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The object of the present paper is to investigate a general class of fractional 
integral operators involving the Gauss hypergeometric function. Several interesting 
distortion theorems for various subclasses of analytic and univalent functions are 
proved in terms of these operators of fractional calculus. Some special cases of the 
results presented here are also indicated. f? 1988 Academic Press, Inc. 

1. INTRODUCTION AND DEFINITIONS 

Among several interesting definitions of fractional integrals given in the 
literature (cf., e.g., [2, Chap. 13; 5; 8, p. 28 et seq.; 12]), we find it to be 
convenient to recall here the following definitions: 

DEFINITION 1 (Owa [3]; see also Srivastava and Owa [lo]). The frac- 
tional integral of order 1 is defined, for a functionf(z), by 

(1.1) 
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FRACTIONAL CALCULUS OPERATORS 413 

where A > 0, f(z) is an analytic function in a simply-connected region of the 
z-plane containing the origin, and the multiplicity of (z - [)‘- ’ is removed 
by requiring log(z - [) to be real when z - c > 0. 

DEFINITION 2 (Saigo [6]; see also Srivastava and Saigo [ 133). For 
real numbers CI >O, fl, and q, the fractional integral operator Z;$q is 
defined by 

~:~~f(X)=~j~(x-l).-lF cc+p, -q;a;l-5 
( ) 

f(t)& (1.2) 

for a real-valued function f(x) which is continuous on the open interval 
(0, co) with the order 

f(x) = 0(X6), x -+ 0, 

where 

s>max{O,j?-q}-1. 

1.3) 

It follows from Definition 1 and Definition 2 that 

D,“f(x) = z;; ;*,“f(x). ( 

Furthermore, for a complex-valued function f(z), Definition 2 may 
written in the modified form: 

be 

DEFINITION 3. For real numbers u > 0, /I, and I], the fractional integral 
operator Z;; b 7 is defined by 

xF a+B, -~;a:; 1-i 
( > 

f(i)& (1.4) 

where f(z) is an analytic function in a simply-connected region of the 
z-plane containing the origin with the order 

f(z) = O(lzl”), z + 0, 

where 

E>max{O,/?-q}-1, 

and the multiplicity of (z - [)“- I is removed as in Definition 1 above. 
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It is easy to observe that [cf. Eq. (1.31 

D;~"f'(z)= I;: ;-"‘"1‘(z). 

Let .&(n) denote the class of functions of the form 

f(z)=z+ f UkZk (n E dy‘ = { 1, 2, 3, . . . } ), 

(1.5) 

(1.6) 
k=n+l 

which are analytic in the unit disk % = {z: IzI < 1 }. Further, let Y(n) 
denote the class of all functions in d(n) which are univalent in the unit 
disk a. Then a functionf(z) belonging to the class P’(n) is said to be in the 
subclass Y6(n) if and only if 

Re zf’(z) > 6 
( > f(z) (ZE%%) (1.7) 

for some 6 (0 5 6 < 1). Also, a function f(z) belonging to the class Y(n) is 
said to be in the subclass X6(n) if and only if 

Re(l+z)>d (ZE@) (1.8) 

for some 6 (056< 1). 
We note that f(z)EA$(n) if and only if zf’(z) EYE, and that 

Z(n) E %(fi), ,x,(n) E &lb)? and .X,(n) c xi(n) (1.9) 

for 0,<6< 1. 
The classes Y6(n) and X6(n) were studied recently by Srivastava, Owa, 

and Chatterjea [ 111. For n = 1, sP,( 1) and X6( 1) become the classes Y’*(S) 
and .X(6), respectively, which were introduced earlier by Robertson [4]. 

Let Y(n) be the subclass of Y(n) consisting of functions of the form 

f(z)=z- f akzk t”k 2 Oh (1.10) 
k=n+l 

Denote by &(n) and %YJn) the classes obtained by taking intersections, 
respectively, of the classes P$(n) and ,X,(n) with Y(n); that is, 

and 

&6(n) = 9gn) r-7 F(n) (Oi6< 1;nE-N) (1.11) 

%&I) =X,(n) n F(n) (056< l;nEJV-). (1.12) 

The classes Y6(n) and %?Jn) were considered by Chatterjea [l]. In par- 
ticular, &( 1) and %J 1) are the classes Y*(6) and w(6), respectively, which 
were introduced by Silverman [7]. 
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In this paper we aim at presenting several interesting distortion theorems 
for the fractional integrals of functions belonging to the general classes 
F&(n) and %Z6(n). 

2. PRELIMINARIES 

In order to prove our results for functions belonging to the general 
classes F6(n) and $?Jn), we shall need the following lemmas given by 
Chatterjea [ 1 ] : 

LEMMA 1. Let the function f(z) be defined by (1.10). Then f(z) is in the 
class FJn) if and only if 

,~+,(!jf-$akSl (nZl1). (2.1) 

LEMMA 2. Let the function f(z) be defined by (1.10). Then f(z) is in the 
class V6(n) if and only if 

cc 

U 

w-(9 

k=n+l 1 

a s1 
I-6 k- 

(nz 1). (2.2) 

Remark 1. Lemma 1 follows immediately from a result due to Silver- 
man [7, p. 110, Theorem 21 upon setting ak =0 (k = 2, 3, . . . . n). Lemma 2, 
on the other hand, is a similar consequence of another result due to 
Silverman [7, p. 111, Corollary 21. 

We shall also need the following result in our investigation. 

LEMMA 3. If a>0 and u>fl--q-1, then 

QLJ.Vz”= 
T(u+ l)r(K-/?+q+ 1) K--P 

f(K-/?+l)r(K+C(+~+l)Z . 

Proof: By Definition 2, we have 

~~pz”=’ -e-B z mjo (~-;)-‘(a+/% -v+~)CW 
y-B I =- s 0) 0 tapl(l - t)” F(a + /I, -q; a; t) dt 

T(u+ 1) 
=r(u+a+ 1)’ 

“-BF(a+fl, -rj;K+a+ 1; 1) 

(2.3) 

r(K+ l)r(u-P+rl+ 1) zK-p 
=T(u-j?+ l)T(k-+a+q+ 1) ’ (2.4) 
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where we have employed the formulas [9, p. 287, Eq. (44)] 

44 B; y; 2) = 
T(Y) ’ 

f(j*) f(y - iL) I 
t” ‘(I - t);’ L- ’ F(a, p; i; zt) dt, 

o 

Re(y) > Re(I”) > 0, 

and [9, p. 19, Eq. (20)] 

(2.5) 

44 P; y; 1) = m)f(Y-a-B) 
m - @.I f(Y - P)’ Re( y - CI - /I) > 0. (2.6) 

3. DISTORTION THEOREMS FOR THE CLASSES Y&(n) AND g&(n) 

Applying Lemma 1 and Lemma 3, we shall prove 

THEOREM 1. Let tl, fi, and q satisfy the inequalities: 

a>o, 0-c 2, a+q> -2, and p-Tj<2. (3.1) 

Choose a positive integer n such that 

n2P(a+rl) 2 -- - a 
(3.2) 

Also let the function f(z) defined by (1.10) be in the class F8(n). Then 

i 

(l-6)(-j?+rl+2),(n+l)! 
’ l--n+ l-6)(-/?+2),(a+q+2), 

Izl”) (3.3) 

’ ‘+(n+1--6)(-fi+2).(a+rj+2), 1 
(1 -~)(-b+rl+2L(n+ 1Y ,Z,n 

1 
(3.4) 

f or 

zE%Pif~~l and ZES- (0) if/l> 1, (3.5) 
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where (d), is the Pochhammer symbol defined by 

417 

if k = 0, 

1(3,+ l)...(A+k- l), VkEN. (3.6) 

Equalities in (3.3) and (3.4) are attained by the function 

at certain values of z, where fl is assumed to be a rational number for the 
case (3.4). 

Proof. By virtue of Formula (2.3), we have 

Now define the function O(z) by 

CD(z) = 
r(2-/I)r(2+@+9) 

w-P+r) 
zfl1;; p “f(z) 

=z- f !?‘(k)ukzk, 
k=ntl 

where, for convenience, 

Y(k) = 
(-P+q+2)kp,k! 

(-fl+2)k-l(a+tl+2)k-l 

(k = n + 1, n + 2, n + 3, -..). 

(3.8) 

(3.9) 

(3.10) 

It is easily seen from the assumptions in (3.1) and (3.2) that Y(k) is non- 
increasing for integers k 2 n + 1, and we have 

0-c Y(k)5 !P(n+ l)= 
(-fl+q+2),(n+ l)! 
(++2Ma+rl+2L 

In view of Lemma 1, we also have 

(3.11) 

(3.12) 



418 SRIVASTAVA, SAIGO. AND OWA 

Making use of (3.11) and (3.12) in (3.9), we see that 

k--n+1 

which implies the assertion (3.3) of Theorem 1. 
The assertion (3.4) of Theorem 1 can be proved similarly. 
Finally, in view of the formula (2.3), it is not difficult to verify that the 

function given by (3.7) does indeed attain the equality in (3.3) for z = 121. If 
p is a rational number, we can seek integers n > 0, m,, and m2 such that 

Put 

n(l+2m,)/(m,-m,)=2/?-2. 

Then we can see that (3.7) attains the equality in (3.4) at the value 
z = Iz( eie. 

COROLLARY 1. Let the function f(z) defined by (1.10) be in the class 
F6(n). Then 

I4 
1+1 

P;“f(z)l2 r(2 + n) 
i 

1 _ (1-6)(n+ l)! 
(n + 1 - 6)(2 + A), 

IW} (3.13) 

and 

ID;"f(z)l5& (I+ ,,‘:;“)&;$ lzl”} (3.14) 
” 

for A >O and zg%. Equalities in (3.13) and (3.14) are attained by the 
function given by (3.7) at certain values of z, where A is assumed to be a 
rational number for the case (3.14). 

Proof: In view of the relationship (1.5), Corollary 1 follows readily from 
Theorem 1 in the special case when 

ct= -/3=n. 

Remark 2. Letting A--, 0 in Corollary 1, we obtain the corresponding 
result due to Srivastava, Owa, and Chatterjea [ 11, p. 117, Theorem I]. 
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Similarly, by applying Lemma 2 (instead of Lemma 1) to the function 
f(z) belonging to the class V6(n), we can derive 

THEOREM 2. Under the assumptions (3.1) and (3.2) of Theorem 1, let the 
function defined by (1.10) be in the class g6(n). Then 

14: t “f(z)1 >= 4&;;;+g, W8 

x l- 
i 

(l-6)(--j+q+2),n! 

(n + 1 - a)( - fl + 2),(a + q + 2), 
IW) (3.15) 

and 

I4j: 5 “f(z)1 5 1.(2:;);;:;+q) WD 

x l+ 
i 

(l-6)(-p+q+2),n! 
(n+1-6)(-fl+2),(a+~+2),‘ZJ” (3’16) I 

for z given precisely by (3.5). Equalities in (3.15) and (3.16) are attained by 
the function 

l-6 

f(z)=z-(n+l)(n+1-6)Z 
n+l (3.17) 

at certain values of z, where p is assumed to be a rational number for the 
case (3.16). 

Finally, by virtue of the relationship (1.5), a special case of Theorem 2 
when 

a= -fi=n 

may be stated as 

COROLLARY 2. Let the function f(z) defined by (1.10) be in the class 
Wa(n). Then 

and 

l+A 

D,“f(z)\ 1k 
(1-6)n! 

r(2+A) ‘-(n+ 1-S)(2+1),Iz’n 
(3.18) 

D;“f(z)l _I (z(l+l 
(l-6)n! 

q2 + A) ’ +(n+ 1-6)(2+A), 
(3.19) 
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for E,>O and ZE&. Equalities in (3.18) and(3.19) are attained by the 
function given by (3.17) at certain values of z, where 1 is assumed to be a 
rational number for the case (3.19). 

Remark 3. Letting E. -+ 0 in Corollary 2, we obtain the corresponding 
result due to Srivastava, Owa, and Chatterjea [ 11, p. 119, Theorem 21. 
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