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Abstract 

The complexity of calculating the coefficients of the Tutte polynomial of a graph is con- 
sidered. The calculation of some coefficients is shown to be # P-complete, whereas some other 
coefficients can be computed in polynomial time. However, even for a hard coefficient, it can be 
decided in polynomial time whether it is less than a fixed constant. 

1. Introduction and definitions 

The Tutte polynomial  of a graph, int roduced by Tutte  in 1947 [7], is a generating 

function which contains a great deal of information about  the graph. In particular, the 

chromat ic  polynomial ,  the flow polynomial  and the reliability polynomial  are all 
partial evaluations of  the Tutte  polynomial .  It is defined as follows. 

Let G = (V, E) be a connected graph with vertex set V and edge set E, and let 

n = IVP and m = IEI. For  any subset A of E we define the rank r (A)  by 

r(Z)= I VI - k ( a ) ,  

where k (A)  is the number  of  componen ts  of  the graph with edge set A and vertex set V. 

Definition 1. The Tutte  polynomial  of  G, T ( G ; x , y ) ,  is given by 

T ( G ; x , y )  = ~ ( x -  1)'(e)-r~A)(y-- 1) IAI-rlA) 
A~_E 

We will often abbreviate T ( G ; x , y )  to T(G) .  

Note  that  if I is an isthmus and L a loop, then 

T ( I )  = x, T ( L )  = y 
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and if we write G'e (Ge') for the graphs obtained by deleting (contracting) an edge e then 

T(G) = T(G'e) + T(G~), (1) 

whenever e is neither an isthmus nor a loop. When e is an isthmus or loop we use 

~xT(Ge)  if e is an isthmus, 
T(G) (2) 

[yT(G'e) if e is a loop, 

respectively. If G consists of a single vertex and no edges, then its Tutte polynomial is 
equal to 1. 

The following partial evaluations of the Tutte polynomial are well known. 

P(G; 2) = ( - 1) n- 12T(G; 1 - 2, 0), (3) 

F(G;2)  = ( -- 1) m-n+1T(G;0, 1 - 2), (4) 

Rel(G,p) = p"- X ( 1 -  p)r"-"+ l T ( G ;  l, l - ~ p  ), (5) 

where P, F and Rel are the chromatic, flow and reliability polynomials, respectively of 
a connected graph G. 

The function class # P, introduced by Valiant [9, 10] is the class of functions that 
can be calculated in polynomial time by a counting Turing machine. This is a nondeter- 
ministic Turing machine that counts the number of distinct accepting computations 
that it can perform on a particular input, and outputs this number. Any # P-complete 
function is of course NP-hard to compute, and in fact has been shown to be PH-hard 
[6]. So # P-hardness can be taken as strong evidence of intractability. 

It is well known that calculating the whole Tutte polynomial is # P-hard. For  
instance, evaluating it at (x , y )=  ( -  2,0) gives (a constant times) the number of 
3-colourings, which is known to be # P-complete [1]. In fact, the following result of 
Jaeger et al. [3] shows that evaluation of the Tutte polynomial at any particular point 
is hard, except in a few special cases. 

Theorem (Jaeger et al. [3-1). Evaluating the Tutte polynomial of  a graph at any 
particular point of  the complex plane is # P-hard except when either 

(1) the point lies on the hyperbola (x - 1)(y - 1) = I or 
(2) the point is one of  the special points ( 1 , 1 ) , ( - 1 , 0 ) , ( 0 , - 1 ) , ( - 1 , - 1 ) ,  

(i, -- i), ( -- i,i), (j, j2), (j2,j) where j -- e 2ni/3. 

At these special points, the evaluation can be carried out in polynomial time. 

We write 

n - 1  m - n + l  

V(G;x,y)  = 2 Y', bi, j (G)xiY ;" 
i = 0  j=O 

We may omit the argument G when there is no risk of ambiguity. 
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Some facts are known about the values of the b~. i. In particular, for a connected graph 
G with n vertices and m edges: 

• b~,j(G) >~ 0 for all i,j, 
• bo, o(G) = 0 if G contains at least one edge, 
• bl ,o(G) = bo,~(G) if G contains at least 2 edges, 
• b i , j ( G ) = O f o r a l l i > n - 1  o r j > m - n + l ,  
• bn-l,0(G) = 1 and bn-2,o(G) = m if G is loopless, and 
• bo,m-n÷l(G) = 1 if G is isthmus-free. 
As well as being # P-hard, the Tutte polynomial is # P-easy, as the following 

lemma shows. 

Lemma 1. Calculating the Tutte  polynomial of  a graph is # P-easy. 

Proof. We will show that the function f ( G , i , j ) =  bl,i(G) is contained in # P ,  by 
describing a nondeterministic Turing machine that, on input (G,i , j) ,  has exactly 
bi, i(G) accepting computations, and runs in polynomial time. 

We order the edge-set arbitrarily. For any spanning tree T of a graph, we define the 
internal activity to be the number of edges e ~ T such that e is the least element in the 
cutset of the graph defined by the partition induced by T \ e .  The external activity is 
given by the number of edges e ~ E \  T such that e is the least element in the unique 
circuit contained in T w e. It was shown by Tutte [8] that the value of bi.i(G) is equal 
to the number of spanning trees of G with internal activity i and external activity j, and 
therefore the ordering of the edges in the graph is immaterial. These spanning trees 
can clearly be recognised in polynomial time. A nondeterministic Turing machine that 
nondeterministically chooses n -  1 edges of the input graph G and halts in an 
accepting state if the edges form a tree which has internal activity i and external 
activityj will have exactly b~.~(G) accepting computations, and will run in polynomial 
time. This shows that f ( G , i , j ) =  bi, j(G) is contained in # P .  Hence the whole 
polynomial is # P-easy to calculate. []  

2. Results 

As we have seen above, some of the coefficients are easy to calculate. The following 
theorem extends this. 

Theorem 1. For any f ixed integer constant k, on input G. 
(i) I fO <~ j <<. m -- n + 1, b n _ l _ k , j ( G  ) can be calculated in polynomial time. 

(ii) I f  O <. i <. n - 1, bl, m-.+ l - k  can be calculated in polynomial time. 

Proof. By repeatedly applying the deletion/contraction formulae (1) and (2) to 
a graph G with ordered edge-set E we can construct a rooted binary tree of depth m, 
where the nodes of the tree correspond to graphs. The root corresponds to G, and the 
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sons of a node correspond to the graphs obtained by contracting or deleting the 
lexicographically first edge remaining in the edge-set of the graph corresponding to 
that node, if it is not an isthmus or loop. If the first edge is an isthmus (loop), then the 
node only has one son, corresponding to the contraction (deletion) of that edge. The 
leaves of the tree correspond to single-vertex edgeless graphs. 

Every leaf contributes 1 to one of the coefficients of the Tutte polynomial of the 
graph. If, on the path from the root to the leaf, i isthmuses and j loops are removed, 
then the leaf contributes 1 to the coefficient of x i y  j. Summing the contributions from 
all the leaves gives the Tutte polynomial. 

A leaf will make a contribution to one of the coefficients bn_l_k ,  j if exactly 
n - 1 - k isthmuses are encountered on the path from the root. Now, every time an 
edge is contracted, the number of vertices of the graph is reduced by one. Exactly 
n - 1 edges (some of which are isthmuses) are contracted, as we end up with a single 

vertex. Therefore, for the leaf to contribute to b,_ ~-k , j  for any j, then, at the nodes 
with two sons, the path to the leaf must go to the son corresponding to the contraction 
of the edge exactly k times, and to the other son each other time. There are only 
a polynomial number of such paths (there are at most (7) ways of choosing the k nodes 
with two sons at which the edge is contracted). The value of j in the index of the 
coefficient is equal to the number of loops removed on the path from the root to the 
leaf. 

Of  course, the tree is too big to construct in polynomial time, but the calculation 
can still be easily carried out in polynomial time by performing a depth-first search of 

the relevant nodes, by testing each subset of k edges (which we take as the edges that 
we wish to contract at the nodes with two sons) to see if they correspond to a possible 
path in the tree, and if so, how many loops are encountered on that path. The number 
of such subsets is bounded by m k and so the algorithm clearly runs in polynomial time. 

We can perform an analogous computat ion for the coefficients bi, m-.  + ~- t, as in 
this case we must choose to delete exactly l edges at the nodes at which we have 
a choice, and must then sum the number  of isthmuses removed along the path to a leaf 
to work out the value of i. So all these coefficients can also be calculated in polynomial 

time. []  

We now show that the other end of the polynomial is hard. 

Theorem 2. b 1,0 (G) is a # P-comple te  funct ion.  

Proof. We have already shown that bl. o(G) is a function in # P. We must also show 
that it is # P-hard. 

To prove hardness, given a graph G, we construct a family of graphs { G ~k) } from it. 
Using an oracle for the coefficients b L o (Gtk~), we calculate the number  of 3-colourings 
of G, a known # P-complete function. First, a lemma concerning the density of 
primes. 
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Lemma 2. For  n > 80, the product  o f  the pr imes  less than n 2 is 9reater  than 3". 

Proof. We define 0(n) = In lip < nP, where p runs over all primes less than n, and 
v- , ln  n / In  2 c~ i 1/i). ~b(n)=Li=l  ~tn From [2, Ch. 22], we find that 0 ( n ) < 2 n l n 2  and 

~O(n) >~ (n/4)ln2 for n >~ 2. So we have 

2 In n/ln 2 
a(n 2) = ~(n ~) - y,  a(n ~/~) 

i = 2  

1 z 21nn 2nln2 
~> ~n l n 2 -  ln--~" 

n(n /4  - 41nn) 

> nln3 

for n > 80. This completes the proof of Lemma 2. []  

Proof of Theorem 2 (continued). For the kth prime Pk, 3 <~ Pk <~ n2, we construct G (k) 

as follows. Form a clique on the vertices {vl . . . . .  Vp~+ 1 }, and add edges (ui, vj) for all 
u i e  V ( G )  and  4 <~ j <~ pk + l. 

Consider a (Pk + 1)-colouring of G (k). Each vertex in the new clique must be 
coloured differently, and this can be done in (Pk + 1)! ways. And for every colouring of 
the clique, the vertices of G can only be coloured with the three colours assigned to the 
vertices vx, /22 and v3. Also, for any fixed colouring of the clique, there is a 1-1 
correspondence between 3-colourings of G and extensions of the (Pk + 1)-CO1Ouring of 
the clique to the whole graph G (k). So, 

P(G(R);pk + 1) = (Pk + 1)! 'P(G;3),  

and, using Eq. (3) relating the Tutte and chromatic polynomials, we see that 

( -  1)"+P~(Pk + 1)T(G(k);  - pk, O) = (Pk + 1)! 'P(G;3),  

n+ pk 
( - 1 ) " + P  ~ ~ bi, o ( G ( k ) ) ( - - p k ) i = p k l ' P ( G ; 3 ) ,  

i = 0  

n+ pk 

( - -  1) "+p~ ~, b,,o(G(k))( - Pk) ' - x  = (Pk- -  1)! 'P(G;3).  
i=1 

Taking both sides modulo Pk gives 

( -- 1)"+Pkbt,o(G (k)) - (Pk -- 1)!" P(G;  3)(modpk) 

and using Wilson's lemma ((p -- 1)! -- - 1 (modp)) we reach 

bm,o(G (k)) = ( - - 1 ) " + P ~ + l . P ( G ; 3 ) ( m o d p k ) .  

Thus, since Pk is certainly odd, 

b l , o ( G  (k)) =- ( - 1)"" P ( G ; 3 ) ( m o d p k ) .  
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The construction of all the G tk) c a n  certainly be performed in polynomial time, as 
the primes less than n 2 c a n  be found by a process of trial division in time polynomial 
in n. 

Therefore, using an oracle that returns the coefficient of x in the Tutte polynomial 
of a graph, we can find the number of 3-colourings of any graph modulo all primes 
between 3 and n 2. Clearly, the number of 3-colourings of a nonempty graph is even 
(and the empty graph on n vertices has 3" 3-colourings), as permuting the colours 
generates 6 distinct colourings corresponding to any partition of the vertices into 
colour classes. Using the Chinese remainder theorem, we obtain the number of 
3-colourings of G modulo the lowest common multiple of the primes less than n 2, 

which is of course their product. As this product is greater than the number of possible 
3-colourings of G, we know that the unique solution in {0, . . . ,  3"} is the actual number 
of 3-colourings of G. 

Hence, using our oracle, we can calculate a # P-hard function in polynomial time 
and so the # P-completeness of calculating bx,o(G) has been shown. []  

Since, as noted earlier, bo. 1 is equal to bl,o, it is also # P-complete to compute. This 
hardness result can be extended to include many more coefficients. 

Corollary 1. For all nonnegative integers i,j, the coefficients bl +i,j and bi, 1 +j are both 

# P-complete. 

Proof. Given a graph G, we construct a new graph H by adjoining a path of length i to 
G, consisting of new vertices {vl . . . . .  vi } and edges VkVk +1, 1 <<. k < i, and an edge uvl 

where u is an arbitrary vertex in G. We then add j  loops at vertex vi. The coefficient of 
x~+ly j in the Tutte polynomial of H is equal to the coefficient of x in the Tutte 
polynomial of G, and so calculating it is # P-hard. Similarly, the coefficient of x~y j+ 1 

in the Tutte polynomial of H is equal to the coefficient of y in the Tutte polynomial of 
G, and so is also # P-hard. []  

In fact, we can extend this even further. 

Corollary 2. For all constants ~, c, 0 ~< ~ < 1, 0 < c ~< 1, bL:, + 1],0 and 

bl ,  - n ~ + 1],0 are both # P-complete. 

Proof. As above, given any graph G, we add a path to it to form H. If we add a path of 
length Lctn/(1 - ~)J, Ln 1/c - n l  respectively, then it is simple to check that the given 
coefficient of the new graph H is equal to bl, o(G), and the transformation is a poly- 
nomial one. [] 

Similar results for large values of the second index of the coefficients can be 
obtained by adding loops to the graph, rather than isthmuses, and if we add both 
loops and isthmuses, we can easily reach results like the following. 
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Corollary 3. Computino bL~, _ l)/2J,Lt, - m + 1)/2j(G) is # P-complete. 

99 

3. Other coefficients, and an open problem 

Some coefficients are not amenable to either of the approaches given here. For any 
increasing functionf(n),  calculating b._ 1 - :  t.), j by brute force calculation as used in 
Theorem 1 above will take a superpolynomial (O((:7,)))) amount of time. 

On the other hand, if the function increases too slowly (slower than n c for all c > 0), 
the technique, described above, of adding a path and loops to the graph to change the 
indices of the coefficients of the polynomial will cause a superpolynomial expansion of 
the graph and hence not be a polynomial-time reduction. 

An analogous situation arises in many other problems. For  instance, counting the 
number of k-cliques of a graph is # P-complete for an arbitrary function k(n) (for 
instance, k = Ln/2J), but can be done in polynomial time for any fixed constant k by 
brute force. However, for k = [_log n J, the complexity is not known. This suggests the 
following as an open problem. 

Open problem. How hard is it to calculate bLn_ 1-logn3j, for arbitrary integer j? 

4. A polynomial predicate for the Tutte coefficients 

Surprisingly, given the above theorem, it is still possible to find out some informa- 
tion about the lowest coefficient of the Tutte polynomial. For  instance, it can easily be 
shown that, for a connected graph G, bl,o(G)= 0 precisely when G contains an 
articulation vertex, and this is easy to check in polynomial time. 

Furthermore, it can also be shown that b 1, o (G) = 1 if and only if G is a series-paral- 
lel graph (i.e. G is formed by a sequence of series and parallel extensions of the 2-cycle), 
and again, this can be checked easily. Here we extend these results to the following 
theorem. 

Theorem 3. The predicate "bl,o(G) is less than k" is in P for any fixed integer k. 

In order to prove Theorem 3, we need some preliminary lemmas. We begin with 
some results for connected matroids that can be found in [4]. We will restate them in 
the terminology of graph theory. The equivalent concept in graph theory to a connec- 
ted matroid is a block. 

Definition 2. The blocks of a graph are loops of the graph, plus the maximal 
2-vertex-connected and loopless subgraphs of the graph. 

Lemma 3. I f  G is a block, then for any edge e in G, at least one of G'e, G~ is a block. 
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Proof. Suppose G'e is not a block, and let C~ be one of its blocks. For  any vertices 

x ~ C~ and y e G'~\ C1, there is a circuit Cxr in G containing both x and y. This circuit 
must contain e, as there is no such circuit in G'e. So Cxr\e  is a circuit of Ge containing 
both x and y. This shows that all x e C~ and y ~ G'~\ C1 are contained within the same 
block in Ge, and so it follows that G~' is a block. []  

A minor of a graph G is a graph M that can be obtained from a subgraph of G by 
contracting edges. We denote this by M ~< G. 

Lemma 4. For any block G, and any minor M of  G that is also a block, there is 

a sequence of  deletions and contractions that transforms G into M in which no loops or 
isthmuses are deleted or contracted. 

Proof. This is proved as Corollary 4.3.7 in I-4], stated in terms of connected mat-  
roids. []  

Now we can prove some lemmas necessary to complete the proof  of Theorem 3. 

Lemma 5. G is a block if and only i fb l ,o(G) > O. 

Proof. First, we prove the right to left implication. It  was shown by Tutte [8] that if 
a graph consists of some subgraphs that all intersect at a single vertex, then its Tutte 

polynomial is equal to the product of the Tutte polynomials of these subgraphs. 
Clearly, if this is the case, then bLo(G ) = O. 

For the left to right implication, note that it is trivially true for all blocks of 2 edges 
(there is only one, with Tutte polynomial x + y) and assume for a contradiction that 
G is a counterexample with the fewest possible number  of edges, that is, G is a block 
and bLo(G) = 0. Pick an arbitrary edge e in G. It is neither an isthmus nor a loop, for 
G has none. We know from Lemma 3 above that at least one of G'e and G~' is a block, 
and so by the inductive hypothesis at least one of bLo(G'e) and bl,o(G~) is nonzero 
(and of course, both are nonnegative). So, using the deletion/contraction formula (1) 

we see that b L o (G) = b L o (G'e) + bE o ( G ' )  > 0, and the contradiction has been reach- 
ed. [] 

So, in order to determine if the lowest coefficient of the Tutte polynomial Of a graph 
is less than k, we only need to consider blocks. 

We say a set of graphs is minor-closed if, for any graph in the set, all minors of that 
graph are also contained in the set. 

The following observation is trivial. 

Lemma 6. The set ~ k  of blocks G for which bl,o(G) < k, together with all minors of  
these blocks, is minor-closed. 
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Proof. Any minor of a minor of a graph is itself a minor of the original graph. [] 

Lemma 7. For every graph G ~ ~k ,  bt.o(G) < k. 

Proof. If there is a graph H e ~ k  such that b~,o(G) >>- k, then it must be a block, and 
also be a minor of some block G with bl,o(G) < k. 

Using the deletion/contraction formula (1) repeatedly, we can calculate the Tutte 
polynomial of a graph as the sum of the Tutte polynomials of smaller graphs. 

By Lemma 4, we know that we can get from any block G to any minor H that is also 
a block with a sequence of deletions and contractions that do not create any loops or 
isthmuses. We order the edges of G according to this sequence, with the edges in the 
sequence preceding those not in it. When we apply the deletion/contraction formulae 
to the edges of G in order, one of the graphs created along the way will be H. 
Moreover, it will have been created by a sequence of deletions and contractions not 
involving loops or isthmuses, and so its contribution to the Tutte polynomial of G will 
not have to be multiplied by a power ofx  or y. This shows that it is possible to express 
the Tutte polynomial in the following way: 

T ( G ) =  ~ T(H),  
H ~  

where ocg is a set of minors of G including H. All the coefficients of the Tutte 
polynomial are nonnegative integers, so bl,o(G) >~ bl,o(H). Hence if G is a block 
which has x-coefficient less than k, then for all minors H <~ G, bl,o(H) < k. [] 

Finally, we are ready to prove Theorem 3. 

Proof of Theorem 3. We use the positive resolution of Wagner's conjecture, as proved 
by Robertson and Seymour in [-5]: Any set of finite graphs contains only a finite number 
of minor-minimal elements. 

So there are only a finite number of minor-minimal graphs in the complement of 
~k .  Let us denote by (9 k the set of these graphs. We call these the obstruction set for 
~ k .  

Since the set ~ k  is minor-closed, in order to check for membership in ~k ,  all we 
need to do is check whether or not a candidate graph has any element of the 
obstruction set as a minor. 

For  a fixed M, Robertson and Seymour have also proved that there is a poly- 
nomial-time algorithm that, on input G, will decide whether or not M ~< G [5]. So we 
can check for all the possible "forbidden minors" in polynomial time, and hence 
determine whether or not bl,o(G) < k. [] 

Corollary 4. The predicate "bl,o(G) equals k" is solvable in polynomial time, for 
arbitrary fixed k. 
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Proof. This is immediate, as bl ,o(G)= k if and only if bl ,o(G)< k + 1 and 

bl,o(G) ~ k. [] 

We can again extend these results to cover more coefficients, in the following way. 
We need to strengthen the result of Lemma 4 a little. 

Lemma 8. For any block G, and any connected minor M of G, there is a sequence of 
deletions and contractions that transforms G into M in which no loops or isthmuses are 
deleted or contracted. 

Proof. We use induction on the number of blocks of the minor M. 
The base case, when the minor is itself a block, corresponds to Lemma 4. 
Assume that it is true when the minor has at most i blocks. For  a minor with i + 1 

blocks, we can find a sequence of deletions and contractions that realises M. Let us 
assume that this sequence minimises the number  of loops and isthmuses removed. 
There is a first time in the sequence that we remove an edge e such that the resulting 
graph H has more than one block. If, subsequently, all the edges in one of the blocks of 
H are deleted or contracted, then this necessitates the removal of a loop or isthmus. 
But this could have been avoided by deleting or contracting all of the edges of this 
block immediately before removing edge e. This can be done without removing any 

loops or isthmuses, by Lemma 3. 
Therefore, there is a sequence of deletions and contractions of edges of H that 

reaches M, such that the edges of each block of H induce a nonempty subgraph of 
M consisting of fewer than i blocks. By the inductive hypothesis, taking each block of 
H separately, we can delete and contract some of its edges so as to reach this subgraph 
without having to delete or contract a loop or isthmus. []  

Corollary 5. The predicate "b~,j(G) is less than k" is solvable in polynomial time for 
arbitrary fixed i, j and k. 

s e  ~ k  • • Proof. Consider the t ~" i,j, consisting of all blocks G such that bi, j(G) < k, plus all 

their minors. This set is of course minor-closed. As in the proof  of Theorem 3, there 
can be no graph H contained in ~k , j  such that bi, j (H) >~ k, because if there was, it 
would have to be a minor of some block G with b~,~(G) < k. This is impossible, as we 
can use Lemma 8 to show that we can express the Tutte polynomial of G as the sum of 
the Tutte polynomials of a set of graphs including H, as before. 

k So again we have an obstruction set Cg, j, with a finite number of minor-minimal 
elements, and can check in polynomial time whether or not any of these forbidden 
minors is in fact a minor of the candidate graph. [] 
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