Note

Common Origin of Cubic Binomial Identities; A Generalization of Surányi's Proof on Le Jen Shoo's Formula

L. A. Székely*
Bolyai Institute, Jozsef Attila University, Szeged 6720, Hungary

Communicated by the Managing Editors
Received July 14, 1983
In this paper we prove a binomial identity of five independent variables that is a common generalization of several cubic identities. Our proof is short and elementary, based on a coding process due to Surányi [8], on Surányi's second proof on Le Jen Shoo's formula (see [7]).

Our result contains as a very special case Le Jen Shoo's formula, of course. Some dozen papers have been concerned with this relic of mediaeval Chinese mathematics. Almost all references can be found in the papers of Takács [9] and of Kaucky [4].
The numbering of formulae refers to Gould's book [3].
Theorem. Let a, b, c, d, e be natural numbers. Then

$$
\binom{a+c+d+e}{a+c}\binom{b+c+d+e}{c+e}=\sum_{k}\binom{a+b+c+d+e-k}{a+b+c+d}\binom{a+d}{k+d}\binom{b+c}{k+c} .
$$

Proof. We multiply both sides of our formula to $\binom{a+b+c+d}{a+d}$. The theorem is equivalent to

$$
\begin{gather*}
\binom{a+b+c+d}{a+d}\binom{a+c+d+e}{a+c}\binom{b+c+d+e}{c+e} \\
-\sum_{k} \frac{(a+b+c+d+e-k)!}{(a-k)!(b-k)!(c+k)!(d+k)!(e-k)!} \tag{*}
\end{gather*}
$$

Let us consider the set X of words containing exactly $a-k$ examples of A, $b-k$ cxamples of $B, c+k$ examples of $C, d+k$ cxamples of $D, e-k$ cxamples of E with an integer k. Let us consider the set Y of ordered triplets of

[^0]$0-1$ vectors (w_{1}, w_{2}, w_{3}), where w_{1} contains $a+b+c+d$ bits and $a+d$ of them are equal to $1, w_{2}$ contains $a+c+d+e$ bits and $a+c$ of them are equal to $1, w_{3}$ contains $b+c+d+e$ bits and $c+e$ of them are equal to 1 .

Since the right-hand side of (*) is the cardinality of X and the left-hand side is the cardinality of Y, in order to prove the theorem it is enough to prove the existence of a $f: X \rightarrow Y$ 1-1 mapping.

Suppose we had a word $w \in X$. We define $f(w)=\left(w_{1}, w_{2}, w_{3}\right) \in Y$ in the following way: the i th bit of w_{1} is 1 iff after having erased the letters E from w the i th letter is either A or D; the i th bit of w_{2} is 1 iff after having erased the letters B from w the i th letter is either A or C; the ith bit of w_{3} is 1 iff after having erased the letters A from w the ith letter is either E or C.

We have to prove f to be injective and onto. Suppose we had two words, u and w with $f(u)=f(w)$. There exists a minimum index j such that the j th letter of u differs from the j th letter of w, or u is a beginner segment of w. Having controlled the all possible pairs of the five letters A, B, C, D, E, there exists an index $j \in\{1,2,3\}$ with $w_{j}(u) \neq w_{j}(w)$ because of the definition of f. So, in the first case we have $f(u) \neq f(w)$, a contradiction. It is easily seen that the second case is impossible, so, f is injection.

We tell the algorithm of computing f^{-1} and will prove its validity by mathematical induction. Let us consider the following table:

	A	B	C	D	E
w_{1}	1	0	0	1	x
w_{2}	1	x	1	0	0
w_{3}	x	0	1	0	1.

Let us make a column of the first bits of w_{1}, w_{2}, w_{3}. Disregarding the positions marked by x, our column will be equal to exactly one of the five columns of the table. We write the letter of the found column, erase those bits of $w_{i}(i \in\{1,2,3\})$ which were equal to the bits of the found column and remain untouched the bit of w_{i} corresponding to x of the found column. However it happens, that a vector runs out, the algorithm can be applied in this case too, since the (unique!) empty place will coincide with an x. In order to help understand we show an example.

$f^{-1}(1001,0011,1100)=$ EEABBA						
w_{1}	1001	1001	1001	001	01	1
w_{2}	0011	011	11	1	1	1
w_{3}	1100	100	00	00	0	-
	E	E	A	B	B	A

It is clear, that the algorithm gives $f^{-1}\left(w_{1}, w_{2}, w_{3}\right)$ if it finishes recognizing the last letter. The only problem would be a last column of type, e.g., $(1,-,-)$. We prove the validity of the algorithm by induction on the sum of the numbers of bits of w_{1}, w_{2}, w_{3}. If it is $0,1,2,3$, the statement can be easily checked. If it is greater than 3 , we recognize the first letter by the algorithm (suppose A) and by assumption we know the validity of the f^{-1} algorithm for $a-1, b, c, d, e$ (or a similar statement with an other letter instead of A).

Corollary 1 (Le Jen Shoo's identity). Gould [3, 6.32].

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{x+2 n-k}{2 n}=\binom{x+n}{n}^{2}
$$

Set $a=b=n, c=d=0, e=x$.
Corollary 2 (Surányi's identity [7, 8]). Gould [3, 6.19].

$$
\sum_{k=0}\binom{n}{k}\binom{r}{k}\binom{x+n+r-k}{n+r}=\binom{x+r}{r}\binom{x+n}{n} .
$$

Set $a=n, b=r, c=d=0, e=x$.

Corollary 3 (Bizley's identity). Gould [3, 6.42].

$$
\sum_{K}\binom{B}{K}\binom{C}{K-D}\binom{A+K}{B+C}=\binom{A}{B-D}\binom{A+D}{C+D}
$$

Set $c=0, b=B, a=B-D, d=C-B+D, e=A-C, k=B-K$.

Corollary 4 (Nanjundiah's identity [5]). Bizley [1], Gould [3, 6.17].

$$
\sum_{K}\binom{m-x+y}{K}\binom{n+x-y}{n-K}\binom{x+K}{m+n}=\binom{x}{m}\binom{y}{n} .
$$

Set $a=0, b=x-y, c=n, d=m-x+y, e=x-m-n, k=-K$.
Corollary 5 (Stanley's identity [6]). Gould [2; 3, 6.52].

$$
\sum_{K}\binom{x+y+K}{K}\binom{y}{A-K}\binom{x}{B-K}=\binom{x+A}{B}\binom{y+B}{A} .
$$

Set $a=y-A, b=x-B, c=B, d=A, e=0, k=-K$.

Corollary 6 (Gould's identity [3, 6.51]).

$$
\sum_{K}\binom{n}{K}\binom{r}{K}\binom{x+n+r+K}{n+r}=\binom{x+n+r}{n}\binom{x+n+r}{r}
$$

Set $a=b=0, c=n, d=r, k=-K$.
Corollary 7 (Takács' identity [9]).

$$
\sum_{j=0}^{s}\binom{r}{j}\binom{m-r}{s-j}\binom{t+j}{m}=\binom{t}{m-s}\binom{t-m+s+r}{s}
$$

Set $a=m-s, b=r, c=0, d=s-r, e=t-a-d, k=r-j$.

References

1. M. T. L. Bizley, A generalization of Nanjundiah's identity, Amer. Math. Monthly 77 (1970), 863-865.
2. H. W. Gould, A new symmetrical combinatorial identity, J. Combin. Theory Ser. A 13 (1972), 278-286.
3. H. W. Gould, "Combinatorial Identities," Morgantown, W. Va., 1972.
4. J. Kauckỳ, Kombinatorické identity, Bratislava, Veda, 1975.
5. T. S. Nanjundiah, Remark on a note of P. Turán, Amer. Math. Monthly 65 (1958), 354.
6. R. P. Stanley, "Ordered Structures and Partitions," Ph. D. dissertation, Harvard University, 1970.
7. J. Surányi, Remark on a problem in the history of Chinese mathematics. Mat. Lapok 6 (1955), 30-35. [Hungarian].
8. J. Surányi, On a problem of old Chinese mathematics, Publ. Math. Debrecen 4 (1956), 195-197.
9. L. Takács, On an identity of Shih-Chieh Chu, Acta Sci. Math. (Szeged) 34 (1973), 383-391.

[^0]: * Present address: Mathematical Insitute, Eötvös University, Budapest, Muzeum krt 6-8, 1088 Hungary.

