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LIST OF SYMBOLS 

aj constant 
b width of burst of errors 
C1 binary error-detecting code 
C2 nonbinary error-correcting code 
d minimum distance 
e number of random errors 
8¢ class of correctable errors for C2 
8d class of detectable errors for C1 
I t  parity check matrix for resultant code 
k number of binary information digits in resultant code 
m number of check symbols in C2 
n block length of resultant code 
P parity cheek matrix for C1 
p~ /th column of P 
r number of binary check digits in resultant code 
S syndrome 
Si ith component of syndrome (considered as an element of GF(2 ~)) 
s number of sub-blocks in resultant code: also, total number of 

symbols in code C2 
t number of digits per sub-block in resultant code: also, total number 

of digits in code C~ 
W primitive element of GF(2 s) 
xl unknown dement of GF(2 °) 
a element of GF(26) 
F parity check matrix for C2 
~/ii i-jth element of F 
p number of check digits in code C1 

* This study was supported by the United States Air Force Office of Scientific 
Research under grant number AF-AFOSR-499-65. 
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An explicit method of constructing error-location (EL) codes is 
presented for the case where errors occur in multipIe sub-blocks. The 
procedure is applicable both when the erroneous sub-blocks occur 
randomly throughout the message and when they occur in bursts. 
The method allows for a wide range in redundancy and error-loca- 
tion capability. The method of construction is outlined for an EL 
code which locates errors occurring within 2 or fewer random sub- 
blocks. A general decoding procedure for the codes is presented. 

INTRODUCTION 

A previous paper  (Wolf and Elspas, 1963) introduced the notion of 
error-locating (EL) codes: codes whose error control capabili ty lies 
midway between error-correcting (EC) codes and error-detecting (ED) 
codes. In  such codes, each block of received digits is regarded as sub- 
divided into mutual ly  exclusive sub-blocks. A class of codes was de- 
scribed which permit ted the detection of errors occurring within a 
single sub-block and in addition, the identification of tha t  sub-block 
containing errors. 

This paper  describes a construction procedure for generating par i ty  
check matrices for a much broader class of EL  codes than  previously 
reported (Wolf and Elspas, 1963). Codes in this class permit  the loca- 
tion of digit errors to within several sub-blocks of the received message 
(without specifying the precise location of the erroneous digit positions). 
Codes are described for the location of clustered sub-blocks containing 
errors (burst sub-block E L  codes) and for the location of random sub- 
blocks containing errors (random sub-block EL codes). 

Following the notation of Wolf and Elspas (1963) each block of n 
binary digits, of which r are check digits and k = n - r are information 
digits, is subdivided into s mutual ly  exclusive sub-blocks. Each sub- 
block contains t = n/s  binary digits. Par i ty  cheeks, in general, extend 
over more than  one sub-block with n being the relevant constraint 
length of the code. 

MULTIPLE SUB-BLOCK EL CODES 

The  following theorem yields an extended class of random sub-block 
and burst  sub-block EL codes. 

THEOREM. Let C1 be a binary (t, t - p) group code with parity check 
matrix P which detects the class of error patterns ~d • Let C~ be a nonbinary 
(s, s -- m)  group code with transmission digits being elements of GF(2P). 
Let C2 have a parity check matrix F, the i-flh element of this matrix, 7~J, 
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being an element in GF(2P). Let C2 correc~ the class of errors 8~, where 
S~ contains either (1) the set of all patterns with e or fewer random errors or 
(2) the set of all patterns containing a burst of errors spanning b or fewer 
digits (these digits being elements of GF(2 p) ). Then, there exists a binary 
(n, n - r) group code with n = ts and r = m p  such that if: (1) the error 
patterns within each sub-block containing errors are within the class ga ; 
and, (2) the erroneous sub-blocl~s form a pattern of errors which fall in the 
class 8o ; then, the errors will be detected and the erroneous sub-blocks 
identified. 

The parameters t and s in the above theorem are, as previously de- 
fined, the number of binary digits per sub-block and the number of sub- 
blocks, respectively. 

Proof: The method of proof is constructive and demonstrates that  
the matrix H, equal to the Kroneeker product ~ of the two matrices r 
and P; tha t  is, 

H = F X P =  

( .  - n _= s t  - - ~  

CTllt~ . , .  q/lsl:}l "~" "~" 
. . .  # $  r - ~  p m  

LT~P " '"  "/m~ 1 ~ (GF(2P)) or (binary) ' 

is indeed the pari ty cheek matrix for the desired EL code. The colunms 
of P are treated as elements of GF(2 p) and the indicated products are 
formed in accordance with the rules of multiplication for elements in 
GF(2P). The syndrome S is considered as an m-component vector, the 
i th component, denoted Si ,  being an element of GF(2"). 

Consider the situation where errors only occur in the j t h  sub-block, 
the errors belonging to the class gd- Denoting the lth component of P 
as pc, the resulting syndrome will contain the components 

s i  = p )w = aj  i = 1, 2 ,  . . . ,  m.  
/egd 

The constants ai will be a nonzero element of GF(2 p) since the errors in 
the sub-block are in the class of detectable errors ~a • 

If  errors occur within several sub-blocks, say j l ,  3'2, " "  , jv ,  and if 
the errors within each sub-block are contained in ~a, the resulting syn- 

1 Slepian (1960) introduced the concept of the Kronecker product ef generator 
matrices. The resulting cedes, which Slepian termed product codes, do not seem 
te be related to the codes discussed in this paper. 
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drome will contain the components 

St : ajl"/~jl + ajD'~j2 + . . "  + a~'~,~i~, i = 1, 2, . . .  , m 

where the aj~ are nonzero elements of GF(2P). 
I t  must  now be shown tha t  the syndrome resulting from detectable 

errors occurring within one pa t te rn  of sub-blocks in ~ is distinct from 
syndromes resulting from detectable errors occurring within any  other 
pa t te rn  of sub-blocks in 8¢. This condition is first shown for .the case 
where 8o is the set of all pat terns  with e or fewer random errors. For  this 
case all sets of 2 e  or fewer columns of the matrix F are linearly inde- 
pendent.  Thus if x~ are elements of GF(2 ~) the only solution to the equa- 
tions 

2e 

x~5,~-~ = 0 i = 1, 2, . . . , m  

is the trivial solution x~ = x2 . . . . .  x2~ = 0. However, if a syndrome 
resulting from detectable errors occurring within e or fewer sub-blocks 
was equal to the syndrome resulting from detectable errors occurring 
within another  set of e or fewer sub-blocks, this equation would have a 
nontrivial solution for the x~. Thus the syndromes resulting from de- 
tectable errors occurring in e or fewer sub-blocks are distinct if the er- 
roneous blocks are not identical. 

A similar argument  holds when 3~ is the set of all pat terns  containing 
a single burst  of b or fewer digits. Now, the linear independence of the 
columns results in the equations 

b b i = 1,2, . . -  m 

i=1 i=1 jl # j2 

having only the trivial solution x~ = x2  . . . . .  x2b = 0 for the x~ ele- 
ments of GF(2O). Such an equation would have to have a nontrivial 
solution for the x~ if the syndromes in question were not distinct. Thus 
the theorem is proved. 

The codes constructed from this theorem will be random sub-block 
EL codes or burst  sub-block EL codes in accordancewi th  whether C~ is 
chosen as a random EC code or a burst  EC code. 

It is important to note that the set of error patterns within the sub- 
blocks which can be detected (and then located) is exactly the set of 
error patterns which can be detected by the code CI. Thus if CI is a code 
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with minimum distance d, all error patterns within a sub-block contain- 
ing d - 1 or fewer errors will always be detected. However, many other 
error patterns also will be detected and in fact only 2 t - p  - -  1 of the 2 ~ 
possible error patterns within a sub-block will be undetected. The num- 
ber of undetected errors can be made zero by  choosing C1 to be the trivial 
code (p = t) : this choice, resulting in a nontrivial EL code. 

The following decoding procedure for the EL codes differs only 
slightly from the decoding procedure for the EC code C2. The syndrome 
is calculated as a vector with components in GF(2) and is then ex- 
expressed as a vector (of lower dimension) with components in GF(2P). 
Decoding is then accomplished as for code C~, with errors being specified 
in a hypothetical received word having s digits which are elements of 
GF(2°). Only the location of the errors in this hypothetical received 
word is noted and not the "amount"  of each error. The resultant pat tern 
of errors for this hypothetical received word is the pat tern of errors for 
the sub-blocks in the actual received word. 

EXAMPLE 

As an example, the construction procedure is outlined for an EL code 
which locates errors occurring within 2 or fewer random sub-blocks. 
Let  P be the pari ty check matrix for a binary (7, 4) single EC code. 
Tha t  is: [ 0o101 ] 

P =  1 0 1 1 1 
0 1 0 1 1 

The matrix P can then be rewritten as 

P =  [1 W 1 W 2 W ~ W  + W ~ W +] 

where W is an element of GF(23) satisfying the equation W 3 + W + 1 = 
0. Let  a be an element of GF(26) satisfying the equation a 2 + Wa + 1 = 
0. Using the Bose-Chaudhuri-IIoequenghem (Bose and Ray-Chaudhuri ,  
5960; Hocquenghem, 1959) procedure for constructing a 2-EC code for 
elements in GF(2 3) yields the pari ty check matrix 

2 4 6 8 I 3 5 7 
OL Ot O/ Ot a ~ 

r ~ 3 6 0 3 6 0 3 6 

4 8 3 7 2 6 1 5 
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Writing a ~ in terms of the elements 

F = 

of GF(2~), F becomes 

-1  0 1 W W 6 W 3 W 3 W 6 W -  

0 1 W W 6 W 3 W 3 W 6 W 1 

1 1 W 6 W 3 W 0 W W 3 W e 
0 W W 3 W 6 1 1 W 6 W 3 W 

1 W W 3 1 W W 8 1 W W 3 
0 W 6 W 6 0 W e W e 0 W e W e 

1 W 6 W W W e 1 W ~ 0 W 3 
0 W 3 1 W e W W W 6 1 W ~ 

The desired parity cheek matrix H would then be the Kronecker product 
of F and P. The multiplication would follow the rule W~W ~ = W ~+j, the 
exponents being taken modulo 7. The resultant matrix I-I would finally 
be written as a 24(row) by 63(column) array of elements from GF(2).  
This EL  code has 63 digits of which 24 are cheek digits and 39 are in- 
formation digits• These 63 digits are considered as subdivided into 9 sub- 
blocks containing 7 digits each• If  errors occur within 2 or fewer sub- 
blocks and if the error patterns within these sub-blocks are detectable 
by the code with parity check matrix P (this code will detect 113 out of 
the 128 possible error patterns) then the errant sub-blocks will be 
identified. 

A burst sub-block EL code is not illustrated but would be constructed 
in like manner. A wide range in error location capability and redundancy 
is possible depending upon the choice of the codes C1 and C~. 

OPTIMUM SINGLE SUB-BLOCK EL CODES 

The burst sub-block EL codes and the random sub-block EL codes 
reduce to the same class of codes for the ease where errors can occur only 
within a single sub-block. I t  can be verified that  a suitable choice for 
F (for m = 2) would then be 

 [001 1  
1 1 a a . . .  a2 -3 

where a is a primitive element of GF(2P). For the case of m > 2, F is 
constructed of columns being all m-tuples containing i zeros (i = 0, 1, 
• • • , m - 1) the remaining elements being all combinations of nonzero 
elements of GF(2 p) with the restriction that  the uppermost nonzero 
element of each column is 1. Such a matrix will have s = 2 p~ - 1/2 p - 1 
columns. The resultant single sub-block EL code would have the param- 
eters: n = (2 " m -  1)t/2" - 1, r = pro. 
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In the previous paper (Wolf and Elspas, 1963) it was shown that the 
number of check digits required for a single sub-block EL code which 
locates e or fewer errors occurring in a single sub-block, is bounded from 
below by 

r ~ log2 1 + s 

where [x] denotes the integer value of x. Codes meeting this lower bound 
were termed opt imum EL codes. Substituting the values of r and s found 
above, this inequality becomes 

2 p >= = 
o o 

where d is the minimum distance of the code. This inequality is an 
equality if and only if C1 is a perfect binary EC code (Peterson, 1961). 
The only (binary) perfect EC codes known are the Hamming SEC 
codes (Hamming, 1950), the Golay code (Golay, 1949) and all multiple 
EC codes having only one information digit repeated n - 1 times. Thus 
these codes and only these codes will result in an optimum single sub- 
block EL  code using the procedure described above. 
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