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The SecA2 proteins are a special class of transport-associated ATPases that are related to the SecA component of
the general Sec system, and are found in an increasingly large number of Gram-positive bacterial species. The
SecA2 substrates are typically linked to the cell wall, but may be lipid-linked, peptidoglycan-linked, or non-
covalently associated S-layer proteins. These substrates can have a significant impact on virulence of pathogenic
organisms, but may also aid colonization by commensals. The SecA2 orthologues range from being highly similar
to their SecA paralogues, to being distinctly different in apparent structure and function. Two broad classes of
SecA2 are evident. One transports multiple substrates, and may interact with the general Sec system, or with
an as yet unidentified transmembrane channel. The second type transports a single substrate, and is a component
of the accessory Sec system, which includes the SecY paralogue SecY2 along with the accessory Sec proteins
Asp1-3. Recent studies indicate that the latter three proteins may have a unique role in coordinating post-
translational modification of the substrate with transport by SecA2. Comparative functional and phylogenetic
analyses suggest that each SecA2 may be uniquely adapted for a specific type of substrate. This article is part of
a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and
Ross Dalbey.

Published by Elsevier B.V.
1. Introduction and overview

The genomes of many Gram-positive bacterial species encode two
homologues of the SecA transport-associatedATPase. Thefirst examples
of a second SecA, or SecA2 (a SecA homologue different from the core
component of the general Sec system), were noted in Mycobacterium
tuberculosis, Listeria monocytogenes and Streptococcus gordonii a little
more than a decade ago [1–3]. Until very recently, it was thought that
only a small group of pathogenic, Gram-positive bacteria expressed
two distinctly different SecA homologues. However, as large-scale
microbiome projects have made the genome sequences of more under-
studied organisms available, it has become apparent that a much larger
group of bacteria, including commensal and food-grade organisms, also
encode SecA2 proteins. The precise number of bacterial species that ex-
press SecA2 is difficult to assess, in part because there are as yet few
defining characteristics for the SecA2 orthologues (interspecies homo-
logues). Thus the SecA2 proteins are often not identified in the data-
bases as such, but rather may be incorrectly annotated as SecA.
Although the SecA2 proteins of mycobacteria, listeria and streptococci
are all similar to SecA proteins of the general Sec system, it has become
in trafficking and secretion in
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apparent that these SecA2s are not closely related to each other, either
phylogenetically (Fig. 1) or functionally. The SecA2 proteins have typi-
cally been classified into two categories: those that have a corresponding
SecY2 and thus belonging to a SecA2/Y2 (or accessory Sec) system, and
those that do not. As we will discuss, there is increasing evidence for a
much larger spectrum of SecA2 types.

2. General characteristics of the SecA2 proteins

The SecA family of ATPases is characterized by four major domains:
two nucleotide binding folds (NBD1 and NBD2), a preprotein binding do-
main (PPXD) located within NBD1, and a C-terminal region that encom-
passes several functional or structural domains (the HWD/HSD, IRA1 and
CTD; Fig. 2). TheHWD/HSDprovides a platform towhichNBD1 andNBDs
are anchored, and interacts with both SecY and preproteins during trans-
port [4–8]. The IRA1 and CTD domains have a significant impact on ATP
binding and hydrolysis by the NBD, and preprotein binding by the
PPXD, respectively [5,9]. While it is clear that the ability to hydrolyze
ATP is essential for the function of SecA, and that this activity is affected
by preprotein binding, the precise means by which SecA couples the
energy of ATP hydrolysis with movement of the preprotein through
the SecYEG channel is still under intense debate [10–12].

Like SecA, the SecA2 proteins have two NBDs that flank a PPXD.
However, they are all shorter than their SecA paralogues (i.e. SecA
from the same organism, and sometimes referred to as SecA1 in organ-
isms that have a SecA2), and may contain deletions within one or more
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Fig. 1. Phylogenetic relatedness of the SecA and SecA2 proteins. Phylogenetic analysis of the SecA and SecA2 proteins from selected Gram-positive bacterial species was performed using
DARWIN [96]. Species are presented more than once if there are strains that encode significantly different SecA2 orthologues. The unrooted tree shows three main branches of SecA2
divergence: 1) SecA2s of the accessory Sec system (red), 2) SecA2s of the Actinobacteria species (green), and 3) other SecA2s (cyan) and SecA proteins of the general Sec system
(black), with E. coli SecA included as a point of reference. SecA2 homologues from Arabidopsis thaliana and the unicellular red alga Cyanidioschyzon merolae are included for comparison.
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of the domains. In contrast to SecA, which is involved in the transmem-
brane transport of a number of secreted and cell wall proteins, SecA2
is typically involved in the transport of a very limited number of sub-
strates. With a few exceptions, SecA2 is not essential for viability, but
instead has a major impact on virulence or colonization. In general,
this is because one or more of the SecA2 substrates contribute to survival
or the occupation of a specific niche in vivo. Sowhat is the role of SecA2 in
transport? The answer may depend on the substrate.

3. Transport by multi-substrate SecA2 proteins

One broad set of SecA2 proteins lack a corresponding SecY2 partner,
and facilitate transport in what are sometimes called “SecA2 only” sys-
tems. This type of SecA2-mediated transport has been recently reviewed
[13,14], so we will only briefly summarize the composite findings, and
present some additional observations and new perspectives. Although
the means by which they interact with a transmembrane channel may
not be the same in all cases, it is apparent that they all are more selective
than SecA, with regard to the substrates they transport. The SecA2-
dependent substrates are often, but not always, encoded in the same
locus as SecA2. Of note, the substrates for SecA2-dependent transport
identified thus far appear to be involved in oxidative stress response,
cellwallmetabolismor structuralmodification of the cellwall. These sub-
strates are not readily distinguishable fromgeneral Sec system substrates,
and are at least partially transportable by SecA/YEG, although the secA2
phenotype may be more apparent under certain growth conditions or
in vivo.

3.1. Mycobacteria and Corynebacteria (actinobacterial type)

The first SecA2 homologue was noted upon completion of the
M. tuberculosis genome in 2000 [2]. It has subsequently become
apparent that there are closely related (80–90% identity) SecA2 ho-
mologues in all other mycobacterial species. There are also very sim-
ilar (50–60% identity) SecA2 orthologues in other actinobacterial
genera such as Gordinia and Corynebacteria (Table 1 and Fig. 1), al-
though these differ somewhat from each other and from the myco-
bacterial SecA2s with regard to deletions or additions within the SecA2
domains. The apparent phylogenetic and structural differences between
the Mycobacteria and Corynebacteria SecA2s may reflect a functional
difference, since the SecA2 of Corynebacterium glutamicum was found to
be essential for viability [15], whereas the mycobacterial SecA2s are not.

The most extensively characterized SecA2 proteins are those of
M tuberculosis and Mycobacterium smegmatis. Mutational analysis
identified two substrates for the M. tuberculosis SecA2, KatG and
the Fe-dependent SodA [16]. Both of these substrates lack a canonical
Sec signal peptide. For M. smegmatis, two lipoproteins that are pre-
dicted to be involved in sugar uptake have been documented as
SecA2 substrates [17]. Although both proteins have a traditional li-
poprotein signal peptide, recent evidence indicates that the mature
regions confer a dependence on SecA2 for export [18]. That is, rapid
folding of the mature region (versus a specific sequence in the mature
region) may render the preprotein more dependent on SecA2 for
transport.

Consistent with a role as a transport motor, the ATPase activity of
mycobacterial SecA2 has been documented by bothmutational analyses
and by in vitro studies using the purified protein [19]. However, this
SecA2 shares just 29% identity (54% similarity) with its SecA paralogue.
Most of the similarity between SecA and SecA2 resides within the NBD
and PPXD domains (Fig. 2), although SecA2 has an ~35aa deletion be-
tween the ATP-binding Motifs V and VI of NBD2. This deletion is likely
to be functionally relevant, since alterations in NBD2 can affect the
rate of ATP hydrolysis by Escherichia coli SecA [20–23]. Of note, the
affinity of M. tuberculosis SecA2 for ATP is ten-fold higher, and the



Fig. 2. Comparative domain organization among SecA2 proteins. SecA2 domains were identified by alignment with E. coli SecA. Domain boundaries are based on those determined by
Papanikolau et al. [4]. NBD, nucleotide binding domain; PPXD, preprotein cross-linking domain; HWD, helical wing domain; HSD, helical scaffold domain; IRA, intramolecular regulator
of ATPase activity; CTD, C-terminal domain. IRA1 is a functional domain that overlaps with the two-helix finger structural domain [6,97]. Numbers shown below the SecA2 proteins indi-
cate the percent similarity/identity with the corresponding domain of the SecA paralogue.
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resting or “basal” rate of hydrolysis is five-fold lower than that of
SecA [19]. These differences thus suggest that preprotein binding
and ATP hydrolysis by SecA2 may be differently coordinated, as
compared with SecA.

The mycobacterial SecA2 also has a 38 amino acid extension of
NBD1, but conversely has a 70 amino acid CTD truncation. Perhaps
more significantly, this SecA2 has a large deletion in the HWD/HSD.
Since the HSD provides a major platform for interacting with SecY
[6–8], the omission within this region could be a means to prevent
SecA2 from interacting directly with the SecYEG translocon. Functional
studies support this possibility [24]. That is, SecA2 is primarily cytosolic,
whereas SecA is both cytosolic and membrane-associated, although
the expression levels of the two proteins are similar. In addition, SecA
depletion studies indicate that SecA2 cannot function independently
of SecA. The combined data thus support the proposed role for SecA2,
in which it interacts with the SecA/YEG translocase via interaction
with SecA, rather than interacting directly with SecYEG.
3.2. Listeria

The SecA2 of L. monocytogenes was fortuitously identified because
mutations in secA2 can have a dramatic effect on colony and cellular
morphology [3]. SecA2 mutants display a rough colony phenotype,
elongated cells and more extensive chaining. This is at least in part
due to impaired export of two enzymes involved in cell wall metabo-
lism, the p60 (CwhA) autolysin and the NamA (MurA) hydrolase. p60
is encoded in the same locus as SecA2 (Fig. 3)whereasNamA is encoded
elsewhere in the genome. Each of these substrates has a canonical signal
peptide. Deletion of secA2 markedly reduces (but does not abolish)
the export of these two proteins. Accordingly, SecA2 is not essential
for viability but instead has a significant effect on virulence [25].
More than a dozen additional SecA2 substrates have been reported
in L. monocytogenes [25–27]. One of these, an Mn-containing super-
oxide dismutase (MnSod), lacks an apparent N-terminal signal peptide,
so it is unclear what features affect recognition by SecA2. However,
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Table 1
Gram-positive bacterial species that encode SecA2.a

Actinobacteria Listeria Bacillusb Streptococcusc Staphylococcus Pediococcusd

Mycobacteria Listeria Bacillus Streptococcus Staphylococcus Pediococcus
M. tuberculosis L. monocytogenes B. anthracis S. pneumoniae S. aureus P. pentosacceus
M. smegmatis L. innocua B. cereus S. mitis S. epidermidis P. acidilactici
M. leprae L. seeligeri B. thuringiensis S. oralis S. warneri P. lolii
M. bovis L. marthii B. smithi S. sanguinis S. carnosus P. claussenii
M. marinum L. ivanovii B. methanolicus S. salivarius S. intermedius
M. canetti L. welshimeri S. suis Enterococcus
M. avium L. grayi S. iniae E. saccharolyticus
M. abscessus S. porcinus E. raffinosus

S. australis E. avium
Gordonia S. vestibularis E. sulfureus
G. otidis S. cristatus E. pallens
G. rhizosphera
G. bronchialis Lactobacillus Lactobacillus
G. alkanivorans L. salivarius L. paracasei
G. hirsuta L. johnsonii L. suebicus
G. effusa L. murinus L. fructivorans
G. sputi L. gastricus L. rhamnosus

L. zeae
Corynebacterium Leuconostoc
C. glutamicum L. gasicomitatum
C. diptheriae L. gelidium
C. durum L. kimchii

a Grouped according to the major and minor branch types in Fig. 1 (not all-inclusive).
b Absent from B. subtilis.
c Absent from S. pyogenes and S. mutans.
d Absent from E. faecalis and E. faecium.
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MnSod was shown to undergo cytosolic phosphorylation, which renders
it inactive, yet only the active, non-phosphorylated form is secreted [27].
Although there is a correlation between theMnSod phosphorylation level
and a dependence on SecA2 for secretion, it has not been determined
whether SecA2 recognizes the phosphorylated or dephosphorylated
form of the preprotein.

The Listeria SecA2 proteins share 40% identity (70% similarity) with
their SecA paralogues, with dissimilarities most prevalent in the C-
terminal regions. Although they lack a C-terminal CTD, there are other-
wise no deletions within SecA2, as compared with the SecA paralogue
(Fig. 2). The composite findings thus far do not illuminate whether
SecA2 is likely to interact with SecYEG or with a different transmem-
brane channel. However, a recent report has indicated that the cell divi-
sion protein DivIVa affects substrate localization to the septal region,
whereas SecA2 localizes to the same region independently of DivIVA
Fig. 3.Genetic loci encoding themulti-substrate SecA2 proteins. The chromosomal regions flank
and Bacillus anthracis are shown. A component required for SecA2 transport in B. anthracis is
substrates are indicated in pink. Substrates encoded elsewhere in the chromosome are not sho
[28]. The authors suggest that SecA2 may selectively facilitate export
of the cell wall hydrolases near the cell septum. In addition to p60, the
SecA2 locus encodes YubA, a putative membrane permease that is pre-
dicted to have seven transmembrane segments, although a possible role
for YubA in transport has not been addressed. A secA2 locus with a sim-
ilar gene arrangement is present in non-pathogenic Listeria species
(Table 1), and SecA2 mediates NamA export in at least one of these
species (Listeria innocua) [29].

3.3. Bacillus

As was the case in Listeria, the SecA2 of Bacillus anthraciswas identi-
fied and characterized because of its impact on cellular morphology,
septation and chain length [30]. The B. anthracis SecA2 is encoded with-
in a cluster of genes that are responsible for the formation of the S-layer,
ing secA2 (blue) inMycobacterium tuberculosis, Listeria monocytogenes, Clostridium difficile
also in blue. Genes encoding defined SecA2 substrates are shown in red, and presumed
wn.
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a paracrystalline lattice of proteins on the bacterial cell surface (Fig. 3).
A similar genetic locus is present in several other Bacillus species
(Table 1), but is apparently absent from B. subtilis. The B. anthracis
SecA2 is not essential for viability, and deletion of secA2 results in a
decrease, but does not abolish, secretion of Sap and EA1, two major
components of the S-layer. The two SecA2 substrates have nearly iden-
tical 29 amino acid canonical signal peptides. Sap, but not EA1, is
encoded in the secA2 locus.

Regarding how the B. anthracis SecA2 may function, it lacks a C-
terminal CTD but otherwise has no deletions compared with SecA
(Fig. 2). It shows 75% similarity (45% identity) to its SecA paralogue.
The dissimilarities are scattered throughout the protein, but most of
the differences are concentrated in the HSD/HWD. A secY2 is present
in the genome, but deletion does not result in decreased Sap or EA1 se-
cretion, indicating that SecA2 does not interact with SecY2 to transport
these substrates. Conversely, SecA2 may work in conjunction with the
S-layer assembly protein SlaP, which is encoded just downstream of
SecA2. Deletion of slaP results in a phenotype identical to that resulting
from deletion of secA2. Topological predictions suggest that SlaP should
be cytoplasmic, but cell fractionation studies point to a peripheral
membrane location that is independent of SecA2 and the S-layer proteins.
Co-purification experiments indicate that the soluble form of SlaP is not
tightly associated with any other protein. Other evidence suggests that
SecA2 and SlaP affect the uniform distribution of Sap in the cell envelope.
That is, in the absence of SecA2 or SlaP, Sap appears in patches deposited
throughout the envelope. The even distribution of Sap and EA1 in the en-
velope appears to be essential for the localization of the cell wall protein
BslO at the septal region, where it catalyzes the separation of daughter
cells [30,31]. While it is possible that SecA2/SlaP simply expedite trans-
port through SecYEG, Nguyen-Mau et al. proposed a more intriguing
hypothesis in which SecA2/SlaP may confine the export of Sap and EA1
to discrete subcellular locations, perhaps near folding catalysts.

3.4. Clostridium difficile

The only clostridial SecA2 characterized to date is that of C. difficile
[32]. As in Bacillus species, secA2 resides within an S-layer gene cluster.
However, the C. difficile SecA2 is essential for viability. This may be be-
cause one of the SecA2-dependent substrates, SlpA (the main compo-
nent of the S-layer), is essential for viability. The SecA2-dependent
substrates were identified through the combined use of dominant neg-
ative variants of SecA2 (NBDmutations) and anti-sense RNA expression
(suppression of SecAversus SecA2 expression). In addition to SlpA, an S-
layer protein encoded near the secA2 locus (CwpV) was found to be
SecA2-dependent. SlpA and CwpV both have traditional Sec-type signal
peptides. Additional putative substrates include Cwp2, Cwp66 and
Cwp84, which are also encoded in the secA2 locus. Cwp84 is a cysteine
protease that is responsible for processing SlpA after it is translocated
but prior to its incorporation into the S-layer [33].

Unlike most of the other SecA2 orthologues, the C. difficile SecA2 is
very closely related to its SecA paralogue (77% over-all similarity, 54%
identity). Most of the differences are found in the HSD/HWD, but
there is a 54aa deletion in NBD2 between Motif V and Motif VI, and a
54aa C-terminal truncation (Fig. 2). As in mycobacteria, SecA2 is cyto-
solic, whereas SecA localizes to the membrane [32]. The data suggest
that C. difficile SecA2 can function independently of SecA, and thus
may interact directly with SecYEG. There do not appear to be SecA2
orthologues in other clostridial species, including themedically relevant
Clostridium tetani, Clostridiumbotulinum, or Clostridiumperfringens. Thus,
the question of why C. difficile employs a SecA2 for S-layer protein
transport is intriguing.

3.5. Possible roles in transport

The over-all similarity of the multi-substrate SecA2 proteins to
SecA, rather than some other type of chaperone or ATPase, for example,
suggests that the coupling of preprotein binding with ATP hydrolysis
is important for function. However, nearly all of the multi-substrate
SecA2s have a deletion in the NBD2 domain, suggesting they may bind
or hydrolyze ATP differently than SecA, and thus may be differently
regulated. Indeed, in vitro experiments with the mycobacterial
SecA and SecA2 proteins have demonstrated such differences. If the
acquisition of SecA2, a specialized motor protein, provides even a
small growth advantage (via a slightly more efficient use of ATP), it
is likely to persist in the population. A better understanding of
SecA2 function, and whether there are significant differences from
the SecA paralogues, will help to determine whether they can be
selectively targeted for antimicrobial development.

The composite studies and structural comparisons also suggest that
the means by which the motor activity of SecA2 is coupled to active
transport may differ from that of SecA, and may further vary among
the SecA2 orthologues. A direct interaction with SecYEG is most likely
for the C. difficile SecA2, which is highly similar to SecA. However, other
SecA2s differ significantly from their SecA paralogues in the HSD/HWD
domain, which is a region known to provide extensive contacts between
SecA and SecY during transport [6–8]. It is therefore less likely that the
SecA2s interact directly with the SecYEG translocon, or at least not in
the same way that SecA does. Instead, a different mode of interaction
with SecYEG could be facilitated through another protein docked at
SecYEG. In mycobacteria, SecA2 appears to interact with SecYEG via
SecA. In this case, SecA2 might have a SecB-like chaperone or targeting
role. Of probable functional significance, all SecA2s have a deletion in
the CTD (except the C. glutamicum SecA2, which has a CTD insertion). In
SecA, this domain is thought to help discriminate between true transport
substrates (bound to SecB) and hydrophobic regions of cytoplasmic
proteins [5].

Another possibility that cannot be excluded is that SecA2may interact
with an entirely different transmembrane channel. The identification of
interacting partners for SecA2, and a more thorough assessment of the
role of other secA2 locus components in post-translational modification
or transport, will shed light on these possibilities. In addition, since they
are related to the newly-discovered SecA2proteins in plastids of unicellu-
lar algae and higher plants [34–36] (Fig. 1), additional studies of these
bacterial motor proteins may inform, and be informed by, related studies
in eukaryotes [37].

In caseswhere SecA2 interacts with SecYEG or SecA/YEG, SecA2may
provide “priority boarding” or an express lane to the translocon. Each
SecA2 may have different criteria for what merits priority, and the net
effect would be to shift the balance of preproteins that are transported.
However, the combined findings thus far do not clearly illuminate
whether the SecA2 proteins may differ in how they select substrates
for transport, whether there are unique features of the preprotein that
may be recognized by SecA2, or whether the SecA2 substrates are simply
the most abundant preproteins. Targeted mutations within the SecA2
substrates alongwith an analysis of the effect on SecA2-dependent trans-
port should help to resolve this issue.

4. The accessory Sec system

Many species of streptococci and staphylococci express a specialized
transporter known as the accessory Sec (or aSec) system. Along with
SecA2, the aSec system invariably includes SecY2 (a paralogue of
SecY) and the accessory Sec proteins Asp1–3. The Asps are unlike any
other characterized proteins, and appear to be unique to the accessory
Sec system. Unlike the general Sec system, which exports a variety of
proteins, each aSec system is dedicated to the transport of a large, exten-
sively glycosylated cell wall-anchored protein. These unique substrates,
known as serine-rich repeat (SRR) glycoproteins, undergo extensive
glycosylation intracellularly, prior to being transported to the bacterial
cell surface.

The aSec system has been most extensively studied in S. gordonii
and Streptococcus parasanguinis, two opportunistic pathogens normally
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present among the oralmicrobiota, but frequently associatedwith cardio-
vascular infections. Of historical note, the aSec systemwas first identified
in a screen of S. gordonii mutants for decreased binding to human plate-
lets [1]. The aSec system has since been identified in nine distinct genera
and at least 32 different species to date (Table 1), and there is a striking
conservation of gene organization within the chromosomal loci that en-
compass this system (Fig. 4). Along with the transport components, the
locus also encodes the transport substrate, and two or more glycosyl
transferases that are responsible for the post-translational modification
of the preprotein with carbohydrate moieties. It is not entirely clear
why a dedicated system is necessary for the export of the SRR glycopro-
teins. One previous notion has been that the aSec system is essential for
these unusual substrates because SecA or SecYEG cannot accommodate
glycosylated proteins. However, several lines of evidence indicate that
this is not entirely true, and suggest a more complex role for the aSec
system in SRR glycoprotein expression.

4.1. Substrates of the aSec system

The SRR glycoproteins comprise a unique family of adhesins that
bind a wide range of ligands, and have a significant impact on biofilm
formation and virulence in a diversity of infections. For example, GspB
and Hsa (the SRR adhesins of S. gordonii strains M99 and DL1, respec-
tively) bind sialylated carbohydrates on both the salivary mucin MG2
(MUC7), and on the platelet membrane protein GPIb [38–43]. This
latter interaction appears to be a major factor in the pathogenesis of
Fig. 4.Gene organization within the accessory Sec loci. Comparison of the aSec locus in selected
blue, and the export substrate is shown in red. Glycosyl transferases and other enzymes involve
shown in gray, while genes encoding potential regulatory proteins are depicted in black. Two d
locus is representative of most staphylococcal species. A slightly different arrangement, in whi
Enterococcus and some Lactobacillus species.
endocarditis [44,45]. Fap1 expression by S. parasanguinis enhances
adherence to saliva and subsequent biofilm formation [46,47]. The SRR
adhesins of Streptococcus pneumoniae, Streptococcus agalactiae, and
Staphylococcus aureus have been linked to pneumonia, meningitis and
neonatal sepsis, and endocarditis, respectively [48–54]. Although the li-
gands for the SRR glycoproteins are not known for all species, it is clear
that they encompass both carbohydrates (e.g. sialyl T-antigen for GspB),
as well as proteins (e.g. human keratin 4 and fibrinogen for the Srr1
adhesin of S. agalactiae) [55–57]. This diversity of ligands most likely
reflects specific targets formicrobial adhesion in different biologic niches.

Although the binding region of these adhesins can differ significantly,
the overall domain organization is conserved,with an atypical N-terminal
signal peptide followedby a short SRRdomain, a ligandbinding domain, a
long SRR domain, and a C-terminal LPXTG cell wall anchoring motif
(Fig. 5). Carbohydrate moieties are rapidly added to the SRR domains
through the combined action of two or more intracellular enzymes.
Studies in S. gordonii and S. parasanguinis have indicated that a het-
erodimeric complex of GtfA/B (Gtf1/2) catalyzes the proximal link-
age of N-acetyl glucosamine (GlcNAc) to the polypeptide backbone
[58,59]. The GlcNAc is presumed to be O-linked to serine residues
in the SRR domains, but the precise linkage has not yet been verified,
nor has any consensus motif for glycosylation been identified. Other
glycosyl transferases may add additional glycan moieties following
the initial GlcNAc deposition. The precise structure of the glycan on the
mature adhesins is not known, but rough estimates for GspB indicate
that approximately 100 monosaccharide residues may be added per
Gram-positive bacterial species. Genes encoding the aSec system components are colored
d solely in carbohydrate modifications are shown in green. Genes of unknown function are
ifferent variations found in Streptococcus agalactiae strains are shown. The Staphylococcus
ch secA2 is immediately upstream of secY2 and the asp123 genes, is found in Pediococcus,

image of Fig.�4


Fig. 5. SRR glycoprotein domain organization and conserved signal peptide features. Upper diagram: The domains identified in GspB are characteristic of the SRR glycoprotein family. SP, signal
peptide; AST, accessory Sec transport domain; SRR1 and SRR2, serine-rich repeat regions 1 and 2, respectively; BR, ligand binding region; CWA, cell wall anchoring domain (including an LPxTG
motif). Lower diagram: Amino-terminal sequence of the SRR glycoproteins from S. gordonii (GspB), S. parasanguinis (Fap1), S. aureus (SraP), and P. acidilactici (SRRpp).
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each polypeptide backbone [60]. The extensive glycosylation often has a
notable affect on solubility, stability, and resistance to proteolysis. In addi-
tion, the glycanmodifications can have a dramatic impact on the binding
properties of the adhesins [53,61–63].

One reason the aSec systems went undetected for so long may be
due to the nature of the substrates, which can be extremely difficult to
detect and characterize. With the apparent masses ranging from
200 kDa to much greater than 400 kDa, the SRR glycoproteins are highly
refractory to staining with most conventional reagents, and differently
glycosylated forms may not be recognized by the same antibodies or
lectins. These complications should not be overlooked, since they can
make it difficult to distinguish primary effects on glycosylation and trans-
port from secondary effects on these processes (see Sections 4.2.2 and
4.3.3).

4.2. Preprotein recognition and trafficking to the aSec system

4.2.1. The SRR signal peptides
To better define the mechanisms of transport, truncated versions of

the SRR glycoproteins have been used as model substrates. These have
been highly valuable analytical tools since they lack a C-terminal cell
wall anchoringdomain and therefore are secreted freely into the culture
medium, making it easier to quantify changes in export. Moreover,
sufficient truncation of the extensive SRR2 region renders the preprotein
stable even when not glycosylated, and thus allows examination of ex-
port independently of glycosylation. Such studies have revealed some
key requirements for transport by the aSec versus canonical Sec system.
Surprisingly, glycosylation of the substrate is not necessary for rec-
ognition by the aSec system. Instead, a 90 amino acid N-terminal
signal sequence is one key portion of the preprotein that is essential
for transport [64,65]. The atypical signal peptide has a tri-partite structure
characteristic of general Sec system signal peptides, although theN region
is approximately three times longer (Fig. 5). The extended N region in-
variably includes a “KxYKxGKxW motif”. The functional relevance of
this motif is not yet known, but it is predicted to form an amphipathic
helix that may aid in targeting of the preprotein to anionic phospholipid
patches in the membrane. A targeted deletion within the N region con-
firmed that it is important for transport, but does not affect the transport
route [66].

In S. gordonii, the hydrophobic core of the GspB signal peptide (theH
region), rather than the extended N region, was found to be a primary
determinant of trafficking to the aSec system [66]. In particular, three
glycine residues in the H region have a major impact on this process.
Results suggest that the glycines decrease the propensity to form an
α-helix, butmay also reduce theH region hydrophobicity (both proper-
ties are known to affect recognition and transport by the general Sec
system). Replacement of one or two glycineswith residues that increase
the propensity forα-helix formation decreases the stringency of traffick-
ing, such that the preproteins (i.e. truncated variants) are more readily
transported by the general Sec system. Replacing all three glycine resi-
dues completely abrogates aSec transport, and re-directs the protein to
the Sec system. Conversely, substitution of a glycine with proline only
partially interferes with aSec transport, and simultaneously prevents
Sec transport. Thus, very subtle changes in the hydrophobic core of the
signal peptide have a strong influence on the trafficking of the preprotein,
and the three glycine residues therefore contribute to a novel type of “Sec
avoidance”mechanism.

Nearly all of the SRR glycoproteins identified to date have a simi-
lar ~90 residue amino-terminal sequence. One exception is found in
the aSec substrates of pediococci, where the signal peptide has a
KxYKxGKxW motif that is immediately followed by the H region
(i.e. the signal peptide lacks the intervening portion of the N region;
Fig. 5). Another apparent, but not likely valid, exception is in the signal
peptides of pneumococcal aSec substrates such as PsrP. The annotated se-
quences indicate a translational start site at the first methionine codon,
which corresponds to codon 38 or 42 of other SRR glycoprotein signal
sequences. However, the actual open reading frame is likely to begin at
an atypical ATA codon further upstream, although this has not been
verified experimentally.

The H regions of the signal peptides display two apparent varieties.
In the streptococcal SRR proteins, the H region typically includes three
glycine residues arranged in aGxxGGmotif, and has a lowhydrophobic-
ity. As described above, these combined features may correspond to a
unique type of Sec avoidance motif. The staphylococcal substrates
have a central pair of glycines, and a slightly higher hydrophobicity in
the signal peptideH region (Fig. 5), andmay lack a Sec avoidancemech-
anism. Although this has not been thoroughly assessed, in S. aureus
some transport of the aSec substrate SraP (also known as SasA) is evi-
dent in secA2 deletion strains [67,68], which suggests that the substrate
may be less stringently trafficked, such that it can be transported by
either the Sec or aSec route (Fig. 6C). A recent report indicates that
SecY2 expression is up-regulated during the early exponential phase

image of Fig.�5
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of growth [69]. Thus, trafficking of the SRR glycoprotein in S. aureus
could be influenced by the relative expression levels of the two
transporters.

4.2.2. Impact of glycosylation on trafficking
Although the carbohydrate moieties are not necessary for recogni-

tion by the aSec system, glycosylation of the SRR domains can influence
trafficking by impeding general Sec transport. However, the extent to
which glycosylation affects trafficking may depend on the nature of
the signal peptide. For example, in S. gordonii and S. agalactiae, where
the signal peptide of the SRR glycoprotein has an apparently strong
Sec avoidancemotif, little or no preprotein is transported by the general
Sec system as long as all of the glycosyl transferases are intact (Fig. 6A).
In S. parasanguinis, the Fap1 signal peptide has one less glycine in the H
region (Fig. 5), and can readily support transport of a nonglycosylated
substrate (e.g. when gtf1 is deleted) by the general Sec pathway [65].
Accordingly, multiple reports have indicated that, even when the entire
gtf cluster is intact, a partially glycosylated Fap1precursor is transported
by the general Sec system (perhaps inefficiently) when aSec transport is
impaired (Fig. 6B, and see Section 4.3.3). In S. aureus, which lacks addi-
tional glycosyl transferases and expresses just the core GtfA/B complex,
there is also evidence that at least some SRR glycoprotein can be
transported by SecA/YEG [67,68] (Fig. 6C). Thus, in cases where the
signal peptide can facilitate transport by the general Sec pathway, par-
tially glycosylated preproteins may be transported by SecA/YEG upon
deletion of any aSec component.

4.2.3. The AST domain
In addition to the signal peptide, the aSec substratemust have a spe-

cific segment (the accessory Sec transport or AST domain) at the amino
terminus of themature region. Studies in S. gordonii and S. parasanguinis
have demonstrated that deletion of this region abolishes aSec transport
[65,70]. Even single amino acid substitutionswithin the AST domain can
dramatically impair aSec transport. The signal peptide and AST domain
together are sufficient for the transport of a heterologous substrate
Fig. 6. Impact of signal peptides and post-translationalmodifications on trafficking through the g
indicated in cyan, and signal sequences that can support transport by the general Sec system a
glycosyl transferases, and the SRR glycoprotein signal peptide is not optimal for general Sec tra
signal peptide H region, or wild-type Fap1, may be inefficiently transported by the general Sec
C: In staphylococci, the aSec locus includes just the core GtfA/B glycosyl transferase, and the SR
(specifically, a slow-folding variant of the MalE maltose binding pro-
tein) by the aSec system. Curiously, the sequence of the AST domain is
not highly conserved, and diverges much more rapidly than does the
signal peptide. Extensive mutational analysis of the AST domain of
GspB, in combination with “pre-gated” variants of the S. gordonii
SecY2 (see Section 4.3.2 below), indicated that the AST domain affects
both targeting to the translocon and opening of the channel. These ear-
lier results therefore suggested that the AST domainmight interact with
both SecA2 and SecY2.

Subsequent in vivo photo-cross-linking experiments were under-
taken to capture any aSec components that interact with the preprotein
during transport, and only SecA2 was found to contact the AST domain
[71]. This result implies that targeting and gatingmay both be driven by
AST domain interactions with SecA2. Whereas SecA2 can bind the end
of the AST domain adjacent to the signal peptide independently of
other aSec components, full engagement of the AST domain, as well as
transport of the preprotein by SecA2, requires one or more of the Asps
(see Section 4.3.3 below). The AST engagement by SecA2 is reminiscent
of the high affinity interactions that occur between preprotein mature
regions and the SecA/YEG translocon [72]. However, the requirement
of a specific segment in the preprotein, along with the involvement of
the Asps, is a unique feature of aSec transport that may ensure the
passage of just a single substrate via this channel.
4.3. The accessory Sec translocase

4.3.1. SecA2
The SecA2 proteins belonging to the aSec system have several

common features. They all have a 45aa truncation of the CTD, as com-
pared with their SecA paralogues, and typically have a proline residue
at the C-terminus. They have 70% similarity (35 to 40% identity) to
SecA, and most of the similarity is limited to the nucleotide binding
motifs of NBD1 and NBD2 (Fig. 2). Mutations of conserved NBD1 resi-
dues known to impair nucleotide binding and transport by E. coli SecA
abolish transport mediated by S. gordonii SecA2, whereas mutations in
eneral Sec or aSec system. A signal sequencewith a relatively strong Sec avoidancemotif is
re indicated in red. A: In most streptococci, the aSec locus encodes four or more putative
nsport. B: GspB variants with one or more substitutions of critical glycine residues in the
system (dashed line indicates transport of partially or incorrectly glycosylated substrates).
R glycoprotein signal peptide can facilitate transport via either the Sec or aSec pathway.
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NBD2 have a less dramatic impact [73]. Compared with SecA, the S.
gordonii SecA2 has a lower basal rate of ATP hydrolysis, and requires
higher magnesium concentrations for activity. The composite data indi-
cate that the streptococcal SecA2 may be more tightly regulated than
SecA, and support the possibility that one or more of the Asps may be
required to stimulate ATP binding or hydrolysis, as discussed below
(Section 4.3.3).

In spite of the similarities among the aSec motor proteins, the SecA2
orthologues diverge quite rapidly and are not readily interchangeable.
For example, the SecA2 proteins from Streptococcus sanguinis and
S. pneumoniae show 91% and 79% similarity (81% and 61% identity), re-
spectively, to that of S. gordonii. Although the S. sanguinis SecA2 can
partially complement a ΔsecA2mutation in S. gordonii, the S. pneumoniae
SecA2 is unable to transport GspB [71]. Thus, at least some of the di-
vergence in the SecA2 proteins must reflect differing inter- versus
intra-molecular interactions. It is possible that the SecA2 differences
may parallel those of the preprotein substrates, but the driving force
behind such rapid divergence remains to be determined.

4.3.2. The SecY2 translocon
SecY2 is presumed to form the transmembrane channel through

which the SRR glycoproteins exit the cytoplasm. The predicted topology
of SecY2 is nearly identical to that of SecY (Fig. 7A). However, the SecY2
Fig. 7. SecY versus SecY2 topology and structural features. A: Thepredicted topology of SecY2 is v
due to the constriction by a ring of hydrophobic residues near the center of the channel alongw
plug is displaced. Some prl mutations in E. coli SecY result in a partially or more readily opened
orthologues have very low primary sequence similarity to the SecY
paralogues (20% identity, 60% similarity), and only a limited number
of the SecY residues involved in protein–protein interactions are con-
served in SecY2. Importantly, none of the C5 cytosolic loop residues
that contact SecA (summarized in Lycklama andDriessen [11]) are pres-
ent in SecY2, which is indicative of a lack of cross-talk between the gen-
eral Sec and aSec systems. The inactive SecY channel has an hourglass
shape (Fig. 7B), and two features help to seal the closed channel: a
ring of hydrophobic residues near the central pore (the “pore ring” res-
idues), and a “plug” on the periplasmic or external side comprised of
residues in TM2 [74–76]. Upon intercalation of a signal peptide between
two of the transmembrane segments, the SecY channel widens, and the
plug is displaced [77,78]. Compared with SecY, the putative pore ring
residues of SecY2 include slightly bulkier residues, such as leucine or
methionine, versus isoleucines. As yet, there is nothing obviously
different about the SecY2 proteins that might account for the ability
to transport a glycosylated protein.

In the general Sec system, two small proteins combine with SecY to
form the translocon. SecE is essential for transport and helps stabilize
the open form of the channel [78,79]. SecG enhances the translocation
efficiency and was recently shown to contact SecA during transport
[7]. In some streptococcal species, the aSec system includes one or two
additional small proteins (Asp4 and Asp5) that may be structural
ery similar to that of SecY. B: The inactive SecY channel is impermeable to smallmolecules,
ith a plug formed by residues of TM2. In the active channel, the central porewidens and the
channel.
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components of the transmembrane channel [80]. Asp4 and Asp5 have
one or two predicted transmembrane segments, respectively, and thus
display some topological similarity to SecE and SecG. It is suspected
that they may interact with SecY2, but this has not been verified exper-
imentally. Functional studies in S. gordonii indicate that Asp4 is partially
dispensable for the export of truncated or non-glycosylated GspB
variants via the aSec route [81]. This is consistent with a role of Asp4
in stabilizing the open state of the transmembrane channel, rather than
a role in the initiation of translocation. In S. aureus, there is evidence for
interaction between SecY2 and SecG [82]. In other organisms that lack
Asp4 and Asp5, it is possible that the SRR signal peptide could facilitate
or stabilize the open SecY2 channel, and therefore preclude the need for
these Asps.

Several lines of experimental evidence suggest that SecA2 interacts
directly with SecY2 to facilitate SRR glycoprotein transport. First, dele-
tion of secY2 results in the same phenotype as deletion of secA2 [1,67].
Second, certain alterations in SecY2 mimic the effect of prl (protein
localization) mutations in SecY and compensate for defects in the GspB
signal peptide and some AST mutations [70]. For example, the SecY2
substitution I382N mirrors the I408N (prlA4) mutation in SecY [83], a
substitution of one of the pore ring residues,which destabilizes the closed
channel and is thought to override a gating mechanism that is usually
facilitated by signal peptide intercalation between the second and sev-
enth transmembrane segments of SecY [77] (Fig. 7B). It is therefore highly
likely that SecY2 is a structural component of the SecA2 translocase.

4.3.3. Additional accessory Sec system components
Although Asps1–3 are invariable components of the aSec system,

their precise roles in SRR glycoprotein expression are just beginning to
be understood. In S. gordonii these proteins clearly have a direct role
specifically related to aSec transport, and are essential for this process
even when glycosylation of the preprotein is blocked by deletion of
the core glycosyl transferase gene gtfA [81]. Since the Asps have no pri-
mary sequence similarity to any proteins of known function, a variety of
genetic and biochemical techniques have been used to assess how and
where they function. Asp2 and Asp3 have been shown to have a range
of interactions. Both proteins directly bind the SRR regions of the GspB
preprotein [84]. Rather than binding to specific motifs, Asps2 and 3
appear to recognize the unstructured or non-folded sections of the
preprotein. Although these Asps bind GspB directly, they do not appear
to function as conventional chaperones, since they are not required for
GspB stability or targeting to SecA2. As described above, evidence indi-
cates that they are important for the full engagement of the AST domain
with SecA2, and subsequent GspB transport. Experiments also indicate
that Asp2 and Asp3 both directly bind SecA2 [81]. Asp2, in particular,
appears to have a high affinity for SecA2, since it localizes at the inner
membrane in the same punctate pattern as SecA2, when co-expressed
with this protein in E. coli [85]. Thus, either or both Asps may directly
alter the conformation of SecA2 to facilitate the full engagement of the
preprotein AST domain, or to stimulate ATP binding or hydrolysis.

Subcellular localization studies of Asp1, Asp2 and Asp3 indicate that
all of these three proteins fractionate to both themembrane and cytosol
compartments, and their location is at least partially affected by other
aSec components. Thus, all three of the Asps may transit between the
cytosol and the cytoplasmic membrane. There is also evidence that
Asps1–3 form a complex that is soluble and cytosolic, but will partially
localize to the membrane when co-expressed with SecA2 [85]. What
is as yet unresolved is whether these proteins transit individually or
collectively between the two compartments.

The Asp homologues of S. parasanguinis have been designated as
glycosylation-associated proteins Gap1–3, in part because they are
thought to have a primary affect on glycosylation rather than transport,
and in part because a portion of Gap1 resembles some glycosyl transfer-
ases [86]. In addition, results of earlier studies suggested different roles
for SecA2 (i.e. a clear role in transport) versus SecY2, Gap1 andGap3 (an
impact on glycosylation) [87–89]. However, later reports indicate that
deletion of gap1, gap2 or gap3 results in a phenotype identical to that
of a secY2 deletion, which is the loss of correctly glycosylated or “mature”
Fap1on the cell surface, and a loss of binding to saliva-coatedhydroxylap-
atite [90,91]. Rather than abolishing transport, deletion of any of these
components results in the expression of a partially glycosylated Fap1 pre-
cursor on the cell surface, but possibly in reduced amounts. This is most
likely due to the absence of a strong Sec avoidancemotif in the Fap1 signal
sequence, and less stringent trafficking of the glycosylated preprotein
(see Section 4.2.2). Thus, if the Gaps primarily affect glycosylation and
not transport, it is unclear why the Fap1 precursor is not efficiently
transported by the aSec system, as happens upon deletion of other glyco-
syl transferases such as Gtf1 or GalT2 [88,92]. As with the Asps, a number
of interactions among theGapproteins, and between theGaps and SecA2,
have been characterized [90,93,94]. However, unlike the Asps, the stabil-
ity of the Gaps is interdependent. That is, Gap1 and Gap2 affect the stabil-
ity of Gap3, and are thus thought to serve as chaperones for Gap3. The
importance of these interactions towards either the glycosylation or
transport of Fap1 as yet has not been defined.

4.3.4. Asp1–3 (Gap1–3) as bi-functional components of the aSec system
Based on the combined results of studies in S. parasanguinis, S. gordonii

and Streptococcus salivarius, Zhou and Wu [95] suggested that the
processes of transport and glycosylation are coupled, and proposed
a two-step model for the glycosylation of Fap1 in which SecA2, SecY2,
Gap1 and Gap3 convert a partially glycosylated precursor to a mature
glycoform. Recent studies on the function of Asp2 in S. gordonii demon-
strated that this component of the aSec system does indeed affect the
carbohydrate content of GspB [63]. Importantly, the specific effect on gly-
cosylation was not apparent upon deletion of asp2, but only by making
targeted substitutions in the protein. Tertiary structure predictions indi-
cate that a region of Asp2 resembles the catalytic region of esterases
and hydrolases. Alignment of the Asp2 sequencewith that of the esterase
catalytic domains led to the identification of a Ser-Glu-His catalytic triad.
Somewhat surprisingly, mutation of these residues did not impair trans-
port, but did result in changes in the glycan composition of GspB, as indi-
cated by decreased electrophoretic mobility, altered affinity for several
lectins, and increased incorporation of GlcNAc. Moreover, the altered
glycoform of GspB was unable to facilitate binding of S. gordonii to
human platelets. Thus, Asp2 is clearly involved in both the transport
and glycosylation processes. However, no catalytic activity was evident
when assessing the isolated, purified protein. It was therefore postulated
that the Asp2 catalytic activitymight be dependent upon the formation of
a multimeric Asp complex.

5. Newmodel and key unanswered questions

Based on the most recent composite data, we propose a newmodel
for aSec transport, and a newmechanistic role for the Asps in SRR glyco-
protein biogenesis (Fig. 8). In this newmodel, the Asps are bifunctional
proteins involved in both transport and glycosylation. The Asps have
individual roles in transport, which are not dependent on the glycosyl-
ation process. In addition, however, they have a collective and direct role
in glycosylation that is dependent on transport via SecA2/Y2.More specif-
ically, one or more of the Asps facilitate the full engagement of the
preprotein AST domain by SecA2 and the initiation of transport. A com-
plex of the Asps may then modify the glycan composition of the SRR
glycoprotein as it undergoes transport by SecA2/Y2. By functioning as
the nexus of these two processes, the Asps serve as a control point for
the correct biogenesis of the SRR proteins. Glycosylation is essential for
stability, but must be done with high precision for the SRR protein to
have optimal binding properties. Thus, the specialized aSec transporter
may have evolved not merely to accommodate a glycoprotein, but to
couple the modulation of glycan composition with transport. Determin-
ing exactly how this coupling occurs is fundamental to understanding
SRR glycoprotein expression. This model is more consistent with data
that indicate that at least some of the post-translational modifications



Fig. 8.Model for SRR glycoprotein biogenesis. A:A partially glycosylatedpreprotein arrives
at the translocon, and one or more of the Asps facilitate an interaction between SecA2 and
the preprotein AST domain that trigger opening of the SecY2 channel. B: An Asp123
complex further modifies the glycan composition as translocation of the SRR glycoprotein
proceeds through SecA2/Y2. The Asp123 modifications could include trimming, replace-
ment, or addition of carbohydrate moieties. SecA2 and SecY2 are thought not to have a
direct enzymatic role in glycanmodification, but instead facilitate the interaction between
the Asp complex and the substrates.
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are compatible with SecA/YEG transport (as is the case for S. aureus and
S. parasanguinis), but the precise glycan composition of the substrate is
affected by the Asps associated with the SecA2/SecY2 translocon. The
model also raises an interesting question concerning the role of SecA2
proteins in general: do all SecA2 proteins facilitate the coupling of post-
translational (or post-translocational) modifications with transport? In
cases where they are not essential for viability, further study of SecA2
transporters may provide significant insights and understanding of
general Sec system transport in Gram-positive bacteria.
Acknowledgements

This work was supported by the Department of Veterans Affairs and
the VA Merit Review program; the Northern California Institute for Re-
search and Education; grant R01-AI41513 from the NIH (P.M.S.); and a
Fellowship Award from the American Heart Association (AHA), Western
Affiliate (YY).
References

[1] B.A. Bensing, P.M. Sullam, An accessory sec locus of Streptococcus gordonii is required
for export of the surface protein GspB and for normal levels of binding to human
platelets, Mol. Microbiol. 44 (2002) 1081–1094.

[2] M. Braunstein, A.M. Brown, S. Kurtz, W.R. Jacobs Jr., Two nonredundant SecA
homologues function in mycobacteria, J. Bacteriol. 183 (2001) 6979–6990.

[3] L.L. Lenz, D.A. Portnoy, Identification of a second Listeria secA gene associated with
protein secretion and the rough phenotype, Mol. Microbiol. 45 (2002) 1043–1056.
[4] Y. Papanikolau, M. Papadovasilaki, R.B. Ravelli, A.A. McCarthy, S. Cusack, A.
Economou, K. Petratos, Structure of dimeric SecA, the Escherichia coli preprotein
translocase motor, J. Mol. Biol. 366 (2007) 1545–1557.

[5] I. Gelis, A.M. Bonvin, D. Keramisanou, M. Koukaki, G. Gouridis, S. Karamanou, A.
Economou, C.G. Kalodimos, Structural basis for signal-sequence recognition by the
translocase motor SecA as determined by NMR, Cell 131 (2007) 756–769.

[6] J. Zimmer, Y. Nam, T.A. Rapoport, Structure of a complex of the ATPase SecA and the
protein-translocation channel, Nature 455 (2008) 936–943.

[7] S. Das, D.B. Oliver, Mapping of the SecA.SecY and SecA.SecG interfaces by
site-directed in vivo photocross-linking, J. Biol. Chem. 286 (2011) 12371–12380.

[8] D.B. Cooper, V.F. Smith, J.M. Crane, H.C. Roth, A.A. Lilly, L.L. Randall, SecA, the motor
of the secretion machine, binds diverse partners on one interactive surface, J. Mol.
Biol. 382 (2008) 74–87.

[9] E. Vrontou, S. Karamanou, C. Baud, G. Sianidis, A. Economou, Global co-ordination
of protein translocation by the SecA IRA1 switch, J. Biol. Chem. 279 (2004)
22490–22497.

[10] K.E. Chatzi, M.F. Sardis, S. Karamanou, A. Economou, Breaking on through to the
other side: protein export through the bacterial Sec system, Biochem. J. 449
(2013) 25–37.

[11] A.N.J.A. Lycklama, A.J. Driessen, The bacterial Sec-translocase: structure and
mechanism, Philos. Trans. R. Soc. Lond. B Biol. Sci. 367 (2012) 1016–1028.

[12] E. Park, T.A. Rapoport, Mechanisms of Sec61/SecY-mediated protein translocation
across membranes, Annu. Rev. Biophys. 41 (2012) 21–40.

[13] M.E. Feltcher, M. Braunstein, Emerging themes in SecA2-mediated protein export,
Nat. Rev. Microbiol. 10 (2012) 779–789.

[14] R. Freudl, Leaving home ain't easy: protein export systems in Gram-positive
bacteria, Res. Microbiol. 164 (2013) 664–674.

[15] M. Caspers, R. Freudl, Corynebacterium glutamicum possesses two secA homologous
genes that are essential for viability, Arch. Microbiol. 189 (2008) 605–610.

[16] M. Braunstein, B.J. Espinosa, J. Chan, J.T. Belisle,W.R. Jacobs Jr., SecA2 functions in the
secretion of superoxide dismutaseA and in the virulence ofMycobacterium tuberculosis,
Mol. Microbiol. 48 (2003) 453–464.

[17] H.S. Gibbons, F. Wolschendorf, M. Abshire, M. Niederweis, M. Braunstein, Identifica-
tion of two Mycobacterium smegmatis lipoproteins exported by a SecA2-dependent
pathway, J. Bacteriol. 189 (2007) 5090–5100.

[18] M.E. Feltcher, H.S. Gibbons, L.S. Ligon,M. Braunstein, Protein export by themycobac-
terial SecA2 system is determined by the preproteinmature domain, J. Bacteriol. 195
(2013) 672–681.

[19] J.M. Hou, N.G. D'Lima, N.W. Rigel, H.S. Gibbons, J.R. McCann, M. Braunstein, C.M.
Teschke, ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins
and its importance for SecA2 function in macrophages, J. Bacteriol. 190 (2008)
4880–4887.

[20] G. Sianidis, S. Karamanou, E. Vrontou, K. Boulias, K. Repanas, N. Kyrpides, A.S.
Politou, A. Economou, Cross-talk between catalytic and regulatory elements in a
DEAD motor domain is essential for SecA function, EMBO J. 20 (2001) 961–970.

[21] J.F. Hunt, S. Weinkauf, L. Henry, J.J. Fak, P. McNicholas, D.B. Oliver, J. Deisenhofer,
Nucleotide control of interdomain interactions in the conformational reaction
cycle of SecA, Science 297 (2002) 2018–2026.

[22] S. Karamanou, G. Gouridis, E. Papanikou, G. Sianidis, I. Gelis, D. Keramisanou, E.
Vrontou, C.G. Kalodimos, A. Economou, Preprotein-controlled catalysis in the
helicase motor of SecA, EMBO J. 26 (2007) 2904–2914.

[23] S. Karamanou, E. Vrontou, G. Sianidis, C. Baud, T. Roos, A. Kuhn, A.S. Politou, A.
Economou, A molecular switch in SecA protein couples ATP hydrolysis to protein
translocation, Mol. Microbiol. 34 (1999) 1133–1145.

[24] N.W. Rigel, H.S. Gibbons, J.R. McCann, J.A. McDonough, S. Kurtz, M. Braunstein, The
accessory SecA2 system of mycobacteria requires ATP binding and the canonical
SecA1, J. Biol. Chem. 284 (2009) 9927–9936.

[25] L.L. Lenz, S. Mohammadi, A. Geissler, D.A. Portnoy, SecA2-dependent secretion of
autolytic enzymes promotes Listeria monocytogenes pathogenesis, Proc. Natl. Acad.
Sci. U. S. A. 100 (2003) 12432–12437.

[26] S. Renier, C. Chambon, D. Viala, C. Chagnot, M. Hebraud, M. Desvaux, Exoproteomic
analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e,
J. Proteomics 80C (2013) 183–195.

[27] C. Archambaud, M.A. Nahori, J. Pizarro-Cerda, P. Cossart, O. Dussurget, Control
of Listeria superoxide dismutase by phosphorylation, J. Biol. Chem. 281 (2006)
31812–31822.

[28] S. Halbedel, B. Hahn, R.A. Daniel, A. Flieger, DivIVA affects secretion of virulence-related
autolysins in Listeria monocytogenes, Mol. Microbiol. 83 (2012) 821–839.

[29] K.K. Mishra, M. Mendonca, A. Aroonnual, K.M. Burkholder, A.K. Bhunia, Genetic
organization and molecular characterization of secA2 locus in Listeria species,
Gene 489 (2011) 76–85.

[30] S.M. Nguyen-Mau, S.Y. Oh, V.J. Kern, D.M. Missiakas, O. Schneewind, Secretion
genes as determinants of Bacillus anthracis chain length, J. Bacteriol. 194 (2012)
3841–3850.

[31] V.J. Kern, J.W. Kern, J.A. Theriot, O. Schneewind, D. Missiakas, Surface-layer
(S-layer) proteins sap and EA1 govern the binding of the S-layer-associated
protein BslO at the cell septa of Bacillus anthracis, J. Bacteriol. 194 (2012)
3833–3840.

[32] R.P. Fagan, N.F. Fairweather, Clostridium difficile has two parallel and essential Sec
secretion systems, J. Biol. Chem. 286 (2011) 27483–27493.

[33] T.H. Dang, L. de la Riva, R.P. Fagan, E.M. Storck, W.P. Heal, C. Janoir, N.F. Fairweather,
E.W. Tate, Chemical probes of surface layer biogenesis in Clostridium difficile ACS,
Chem. Biol. 5 (2010) 279–285.

[34] Y. Koyama, Y. Kaneko, S. Matsuoka, K. Matsumoto, H. Hara, N. Ohta, Expression and
localization of two SecA homologs in the unicellular red alga Cyanidioschyzon
merolae, Biosci. Biotechnol. Biochem. 76 (2012) 417–422.

http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0005
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0005
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0005
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0010
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0010
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0015
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0015
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0020
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0020
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0020
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0025
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0025
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0025
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0030
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0030
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0035
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0035
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0040
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0040
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0040
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0045
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0045
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0045
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0050
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0050
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0050
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0055
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0055
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0060
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0060
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0065
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0065
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0070
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0070
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0075
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0075
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0080
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0080
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0080
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0085
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0085
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0085
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0090
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0090
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0090
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0095
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0095
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0095
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0095
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0100
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0100
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0100
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0105
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0105
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0105
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0110
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0110
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0110
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0115
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0115
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0115
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0120
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0120
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0120
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0125
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0125
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0125
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0130
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0130
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0130
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0135
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0135
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0135
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0140
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0140
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0460
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0460
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0460
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0145
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0145
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0145
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0150
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0150
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0150
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0150
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0155
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0155
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0160
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0160
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0160
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0165
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0165
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0165
image of Fig.�8


1685B.A. Bensing et al. / Biochimica et Biophysica Acta 1843 (2014) 1674–1686
[35] Y. Koyama, K. Takimoto, A. Kojima, K. Asai, S. Matsuoka, T. Mitsui, K. Matsumoto, H.
Hara, N. Ohta, Characterization of the nuclear- and plastid-encoded secA-homologous
genes in the unicellular red alga Cyanidioschyzon merolae, Biosci. Biotechnol. Biochem.
75 (2011) 2073–2078.

[36] C.A. Skalitzky, J.R.Martin, J.H.Harwood, J.J. Beirne, B.J. Adamczyk,G.R.Heck, K. Cline, D.E.
Fernandez, Plastids contain a second sec translocase system with essential functions,
Plant Physiol. 155 (2011) 354–369.

[37] J.M. Celedon, K. Cline, Intra-plastid protein trafficking: howplant cells adapted prokary-
otic mechanisms to the eukaryotic condition, Biochim. Biophys. Acta 1833 (2013)
341–351.

[38] B.A. Bensing, J.A. Lopez, P.M. Sullam, The Streptococcus gordonii surface proteins GspB
andHsamediate binding to sialylated carbohydrate epitopes on theplateletmembrane
glycoprotein, Ibalpha Infect. Immun. 72 (2004) 6528–6537.

[39] Y. Takahashi, K. Konishi, J.O. Cisar, M. Yoshikawa, Identification and characterization
of hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii
DL1, Infect. Immun. 70 (2002) 1209–1218.

[40] Y. Takahashi, A.L. Sandberg, S. Ruhl, J. Muller, J.O. Cisar, A specific cell surface antigen of
Streptococcus gordonii is associated with bacterial hemagglutination and adhesion to
alpha2-3-linked sialic acid-containing receptors, Infect. Immun. 65 (1997) 5042–5051.

[41] Y. Takahashi, A. Yajima, J.O. Cisar, K. Konishi, Functional analysis of the Streptococcus
gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to
platelets, Infect. Immun. 72 (2004) 3876–3882.

[42] D. Takamatsu, B.A. Bensing, H. Cheng, G.A. Jarvis, I.R. Siboo, J.A. Lopez, J.M. Griffiss,
P.M. Sullam, Binding of the Streptococcus gordonii surface glycoproteins GspB and
Hsa to specific carbohydrate structures on platelet membrane glycoprotein, Ibalpha
Mol. Microbiol. 58 (2005) 380–392.

[43] D. Takamatsu, B.A. Bensing, A. Prakobphol, S.J. Fisher, P.M. Sullam, Binding of the
streptococcal surface glycoproteins GspB and Hsa to human salivary proteins, Infect.
Immun. 74 (2006) 1933–1940.

[44] Y. Takahashi, E. Takashima, K. Shimazu, H. Yagishita, T. Aoba, K. Konishi, Contribution of
sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by
Streptococcus gordonii DL1, Infect. Immun. 74 (2006) 740–743.

[45] Y.Q. Xiong, B.A. Bensing, A.S. Bayer, H.F. Chambers, P.M. Sullam, Role of the
serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis
of infective endocarditis, Microb. Pathog. 45 (2008) 297–301.

[46] H. Wu, K.P. Mintz, M. Ladha, P.M. Fives-Taylor, Isolation and characterization of
Fap1, a fimbriae-associated adhesin of Streptococcus parasanguinis FW213, Mol.
Microbiol. 28 (1998) 487–500.

[47] E.H. Froeliger, P. Fives-Taylor, Streptococcus parasanguinis fimbriae-associated adhesin
fap1 is required for biofilm formation, Infect. Immun. 69 (2001) 2512–2519.

[48] C. Obert, J. Sublett, D. Kaushal, E. Hinojosa, T. Barton, E.I. Tuomanen, C.J. Orihuela,
Identification of a candidate Streptococcus pneumoniae core genome and regions of
diversity correlated with invasive pneumococcal disease, Infect. Immun. 74 (2006)
4766–4777.

[49] L. Rose, P. Shivshankar, E. Hinojosa, A. Rodriguez, C.J. Sanchez, C.J. Orihuela, Antibodies
against PsrP, a novel Streptococcus pneumoniae adhesin, block adhesion and protect
mice against pneumococcal challenge, J. Infect. Dis. 198 (2008) 375–383.

[50] K.N. Seifert, E.E. Adderson, A.A. Whiting, J.F. Bohnsack, P.J. Crowley, L.J. Brady, A
unique serine-rich repeat protein (Srr-2) and novel surface antigen (epsilon) asso-
ciated with a virulent lineage of serotype III Streptococcus agalactiae, Microbiology
152 (2006) 1029–1040.

[51] I.R. Siboo, H.F. Chambers, P.M. Sullam, Role of SraP, a serine-rich surface protein of
Staphylococcus aureus, in binding to human platelets, Infect. Immun. 73 (2005)
2273–2280.

[52] N.M. van Sorge, D. Quach, M.A. Gurney, P.M. Sullam, V. Nizet, K.S. Doran, The group B
streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood–
brain barrier, J. Infect. Dis. 199 (2009) 1479–1487.

[53] M.Y. Mistou, S. Dramsi, S. Brega, C. Poyart, P. Trieu-Cuot, Molecular dissection of the
secA2 locus of group B Streptococcus reveals that glycosylation of the Srr1 LPXTG
protein is required for full virulence, J. Bacteriol. 191 (2009) 4195–4206.

[54] H.S. Seo, Y.Q. Xiong, P.M. Sullam, Role of the serine-rich surface glycoprotein Srr1 of
Streptococcus agalactiae in the pathogenesis of infective endocarditis, PLoS One 8
(2013) e64204.

[55] H.S. Seo, R. Mu, B.J. Kim, K.S. Doran, P.M. Sullam, Binding of glycoprotein Srr1 of
Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium
and the development of meningitis, PLoS Pathog. 8 (2012) e1002947.

[56] P. Shivshankar, C. Sanchez, L.F. Rose, C.J. Orihuela, The Streptococcus pneumoniae
adhesin PsrP binds to keratin 10 on lung cells, Mol. Microbiol. 73 (2009) 663–679.

[57] U. Samen, B.J. Eikmanns, D.J. Reinscheid, F. Borges, The surface protein Srr-1 of
Streptococcus agalactiae binds human keratin 4 and promotes adherence to
epithelial HEp-2 cells, Infect. Immun. 75 (2007) 5405–5414.

[58] D. Takamatsu, B.A. Bensing, P.M. Sullam, Four proteins encoded in the gspB-secY2A2
operon of Streptococcus gordonii mediate the intracellular glycosylation of the
platelet-binding protein GspB, J. Bacteriol. 186 (2004) 7100–7111.

[59] S. Bu, Y. Li, M. Zhou, P. Azadin, M. Zeng, P. Fives-Taylor, H. Wu, Interaction between
two putative glycosyltransferases is required for glycosylation of a serine-rich
streptococcal adhesin, J. Bacteriol. 190 (2008) 1256–1266.

[60] B.A. Bensing, B.W. Gibson, P.M. Sullam, The Streptococcus gordonii platelet binding
protein GspB undergoes glycosylation independently of export, J. Bacteriol. 186
(2004) 638–645.

[61] M. Zhou, F. Zhu, S. Dong, D. Pritchard, H. Wu, A novel glucosyltransferase is required
for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus
parasanguinis, J. Biol. Chem. 285 (2010) 12140–12148.

[62] D. Takamatsu, B.A. Bensing, P.M. Sullam, Genes in the accessory sec locus of
Streptococcus gordonii have three functionally distinct effects on the expression
of the platelet-binding protein GspB, Mol. Microbiol. 52 (2004) 189–203.
[63] R. Seepersaud, B.A. Bensing, Y.T. Yen, P.M. Sullam, The accessory Sec protein Asp2
modulates GlcNAc deposition onto the serine-rich repeat glycoprotein GspB, J.
Bacteriol. 194 (2012) 5564–5575.

[64] B.A. Bensing, D. Takamatsu, P.M. Sullam, Determinants of the streptococcal surface
glycoprotein GspB that facilitate export by the accessory Sec system, Mol. Microbiol.
58 (2005) 1468–1481.

[65] Q. Chen, B. Sun, H. Wu, Z. Peng, P.M. Fives-Taylor, Differential roles of individual
domains in selection of secretion route of a Streptococcus parasanguinis serine-rich
adhesin, Fap1, J Bacteriol. 189 (2007) 7610–7617.

[66] B.A. Bensing, I.R. Siboo, P.M. Sullam, Glycine residues in the hydrophobic core of the
GspB signal sequence route export toward the accessory Sec pathway, J. Bacteriol.
189 (2007) 3846–3854.

[67] I.R. Siboo, D.O. Chaffin, C.E. Rubens, P.M. Sullam, Characterization of the accessory
Sec system of Staphylococcus aureus, J. Bacteriol. 190 (2008) 6188–6196.

[68] A. DeDent, T. Bae, D.M. Missiakas, O. Schneewind, Signal peptides direct surface
proteins to two distinct envelope locations of Staphylococcus aureus, EMBO J. 27
(2008) 2656–2668.

[69] Y. Liu, J. Dong,N.Wu, Y. Gao, X. Zhang, C.Mu,N. Shao,M. Fan,G. Yang, Theproductionof
extracellular proteins is regulated by ribonuclease III via two different pathways in
Staphylococcus aureus, PLoS One 6 (2011) e20554.

[70] B.A. Bensing, P.M. Sullam, Transport of preproteins by the accessory Sec system
requires a specific domain adjacent to the signal peptide, J. Bacteriol. 192 (2010)
4223–4232.

[71] B.A. Bensing, Y.T. Yen, R. Seepersaud, P.M. Sullam, A Specific interaction between
SecA2 and a region of the preprotein adjacent to the signal peptide occurs
during transport via the accessory Sec system, J. Biol. Chem. 287 (2012)
24438–24447.

[72] G. Gouridis, S. Karamanou, I. Gelis, C.G. Kalodimos, A. Economou, Signal peptides are
allosteric activators of the protein translocase, Nature 462 (2009) 363–367.

[73] B.A. Bensing, P.M. Sullam, Characterization of Streptococcus gordonii SecA2 as a
paralogue of SecA, J. Bacteriol. 191 (2009) 3482–3491.

[74] B. Van den Berg,W.M. Clemons Jr., I. Collinson, Y.Modis, E. Hartmann, S.C. Harrison, T.A.
Rapoport, X-ray structure of a protein-conducting channel, Nature 427 (2004) 36–44.

[75] S.M. Saparov, K. Erlandson, K. Cannon, J. Schaletzky, S. Schulman, T.A. Rapoport, P.
Pohl, Determining the conductance of the SecY protein translocation channel for
small molecules, Mol. Cell 26 (2007) 501–509.

[76] J. Gumbart, K. Schulten, The roles of pore ring and plug in the SecY protein-conducting
channel, J. Gen. Physiol. 132 (2008) 709–719.

[77] W. Li, S. Schulman, D. Boyd, K. Erlandson, J. Beckwith, T.A. Rapoport, The plug
domain of the SecY protein stabilizes the closed state of the translocation channel
and maintains a membrane seal, Mol. Cell 26 (2007) 511–521.

[78] P.C. Tam, A.P. Maillard, K.K. Chan, F. Duong, Investigating the SecY plug movement
at the SecYEG translocation channel, EMBO J. 24 (2005) 3380–3388.

[79] M.A. Smith, W.M. Clemons Jr., C.J. DeMars, A.M. Flower, Modeling the effects of
prl mutations on the Escherichia coli SecY complex, J. Bacteriol. 187 (2005)
6454–6465.

[80] D. Takamatsu, B.A. Bensing, P.M. Sullam, Two additional components of the accessory
Sec system mediating export of the Streptococcus gordonii platelet-binding protein
GspB, J. Bacteriol. 187 (2005) 3878–3883.

[81] R. Seepersaud, B.A. Bensing, Y.T. Yen, P.M. Sullam, Asp3 mediates multiple protein–
protein interactions within the accessory Sec system of Streptococcus gordonii, Mol.
Microbiol. 78 (2010) 490–505.

[82] M.J. Sibbald, T. Winter, M.M. van der Kooi-Pol, G. Buist, E. Tsompanidou, T. Bosma, T.
Schafer, K. Ohlsen, M. Hecker, H. Antelmann, S. Engelmann, J.M. van Dijl, Synthetic
effects of secG and secY2 mutations on exoproteome biogenesis in Staphylococcus
aureus, J. Bacteriol. 192 (2010) 3788–3800.

[83] A.M. Flower, R.C. Doebele, T.J. Silhavy, PrlA and PrlG suppressors reduce the
requirement for signal sequence recognition, J. Bacteriol. 176 (1994) 5607–5614.

[84] Y.T. Yen, R. Seepersaud, B.A. Bensing, P.M. Sullam, Asp2 and Asp3 interact directly
with GspB, the export substrate of the Streptococcus gordonii accessory Sec system,
J. Bacteriol. 193 (2011) 3165–3174.

[85] Y.T. Yen, T.A. Cameron, B.A. Bensing, R. Seepersaud, P.C. Zambryski, P.M. Sullam,
Differential localization of the streptococcal accessory sec components and implica-
tions for substrate export, J. Bacteriol. 195 (2013) 682–695.

[86] Y. Li, Y. Chen, X. Huang, M. Zhou, R. Wu, S. Dong, D.G. Pritchard, P. Fives-Taylor, H.
Wu, A conserved domain of previously unknown function in Gap1 mediates pro-
tein–protein interaction and is required for biogenesis of a serine-rich streptococcal
adhesin, Mol. Microbiol. 70 (2008) 1094–1104.

[87] Q. Chen, H. Wu, P.M. Fives-Taylor, Investigating the role of secA2 in secretion and
glycosylation of a fimbrial adhesin in Streptococcus parasanguinis FW213, Mol.
Microbiol. 53 (2004) 843–856.

[88] H. Wu, S. Bu, P. Newell, Q. Chen, P. Fives-Taylor, Two gene determinants are differ-
entially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguinis,
J. Bacteriol. 189 (2007) 1390–1398.

[89] Z. Peng, H. Wu, T. Ruiz, Q. Chen, M. Zhou, B. Sun, P. Fives-Taylor, Role of gap3 in Fap1
glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of
Streptococcus parasanguinis, Oral Microbiol. Immunol. 23 (2008) 70–78.

[90] H. Echlin, F. Zhu, Y. Li, Z. Peng, T. Ruiz, G.J. Bedwell, P.E. Prevelige Jr., H. Wu, Gap2
promotes the formation of a stable protein complex required for mature Fap1
biogenesis, J. Bacteriol. 195 (2013) 2166–2176.

[91] M. Zhou, Z. Peng, P. Fives-Taylor, H. Wu, A conserved C-terminal 13-amino-acid
motif of Gap1 is required for Gap1 function and necessary for the biogenesis of a
serine-rich glycoprotein of Streptococcus parasanguinis, Infect. Immun. 76 (2008)
5624–5631.

[92] H. Wu, M. Zeng, P. Fives-Taylor, The glycan moieties and the N-terminal poly-
peptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in

http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0170
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0170
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0170
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0170
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0175
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0175
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0175
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0180
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0180
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0180
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0185
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0185
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0185
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0465
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0465
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0465
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0190
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0190
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0190
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0195
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0195
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0195
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0200
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0200
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0200
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0200
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0205
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0205
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0205
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0470
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0470
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0470
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0210
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0210
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0210
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0475
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0475
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0475
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0215
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0215
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0220
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0220
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0220
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0220
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0225
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0225
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0225
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0230
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0230
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0230
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0230
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0235
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0235
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0235
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0240
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0240
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0240
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0245
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0245
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0245
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0250
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0250
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0250
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0255
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0255
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0255
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0260
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0260
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0265
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0265
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0265
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0270
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0270
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0270
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0275
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0275
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0275
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0280
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0280
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0280
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0285
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0285
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0285
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0290
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0290
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0290
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0295
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0295
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0295
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0300
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0300
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0300
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0480
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0480
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0480
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0305
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0305
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0305
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0310
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0310
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0315
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0315
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0315
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0320
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0320
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0320
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0325
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0325
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0325
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0330
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0330
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0330
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0330
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0335
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0335
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0340
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0340
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0345
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0345
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0350
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0350
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0350
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0355
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0355
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0360
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0360
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0360
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0365
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0365
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0370
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0370
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0370
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0375
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0375
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0375
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0380
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0380
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0380
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0385
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0385
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0385
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0385
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0390
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0390
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0395
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0395
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0395
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0400
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0400
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0400
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0405
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0405
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0405
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0405
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0485
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0485
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0485
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0410
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0410
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0410
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0415
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0415
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0415
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0420
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0420
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0420
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0425
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0425
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0425
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0425
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0430
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0430


1686 B.A. Bensing et al. / Biochimica et Biophysica Acta 1843 (2014) 1674–1686
the biofilm development of Streptococcus parasanguinis, Infect. Immun. 75
(2007) 2181–2188.

[93] M. Zhou, H. Zhang, F. Zhu, H. Wu, Canonical SecA associates with an
accessory secretory protein complex involved in biogenesis of a streptococcal
serine-rich repeat glycoprotein, J. Bacteriol. 193 (2011) 6560–6566.

[94] M. Zhou, F. Zhu, Y. Li, H. Zhang, H. Wu, Gap1 functions as a molecular chaperone
to stabilize its interactive partner Gap3 during biogenesis of serine-rich repeat
bacterial adhesin, Mol. Microbiol. 83 (2012) 866–878.
[95] M. Zhou, H. Wu, Glycosylation and biogenesis of a family of serine-rich bacterial
adhesins, Microbiology 155 (2009) 317–327.

[96] G.H. Gonnet, M.T. Hallett, C. Korostensky, L. Bernardin, Darwin v. 2.0: an
interpreted computer language for the biosciences, Bioinformatics 16 (2000)
101–103.

[97] K.J. Erlandson, S.B. Miller, Y. Nam, A.R. Osborne, J. Zimmer, T.A. Rapoport, A role for
the two-helix finger of the SecA ATPase in protein translocation, Nature 455 (2008)
984–987.

http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0430
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0430
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0435
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0435
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0435
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0440
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0440
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0440
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0445
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0445
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0450
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0450
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0450
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0455
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0455
http://refhub.elsevier.com/S0167-4889(13)00364-9/rf0455

	Selective transport by SecA2: An expanding family of customized motor proteins
	1. Introduction and overview
	2. General characteristics of the SecA2 proteins
	3. Transport by multi-substrate SecA2 proteins
	3.1. Mycobacteria and Corynebacteria (actinobacterial type)
	3.2. Listeria
	3.3. Bacillus
	3.4. Clostridium difficile
	3.5. Possible roles in transport

	4. The accessory Sec system
	4.1. Substrates of the aSec system
	4.2. Preprotein recognition and trafficking to the aSec system
	4.2.1. The SRR signal peptides
	4.2.2. Impact of glycosylation on trafficking
	4.2.3. The AST domain

	4.3. The accessory Sec translocase
	4.3.1. SecA2
	4.3.2. The SecY2 translocon
	4.3.3. Additional accessory Sec system components
	4.3.4. Asp1–3 (Gap1–3) as bi-functional components of the aSec system


	5. New model and key unanswered questions
	Acknowledgements
	References


