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Counting and Gröbner Bases

K. KALORKOTI†

School of Computer Science, University of Edinburgh, Edinburgh,
Scotland EH9 3JZ, U.K.

We show how the complexity of counting relates to the well known phenomenon that

computing Gröbner bases under a lexicographic order is generally harder than total
degree orders. We give simple examples of polynomials for which it is very easy to

compute their Gröbner basis using a total degree order but for which exponential time
is required for a lexicographic order. It follows that conversion algorithms do not help

in such cases.
c© 2001 Academic Press

1. Introduction

Gröbner bases were introduced by Buchberger (1965) and are now firmly established as
a tool in Commutative Algebra and other areas. The reader is referred to Buchberger
(1985), Cox, Little and O’Shea (1992) or Becker and Weispfenning (1993) for more in-
formation. Eisenbud (1995) places Gröbner bases within the context of more advanced
Commutative Algebra.

The ingredients for a Gröbner basis are a finite set G of multivariate polynomials
(usually with coefficients from Q) and a suitable total order on the power products.
It is a well known observation that, for a given set G, the runtime for a total degree
order (i.e. power products are sorted first according to degree and then by some other
criterion, especially reverse lexicographic) is usually better than for a lexicographic one
and frequently it is dramatically better. See Bayer and Stillman (1987) or Eisenbud
(1995) for special properties of the reverse lexicographic order. In this note we show
that, for a class of examples, this behaviour is explained by a conjecture in Complexity
Theory. These also serve as examples for which basis conversion methods such as those
of Faugére et al. (1993) or of Collart, Kalkbrenner and Mall (1997) do not help.

It is an easy exercise to encode NP-complete problems in terms of Gröbner bases. For
example, given an instance of Satisfiability we can produce a set of equations such
that the given formula is satisfiable if and only if the equations have a common zero
in some algebraically closed field (in fact the encoding ensures that any solution will
have components from { 0, 1 }). We test the last condition by computing a Gröbner basis
for the polynomials and checking to see if it has a nonzero constant (see Buchberger,
1985). Although this gives us a hint that in the worst case Gröbner bases will be hard to
compute, such an approach does not help to explain the difference in runtimes between
total degree and lexicographic orders. This suggests that we should consider problems
for which solutions are known to exist but for which some other property is believed
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to be intractable. In this note we focus on #P-complete problems; see Papadimitriou
(1994) for background. Although this class includes the counting versions of NP-complete
problems (e.g. Satisfiability), it also includes very restricted versions of #Monotone

Satisfiability (prefixing a decision problem with # indicates that we are considering
its counting version). We show how to encode efficiently one of these problems in such
a way that finding the Gröbner basis under a total degree order costs no more than the
encoding, while even partial information about the Gröbner basis under a lexicographic
order would amount to solving the #P-complete problem. In fact, even without any
assumptions on #P, it is quite easy to produce examples where the difference in runtimes
is exponential in the size of the input (the second basis is exponentially larger than the
first).

Becker and Weispfenning (1993) included a brief discussion on complexity issues in
an Appendix. Here we note that Möller and Mora (1984) and Huynh (1986) show that
in the worst case Gröbner bases have polynomials whose degree is Ω(d2n) where d is
the maximum of the degrees of the inputs and n is the number of indeterminates; their
proofs are based on work of Mayr and Meyer (1982). Moreover, Huynh (1986) proved
that the same holds for the cardinality of Gröbner bases. Heintz and Morgenstern (1993)
discussed matters in relation to the fundamental problems of elimination theory. For
zero-dimensional ideals (i.e. ones with finitely many zeros) the situation is not so bad.
Lakshman (1991) showed that for polynomials with rational coefficients with finitely
many common zeros the cost of computing their Gröbner basis under any admissible
ordering is bounded by a polynomial in dn where d, n are as above. The ideals we use
are all zero dimensional and indeed it is easy to see how to obtain their Gröbner basis in
O(2n) time for the orderings under consideration.

2. Algebraic Preliminaries

Throughout k will be a field and X = {x1, . . . , xn } a nonempty set of distinct inde-
terminates over k. For each f ∈ k[X] we set f = 1− f and

R = {y1y2 · · · yn|yi ∈ {xi, xi }, for 1 ≤ i ≤ n},
S = {x2

1 − x1, x
2
2 − x2, . . . , x

2
n − xn }.

Let I be an ideal of k[X] that contains S as a subset. Since x2
i − xi = x2

i − xi = xixi it
is clear that for all m1,m2 ∈ R we have

m1m2 ≡
{
m1 (mod I), if m1 = m2;
0 (mod I), if m1 6= m2.

It is now easy to see that the members of R are linearly independent over k (consider
their images in k[X]/(x2

1−x1, . . . , x
2
n−xn)). Moreover, every power product xe11 x

e2
2 · · ·xenn

when considered modulo I can be written as a unique linear combination of the members
of R (if ei > 1 then xeii ≡ xi (mod I), while if ei = 0 then multiply by xi + xi and
expand).

Lemma 2.1. Let I be an ideal of k[X] that contains S as a subset. Let f ∈ k[X] and set
f ≡

∑r
i=1 aimi (mod I) where each ai ∈ k∗ and mi ∈ R. Then f ∈ I if and only if

mi ∈ I for 1 ≤ i ≤ m.
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Proof. Suppose that f ∈ I. Then for each i we have a−1
i mif ∈ I. However a−1

i mif =
mi. The converse is immediate. 2

Lemma 2.2. Let I be an ideal of k[X] that contains S as a subset. Then I is a radical
ideal, i.e. fs ∈ I for some s > 0 if and only if f ∈ I.

Proof. Set f ≡
∑r
i=1 aimi (mod I) where each ai ∈ k∗ and mi ∈ R. Then, from the

observations made above, we have fs ≡
∑r
i=1 a

s
imi (mod I) and the result follows from

the preceding lemma. 2

Suppose now that k has characteristic 0 so that it contains Q as a subfield. Let α be
the endomorphism of k[X] induced by x1 7→ x1−2x2−22x3−· · ·−2n−1xn and xi 7→ xi,
for 2 ≤ i ≤ n. Clearly α is an automorphism of k[X].

Lemma 2.3. Let I be an ideal of k[X] that contains S as a subset and assume that k
has characteristic 0. Then α(I) is a radical ideal of k[X]. Furthermore, if (a1, a2, . . . , an)
and (b1, b2, . . . , bn) are zeros of α(I) with a1 = b1, then ai = bi for 2 ≤ i ≤ n.

Proof. The fact that α is an automorphism implies that α(I) is an ideal. Now fs ∈ α(I)
if and only if α−1(f)s ∈ I and so α(I) is radical by Lemma 2.2.

The last part follows from the observation that (c1, c2, . . . , cn) ∈ { 0, 1 }n is a zero of I
if and only if (c1 + 2c2 + · · ·+ 2n−1cn, c2, . . . , cn) is a zero of α(I). 2

In the following we will use V(I) to denote the set of common zeros of an ideal I. The
next lemma draws together some well known facts about zero-dimensional radical ideals,
e.g. see Becker and Weispfenning (1993, Chapter 8), (we omit the proof since it follows
from the two preceding lemmas by standard arguments).

Lemma 2.4. Let I be an ideal of k[X] that contains S as a subset and assume that k has
characteristic 0. Then α(I)∩ k[x1] 6= 0. Furthermore, let p1 be a nonzero monic element
of α(I) ∩ k[x1] of minimal degree and set d = deg(p). Then:

(1) |V(I)| = d.
(2) p1 = (x1− ξ1)(x1− ξ2) · · · (x1− ξd) where ξ1, ξ2, . . . , ξd are the x1-coordinates of all

the elements of V(α(I)). In particular, p1 has integer coefficients.
(3) There are polynomials p2, . . . , pn ∈ Q[x1] such that x2− p2, . . . , xn− pn ∈ α(I) and

either pi = 0 or deg(pi) < d for 2 ≤ i ≤ n.

From now on let G be a subset of k[X] such that S ⊆ G. Define β to be the endomor-
phism of k[X] induced by x1 7→ x2

1 and xi 7→ xi, for 2 ≤ i ≤ n. Note that β is a injective
but not surjective. The coding given by βα is used by Heintz and Morgenstern (1993);
see also Weispfenning (1988). Set

I = (G), J = α(I), K = (β(J)).
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Lemma 2.5. Let I = (G) as above and assume that k has characteristic 0. Then K ∩
k[x1] 6= 0. Furthermore, let p1 be a nonzero monic element of K∩k[x1] of minimal degree
and set d = deg(p1). Then:

(1) |V(I)| = d/2.
(2) p1 = (x2

1− ξ1)(x2
1− ξ2) · · · (x2

1− ξr) where ξ1, ξ2, . . . , ξr are the x1-coordinates of all
the elements of V(J).

(3) There are polynomials p2, . . . , pn ∈ Q[x2
1] such that x2 − p2, . . . , xn − pn ∈ K and

either pi = 0 or deg(pi) < d− 1 for 2 ≤ i ≤ n.

Proof. We may assume that k is algebraically closed. Let ξ1, ξ2, . . . , ξr be the x1-
coordinates of all the elements of V(J) and set q(x1) = (x1 − ξ1)(x1 − ξ2) · · · (x1 − ξr).
By Lemma 2.4, q(x1) ∈ J and so q(x2

1) ∈ K. Thus d ≤ 2r.
We claim that x2

1 − ξi | p1, for 1 ≤ i ≤ r. Consider (a1, a2, . . . , an) ∈ { 0, 1 }n and set
A =

∑n
i=1 ai2

i−1. Now (A, a2, . . . , an) is a zero of J if and only if (B, a2, . . . , an) is a
zero of K for all B such that B2 = A. Since k has characteristic 0 and is algebraically
closed it follows that each nonzero element of k has exactly two distinct square roots in
k. Since p1 vanishes at each zero of K it follows that x2

1 − ξi | p1 whenever ξi 6= 0. Now
if (0, 0, . . . , 0) is not zero of J then ξi 6= 0, for 1 ≤ i ≤ n, and the proof of the claim is
complete. On the other hand, if (0, 0, . . . , 0) is a zero of J then exactly one ξi is equal
to 0. However we have x2

1 | p1 since no element of G can have a nonzero constant term
and so sending xi to 0, for 2 ≤ i ≤ n, leaves p1 fixed and sends K to (x4

1 − x2
1) or to

(x4
1 − x2

1, x
2
1) = (x2

1). Thus d ≥ 2r and p1 = q(x2
1) as claimed.

The final part follows from the last part of Lemma 2.4. 2

Note that K need not be radical, however it is “nearly” so. The next lemma clarifies
the situation (we will not need this result subsequently).

Lemma 2.6. Suppose that k has characteristic 0. Then:

(1) K is radical if and only if G contains a polynomial with a nonzero constant term.
(2) Suppose that f(x2

1, x2, . . . , xn)s ∈ K for some s > 0. Then f(x2
1, x2, . . . , xn) ∈ K.

Proof. For the first part we use a result given by Becker and Weispfenning (1993)
as Proposition 8.14 (based on a lemma of Seidenberg): If k is perfect, then a zero-
dimensional ideal is radical if and only if it contains a univariate squarefree polynomial
in each indeterminate. In our case K contains x2

i −xi, for 2 ≤ i ≤ n, which are squarefree.
Thus K is radical if and only if the generator of K ∩ k[x1] is squarefree, i.e. if and only
if the polynomial p(x1) of Lemma 2.5 is squarefree. This is so if and only if (0, 0, . . . , 0)
is not a zero of J and this is equivalent to the stated condition on G.

For the second part, if f(x2
1, x2, . . . , xn)s ∈ K for some s > 0 then there are polynomials

f1, f2, . . . , fr ∈ k[X] and g1, g2, . . . , gr ∈ G such that f(x2
1, x2, . . . , xn)s = f1β(g1) + · · ·+

frβ(gr). Set fi = fi0 + fi1, for 1 ≤ i ≤ r, where each term of fi0 has even degree in
x1 and each term of fi1 has odd degree in x1. Since each term in β(gi), for 1 ≤ i ≤ r,
has even degree in x1 it follows that f(x2

1, x2, . . . , xn)s = f10β(g1) + · · ·+ fr0β(gr). Now
replacing x1 by x1/2

1 we see that f(x1, x2, . . . , xn)s ∈ J and so f(x1, x2, . . . , xn) ∈ J since
J is radical, by Lemma 2.2. Thus f(x2

1, x2, . . . , xn) ∈ K as claimed. 2



Counting and Gröbner Bases 311

Lemma 2.7. Let L be an ideal of k[X] and suppose that there are p1, p2, . . . , pn ∈ k[x1]
such that p1, x2−p2, . . . , xn−pn ∈ L. Then, provided that p1 is of minimal degree amongst
all members of L ∩ k[x1], we have L = (p1, x2 − p2, . . . , xn − pn).

Proof. Set L′ = (p1, x2 − p2, . . . , xn − pn) and choose f ∈ L. Then f ≡ q (mod L′)
for some q ∈ L∩ k[x1]. It follows that p1 | q since L∩ k[x1] = (p1), by the assumption on
the degree of p1. Thus f ≡ 0 (mod L′) and so f ∈ L′ which means that L ⊆ L′. The
result follows since L′ ⊆ L by assumption. 2

3. Counting

Let y1, y2, . . . , yN be Boolean variables and consider the following problem:

#Monotone 2-Sat

Input: A Boolean formula φ = c1 ∧ c2 ∧ · · · ∧ cs where each ci is of the form yi ∨ yj for
some i, j with 1 ≤ i, j ≤ N .

Output: The number of satisfying assignments to the given formula.

Valiant (1979) shows that this problem is #P-complete. Note that we may assume that
i 6= j for each clause yi ∨ yj of φ and we make this assumption from now on (this just
makes the encoding given below a little simpler; see the remark after Lemma 3.1). Let
k, X be as in the preceding section where the cardinality n of X is set to N + 1. Given
a Boolean formula φ as above, we can encode it as a set of polynomials Gφ in k[X] as
follows:

true 7→ 0,
false 7→ 1,
yi ∨ yj 7→ xi+1xj+1.

Gφ consists of the encoded clauses of φ together with x1 and the set S but with x2
1 − x1

omitted. It is clear that there is a 1–1 correspondence between the satisfying assignments
of φ and the zeros of I = (Gφ). Set J = α(I) and K = (β(J)), as in Section 2.

Lemma 3.1. Consider any total degree order on the power products of k[X]. Then
β(α(Gφ)) is a Gröbner basis of K.

Proof. There is a subset P of { 2, 3, . . . , n }2 such that the members of β(α(Gφ)) are
precisely

l = x2
1 −

n∑
i=2

2i−1xi,

fij = xixj , for (i, j) ∈ P
si = x2

i − xi, for 2 ≤ i ≤ n.

This set is a Gröbner basis if and only if every S-polynomial of each pair of its elements
reduces to 0. We make use of Buchberger’s first criterion: if the leading power product
of g is coprime to that of h then S(f, g) reduces to 0 using g and h. This means that we
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do not need to consider l since its leading power product is x2
1 and x1 does not appear

in any other polynomial of our set. Likewise we do not need to consider S(si, sj). It is
also clear that S(xixj , xrxs) = 0 (this is so for arbitrary power products; S-polynomials
are designed to do this). Finally, we need only consider S(xixj , x2

i − xi) for (i, j) ∈ P .
Recall that i 6= j so that S(xixj , x2

i − xi) = xixj and this reduces to 0 since xixj is in
our set. 2

We note that if we allow clauses in φ of the form yi∨yi then everything works provided
such a clause is encoded as xi+1 rather than x2

i+1 (we can also omit x2
i − xi).

Lemma 3.2. Assume that k has characteristic 0 and consider a lexicographic order on
the power products of k[X] in which x1 is the smallest indeterminate. Let p1, p2, . . . , pn
be as in Lemma 2.5 with K = (β(α(Gφ))). Then,

(1) Every Gröbner basis of K using the preceding order includes a nonzero constant
multiple of p1.

(2) p1, x2 − p2, . . . , xn − pn form a Gröbner basis for K.

Proof. By Lemma 2.5, p1 ∈ K and so this must reduce to 0 under any Gröbner basis
for K. This means that the basis must have a member q ∈ k[x1] such that q | p1 (since
we are using a lexicographic order in which x1 is the smallest indeterminate). But p1 has
minimal degree amongst all nonzero members of K ∩ k[x1]. The first part now follows.

For the second part we note that p1, x2− p2, . . . , xn− pn are certainly a Gröbner basis
(under the stated order) for the ideal that they generate; see the remarks in the proof of
Lemma 3.1. By Lemma 2.5 and Lemma 2.7 this ideal is K. 2

We can now see one way in which the well known differences in runtime for computing
Gröbner bases under a total degree order as opposed to a lexicographic one can be linked
with Complexity Theory. On the one hand, the Gröbner basis of K under a total degree
order is as cheap to compute as possible; it is the same as the input! On the other hand,
if we use a lexicographic order with x1 as the smallest indeterminate then even finding
the degree of p1 amounts to solving a #P-complete problem (in this connection see also
Heintz and Morgenstern, 1993, Proposition 13). Moreover, if we fix a φ with exponentially
many satisfying assignments then the polynomial p1 in the Gröbner basis of K under
a lexicographic order with x1 as the least indeterminate has exponentially many terms
(this follows from a simple argument). Thus the runtime of any algorithm to compute
this Gröbner basis is exponential while the Gröbner basis under a total degree order
can be computed in linear time. As observed in the Introduction, this provides simple
examples for which basis conversion methods such as those of Faugére et al. (1993) or of
Collart, Kalkbrenner and Mall (1997) do not help.
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