
j=1

1

j + 1/2
� 1

4
√

2

(
m + 1

2

)
log(m + 1).

If sin θν(x, y) �
√

2/2, then − cos θν(x, y) = cos(π − θν(x, y)) �
√

2/2. Furthermore, since
− cos θν(x, y) = −r cos(φν − φ) � − cos(φν − φ) for m/2 + 1 � ν � m, we have θν(x, y) �
φν − φ and | sin θν(x, y)| = sin(π − θν(x, y)) � (2/π)(π − φν + φ). Hence, for sin θν(x, y) �√

2/2,

L
(2)
2 (x, y) � 1

2m + 1

m∑
ν=m/2+1

m∑
j=1

1√
2

2 sin2 ψj

| sin θν(x, y)|

� π

2
√

2

m∑
ν=m/2+1

1

π − φν + φ
= 1

2
√

2

m/2∑
ν=1

2m + 1

2ν + 1

� 1

2
√

2

(
m + 1

2

)
log(m + 1).

The case L
(1)
2 (x, y) is again easier. We have

L
(1)
2 (x, y) = 1

(2m + 1)2

m∑
ν=m/2+1

m∑
j=1

sin2 ψj

∣∣∣∣ sin2((2m + 1)
θν(x,y)−φj

2

)
2(cos θν(x, y) − cosψj)2

∣∣∣∣
� m

4(2m + 1)2

m∑
j=1

sin2 ψj

cos2 ψj

� m

16

m∑
j=1

1

(j + 1/2)2
� π2

96
m.
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Case 2. The estimate of L
(i)
1 (x, y) under the assumption that

0 � r � cos(ψm − εm) = sinπ/(2m + 1),

where cos θν(x, y) = r cos(φ − φν) in the polar coordinates for (x, y). The fact that
cos θν(x, y) � r implies that θν(x, y) � ψm − εm = π/2 − 2εm, so that sin θν(x, y) > 1/2.

Furthermore, π/4 � θν(x,y)+ψj

2 � 3π/4, which implies that sin
θν(x,y)+ψj

2 �
√

2/2 > 1/2. Con-
sequently,

L
(2)
1 (x, y) � 1

2m + 1

m/2∑
ν=1

m∑
j=1

sin2 ψj

∣∣∣∣ sin((2m + 1)(θν(x, y) − ψj ))

2 sin
θν(x,y)−ψj

2 sin
θν(x,y)+ψj

2

∣∣∣∣
� 1

2m + 1

m/2∑
ν=1

m−1∑
j=1

sin2 ψj

sin
|θν(x,y)−ψj |

2

+
m∑

ν=1

sin2 ψm

sin |θν(x,y)+ψm|
2

� mπ

2(2m + 1)

m−1∑
j=1

1

π/2 − ψj − 2εm

+ 2m

� m

2

m−1∑
j=1

1

m − j − 1/2
+ 2m � m(logm + 2).

Similarly, we have the estimate

L
(1)
1 (x, y) = 1

(2m + 1)2

m/2∑
ν=1

m∑
j=1

sin2 ψj

∣∣∣∣ sin2((2m + 1)
θν(x,y)−ψj

2 )

4 sin2 θν(x,y)−ψj

2 sin2 θν(x,y)+ψj

2

∣∣∣∣
� π2

4(2m + 1)2

m/2∑
ν=1

m−1∑
j=1

1

(θν(x, y) − ψj )2
+

m/2∑
ν=1

sin2 ψm

4 sin2 θν(x,y)+ψm

2

� m

2

m−1∑
j=1

1

(m − j − 1/2)2
+ m

2
� m

2

(
π2

6
+ 5

)
.

Case 3. The estimate of L
(i)
1 (x, y) under the assumption that

r � cos(ψm − εm) = sinπ/(2m + 1),

where cos θν(x, y) = r cos(φ −φν) in the polar coordinates for (x, y). Note that cos θν(x, y) � 0
for the terms in L

(i)
1 (x, y). In this case, cos θν(x, y) − cosψj can be zero. For a fixed r let l be

the index such that

r = cos θ, |θ − ψl | � εm, 1 � l � m.
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We split the summation over j as two sums, one over 1 � j � l and the other over l +1 � j � m.
This leads to a split of the sums in L

(i)
1 (x, y),

L
(i)
1 (x, y) =

m/2∑
ν=1

l∑
j=1

+
m/2∑
ν=1

m∑
j=l+1

:= L
(i)
1,1(x, y) + L

(i)
1,2(x, y).

We consider the two cases separately.

(A) The estimate for L
(i)
1,1. For j � l, r = cos θ � cos(ψl − ε) < cosψj , so that cos θν(x, y) �

r < cosψj , and consequently,∣∣cos θν(x, y) − cosψj

∣∣ � cosψj − cos θν(x, y) � cosψj − cos(ψl − εm) > 0.

Furthermore, the fact that cos θν(x, y) = r cos(φ − φν) � cos(ψl − εm) implies that θν(x, y) �
ψl − εm. Therefore

L
(2)
1,1(x, y) � 1

2m + 1

m/2∑
ν=1

l∑
j=1

sin2 ψj

4
∣∣sin θν(x, y) sin

θν(x,y)−ψj

2 sin
θν(x,y)+ψj

2

∣∣
� π3m

8(2m + 1)

1

ψl − εm

l∑
j=1

ψ2
j

(ψl + ψj − εm)(ψl − ψj − εm)

� π2m

4(2l − 1)

l∑
j=1

j

l − j − 1/2
� π2m

2
logm.

The estimate for L
(1)
1,1 is similar:

L
(1)
1,1(x, y) � 1

(2m + 1)2

m/2∑
ν=1

l∑
j=1

sin2 ψj

8
∣∣sin2 θν(x,y)−ψj

2 sin2 θν(x,y)+ψj

2

∣∣
� π2m

4

l∑
j=1

1

(l − j − 1/2)2
� π2m

16

(
π2

6
+ 4

)
.

(B) The estimate for L
(i)
1,2. For l < j � m, r = cos θ � cos(ψl +ε) > cosψj ; hence, θν(x, y)−

cosψj can be zero. Since cos θν(x, y) = r cos(φν −φ) is bounded by both r � cos(ψl − εm) and
cos(φν − εm) as |φ| � εm, it follows that

θν(x, y) � max{ψl,φν} − εm := zl,ν − εm > 0.

For each ν, we choose an index jν such that∣∣θν(x, y) − ψjν

∣∣ � εm.
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We need an estimate on jν . Since

2 sin2 ψjν − εm

2
= 1 − cos(ψjν − εm) � 1 − cos

(
θν(x, y)

) = 1 − r cos(φν − φ)

= 1 − r + r
(
1 − cos(φν − φ)

)
� 2 sin2 ψl

2
+ 2 sin2 φν − φ

2
,

we obtain (φjν − εm)2 � π2

4 (ψ2
l + (φν − φ)2), from which it follows that

jν − 1

2
� π

2

√
l2 + (2ν)2 � π

2
(l + 2ν). (5.12)

Using the fact that for j �= jν ,∣∣θν(x, y) − ψj

∣∣ � |ψjν − ψj | −
∣∣θν(x, y) − ψjν

∣∣ � |ψjν − ψj | − εm,

we obtain the estimate

L
(2)
1,2(x, y) = 1

2m + 1

m/2∑
ν=1

m∑
j=l

sin2 ψj

∣∣∣∣ sin((2m + 1)(θν(x, y) − ψj ))

4 sin θν(x, y) sin
θν(x,y)−ψj

2 sin
θν(x,y)+ψj

2

∣∣∣∣
�

m/2∑
ν=1

sin2 ψjν

4 sin θν(x, y) sin
θν(x,y)+ψjν

2

+ 1

2m + 1

m/2∑
ν=1

∑
j �=jν

sin2 ψj

4 sin θν(x, y) sin
|θν(x,y)−ψj |

2 sin
θν(x,y)+ψj

2

� π2

8

m/2∑
ν=1

ψjν

zl,ν − εm

+ π2

2(2m + 1)

m/2∑
ν=1

1

zl,ν − εm

∑
j �=jν

ψj

|ψjν − ψj | − εm

.

Using the inequality (5.12), the first sum in the last expression is bounded by

π3

16

m/2∑
ν=1

l + 2ν

max{l,2ν} − 1/2
� π3

8
m,

while the second sum is bounded by, again using (5.12),

π2

2(2m + 1)

m/2∑
ν=1

1

zl,ν − εm

(
jν−1∑
j=l

j

jν − j − 1/2
+

m∑
j=jν+1

j

j − jν − 1/2

)

� π

2

m/2∑ 1

max{l,2ν} − 1/2

(
jν log(jν + 1) +

m−jν∑ j + jν

j − 1/2

)

ν=1 j=1



420 Y. Xu / Advances in Applied Mathematics 36 (2006) 388–420
� π

2

m/2∑
ν=1

1

max{l,2ν} − 1/2

(
jν log(jν + 1) + (m − jν) + (jν + 1/2) log(m − jν + 1)

)

� π

2
(π + 1) log(m + 1)

m/2∑
ν=1

l + 2ν

max{l,2ν} − 1/2
+ m

m/2∑
ν=1

1

max{l,2ν} − 1/2

� (π2 + π + 1)m log(m + 1).

This completes the estimate for L
(2)
1,2. Similarly, but more easily, we have by (5.12),

L
(1)
1,2(x, y) �

m/2∑
ν=1

sin2 ψjν

4 sin2 θν(x,y)+ψjν

2

+ 1

4(2m + 1)2

m/2∑
ν=1

∑
j �=jν

1

sin2 θν(x,y)−ψj

2

� m

2
+ m

8

∑
j �=jν

1

(jν − j)2
� m

2
+ m

4

∞∑
j=1

1

j2
= m

2

(
1 + π2

12

)
.

This competes the estimate of L
(i)
1,2.

Putting all cases together completes the proof of the lemma. It is easy to see that the largest
constants in front of m log(m + 1) or m in the three cases come from Case 3. �
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