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Abstract

It is shown that Schrödinger operators, with potentials along the shift embedding of irreduci
terval exchange transformations in a dense set, have pure singular continuous spectrum for L
almost all points of the interval. Such potentials are natural generalizations of the Sturmian ca
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1. Introduction and main results

In this work some techniques for the study of the spectrum of discrete Schröd
operatorsHω : �2(Z)→ �2(Z),

(Hωψ)j =ψj+1 +ψj−1 +ωjψj , (1)

with ω = (ωj )j∈Z a sequence of real numbers (usually called potential) taking a
number of values, are used to show the presence of pure singular continuous spect
potentials along the shift embedding of some interval exchange transformations (b
IETs) [8]. An IET preserves Lebesgue measure and our results apply for the shift a
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sure). See ahead for precise formulations.

One of the main interests in the spectral type of such operators comes from its re
with the asymptotic temporal behavior of the solutions of Schrödinger equation (se
instance, [7] and references therein)

i
∂ψ

∂t
(t)=Hωψ(t), ψ(0)=ψ0.

For example, assume that‖ψ0‖ = 1, let ψ(t) = exp(−itHω)ψ0 be the solution of this
equation and denote bypψ(T )= (1/T )

∫ T
0 |〈ψ(t),ψ0〉|2dt the average return probabilit

at timeT , to the initial conditionψ0; by Wiener theorem [1,7] limT→∞ pψ(T )= 0 if and
only if ψ0 belongs to the continuous spectral subspace ofHω; it is worth noting that for
ψ0 in the singular continuous subspace it is possible that〈ψ(t),ψ0〉 does not vanish fo
t → ∞, which is sometimes calledexotic behaviorby physicists.

Here it will be considered the spectral type of operator (1) with sequencesω directly
related to IETs; so, in order to formulate such spectral results properly, it is conven
introduce some notations and a description of the IETs.

1.1. IET: a brief account

Fix n ∈ N, an irreducible permutation

π : {1,2, . . . , n} → {1,2, . . . , n}
(i.e.,π{1,2, . . . , j } �= {1,2, . . . , j } for all 1 � j < n) and let

Λn = {
a = (a0, a1, . . . , an) ∈ Rn+1: 0 = a0 < a1< · · ·< an = 1

}

provided with the metric induced by the norm

|a − b| = max
{|ai − bi |: i = 0,1, . . . , n

}
,

whereb = (b0, b1, . . . , bn). To eacha = (a0, a1, . . . , an) ∈ Λn it is associated the IET
Ea : [0,1)→ [0,1) defined by

Ea(x)= x +
π(i)−1∑

k=1

(aπ−1(k) − aπ−1(k)−1)−
i−1∑

k=1

(ak − ak−1), x ∈ [ai−1, ai).

Let E(π)= {Ea : [0,1)→ [0,1): a ∈Λn}, i.e., the collection of all IETs associated
the given permutationπ . The bijectionΛn → E(π) is employed to transfer toE(π) the
metric ofΛn.

Some simple properties of an IET are:

(i) Continuity, except at{a1, a2, . . . , an−1}, where it is right continuous;
(ii) Invertibility;
(iii) Piecewise isometric.

In fact, the IETs consist of the order-preserving piecewise isometries of[0,1).
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An IET Ea is calledirrational if the only rational relation between the lengths{a1 −a0,

a2 − a1, . . . , an − an−1} is (a1 − a0)+ (a2 − a1) + · · · + (an − an−1) = 1, andminimal
if for eachx ∈ [0,1) its orbit Oa(x) = {(Ea)

k(x): k ∈ Z} is dense in[0,1). Ea is called
rational if a ∈ Qn+1.

Lemma 1 [8]. (a) If Ea is irrational, then it is minimal.
(b) If the orbitsOa(aj ), 0 � j < n, are infinite and pairwise disjoint, thenEa is minimal.

Givena = (a0, a1, . . . , an) ∈Λn, let

Aa : [0,1)→ {1,2, . . . , n}
be the map such thatAa(x)= i if and only if x ∈ [ai−1, ai) for somei ∈ {1,2, . . . , n}. Let
Wn = {1,2, . . . , n}∗ be the set of finite sequences whose terms belong to{1,2, . . . , n}, i.e.,
finite wordsor factors in the alphabet{1,2, . . . , n}. Denote also byΣn = {1,2, . . . , n}Z,
with the topology induced by the metric

dist(ω,α)=
∑

j∈Z

d(ωj ,αj )

2|j |

(ω= (ωj )j∈Z andα = (αj )j∈Z) with d being the discrete metric, and byS :Σn →Σn the
left shift (Sω)j = ωj+1. Extend naturallyAa to Oa(x) and defineφ = φa : [0,1)→ Σn

by φ(x)= Aa(Oa(x)); i.e.,φ(x) is a natural coding of the orbit ofx by assigning to eac
entry of this orbit the number of the interval which contains it. SetΩa = closure{φ([0,1))}
in Σn.

Lemma 2 [8]. If Ea is minimal, then the dynamical system(Ωa, S) is a minimal subshift
i.e., the orbit{Sk(ω)} is dense inΩa for all ω ∈Ωa.

Remark 3 [8–10,13]. Forn= 2,3 the IETs reduce to the study of rotations of a circle a
therefore, minimality implies unique ergodicity; forn � 4 it is known the upper boun
n/2 for the number of ergodic probability measures, and there are examples withn = 4
with exactly two ergodic probability measures; such results are transferred to the su
(Ω,S), i.e., the corresponding minimality and with a finite number of ergodic probab
measures.

1.2. Main results

As before fix an irreducible permutation

π : {1,2, . . . , n} → {1,2, . . . , n}
and letE(π)= {Ea : [0,1)→ [0,1): a ∈Λn}. Identify the metric spacesΛn andE(π) by
the homeomorphisma ∈Λn →Ea ∈E(π).

Given ω ∈ Σn and an injective mapV : {1,2, . . . , n} → R, consider the potentia
V (ω) := (V (ωj ))j∈Z and the operatorHV(ω) as in (1).
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Theorem 4. GivenV as above, there is a dense subsetD ⊂E(π) such that

(i) EachEa ∈D is minimal and aperiodic(i.e., no sequence inΩa is periodic);
(ii) For eachEa ∈ D the spectrum ofHV (ω) in (1) is the same for allω ∈Ωa;
(iii) For eachEa ∈ D the corresponding Schrödinger operators(1)with potentialV (φ(x))

has pure singular continuous spectrum for a.e.x ∈ [0,1).

Corollary 5. GivenV as above, there is a dense subsetD ⊂ E(π) such that, for each
Ea ∈ D, the setΓa ⊂Ωa for whichHV(ω) has pure singular continuous spectrum for a
ω ∈ Γa is a denseGδ andνa(Γa)= 1 for some ergodic probability measureνa overΩa.

Remark 6. According to Gottschalk’s theorem [6,14] the sequences inΩa are almost pe
riodic if and only ifΩa is minimal; therefore, the spectral results presented above re
an (aperiodic) class of almost periodic Schrödinger operators.

Remark 7. Forn= 2 andπ(1,2)= (2,1), there is only one discontinuity pointa1 ∈ [0,1),
the system is reduced to rotations of the circle by the angle(1 − a1) and the potential
Ωa are the Sturmian sequences [2,3], which take just two values and encompass th
known Fibonacci substitution sequence [14,17]; therefore, the potentials generated b
are natural generalizations of Sturmian potentials—which have become standard
of quasicrystals. However, it is important to underline that the dynamics forn > 3 can be
richer than the Sturmian case and it is not at all obvious which spectral results gen
for such larger class.

Remark 8. From the proofs it is clear thatV does not need to be injective; it is enough
require that the potentialsV (ω), ω ∈Ωa, are not periodic.

The main parts of the proof of this theorem amount to exclude eigenvalues a.e. a
solutely continuous spectrum, and those are the contents of Sections 2 and 3, respe
some arguments are well known, but a number of details is included for convenience
reader. Before going into details, this section finishes with some related open proble

(1) Does the complement ofD above lie in a set of Lebesgue measure zero?
(2) DoesD contain IETs with more than one ergodic probability measure? Masur [13

shown that a.e.Ea is uniquely ergodic.
(3) What is the Lebesgue measure of the spectrum of such operators?
(4) For whichEa the spectrum ofHω is pure singular continuous for allω ∈ Ωa? What

about the spectrum ofHOa(x)?

2. Absence of point spectrum

The discussions in this and next sections will be restricted to potentialsω ∈ Σn (or
suitable subsets of it). This will cause no loss, since in Lemmas 9, 18, and 19 the
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values of the potentials are not relevant and the functionV : {1,2, . . . , n} → R is supposed
to be injective.

An important tool to exclude eigenvalues for a given operatorHω, ω ∈ Σn, is the
Delyon–Petritis version of an argument of Gordon [5], which utilizes local repetitions
can be stated as follows.

Lemma 9 [4]. If for givenω ∈Σn there exists a sequenceki → ∞ such that

ωj−ki = ωj = ωj+ki
for all 1 � j � ki, then the Schrödinger operatorHω has no eigenvalues.

Given an irreducible permutationπ , the idea is to construct a dense subsetD ⊂E(π) so
that, for eacha ∈ D, Lemma 9 applies toHω, ω = φa(x), with x in a set of total Lebesgu
measure in[0,1).

Proposition 10. There is a dense subsetD ⊂ E(π) such that eachEa ∈ D is (aperiodic)
minimal and, for a.e.x ∈ [0,1), the codingφa(x) satisfies the hypotheses of Lemma9 and
so, the operatorHφa(x) has empty point spectrum.

The proof of Proposition 10 will follow after a series of suitable remarks concer
IETs. The length of a factorB ∈ Wn will be denoted by|B|; the sameU will designate
open sets of bothΛn andE(π). It will also be convenient to useλ to indicate Lebesgu
measure over[0,1).

Let j, k ∈ Z with j � k, and suppose thatI ⊂ [0,1) is a nonempty interval (which ma
be reduced to a point) such that, for all integeri ∈ [j, k], Ei

a|I is continuous; then th
sequence

{
Aa

(
E
j
a (I)

)
,Aa

(
E
j+1
a (I)

)
, . . . ,Aa

(
Ek

a(I)
)}

will be said to be theEa-itinerary of I associated to[j, k].

Definition 11. Givena ∈Λn andB ∈Wn, a nonempty intervalI ⊂ [0,1) (which may be
reduced to a point) is said to be ofB-typeforEa ∈E(π) if for all i ∈ {−k,−k+1, . . . ,2k},
wherek = |B|,Ei

a|I is continuous,Aa restricted toEi
a(I) is constant and

B = theEa-itinerary ofI associated to[−k,0]
= theEa-itinerary ofI associated to[0, k]
= theEa-itinerary ofI associated to[k,2k].

Fora = (a0, a1, . . . , an) ∈Λn a subintervalI of [0,1) is said to beEa-periodicof period
k ∈ N, k � 1, if

(a1) Ea|I ,E2
a |I , . . . ,Ek−1

a |I are continuous and the intervalsI , Ea(I), . . . ,E
k−1
a (I) are

pairwise disjoint, and
(a2) Ek

a |I is the identity map ofI ; in particular, everyx ∈ I is Ea-periodic with (mini-
mum) periodk.
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Notice that ifx is anEa-periodic point of period�, thenx is ofB-type, whereB is the
Ea-itinerary ofx associated to[0, �].

The following lemma collects some useful facts about rational IETs and since its
is rather simple it will be omitted.

Lemma 12. If a = (a0, a1, . . . , an) ∈Λn ∩ Qn+1, i.e.,Ea is rational, then

(b1) TheEa-saturated set of{a0, a1, . . . , an−1}, that is

Sa :=
⋃

k∈Z

Ek
a
({a0, a1, . . . , an−1}

)
,

is anEa-invariant finite set;
(b2) Every connected component of[0,1) \ Sa is anEa-periodic interval; therefore, there

exist positive integersma,Ma such that everyx ∈ [0,1) isEa-periodic and its period
belongs to[ma,Ma];

(b3) For everyε > 0, there existsδ = δ(ε) > 0 such thatλ(Nδ(Sa)) < ε, whereNδ(Sa) :=
{x ∈ [0,1): ∃y ∈ {1} ∪Sa with |x− y|< δ}; notice that if0< δ is small enough, the
Nδ(Sa) isEa-invariant.

Let a = (a0, a1, . . . , an) ∈ Λn ∩ Qn+1. A positive integers is said to be aseparating
integer fora if ∀i ∈ {0,1, . . . , n− 1}, theEa-itinerary ofai , associated to[1, s], is disjoint
of {a0, a1, . . . , an−1}. Let

0< δ � 1

16
min

{|x − y|: x, y ∈ {1} ∪ Sa, x �= y
};

then δ̄ > 0 is astability constant for the triple(a, δ, s) if δ̄ < δ and, for allb ∈ Λn, with
|a − b|< δ̄, the following are satisfied:

• Let I be an arbitrary connected component of[0,1)\Nδ(Sa) and letτ be itsEa-period;
thenI is ofB-type forEb, whereB denotes theEa-itinerary ofI associated to[0, τ ];

• s is a separating integer forb.

Another simple and important approximation properties are as follows.

Lemma 13. Let s ∈ N. Any a ∈ Λn can be arbitrarily approximated byb ∈ Λn and c ∈
Λn∩Qn+1 such thatEb is minimal and every orbit ofEc is periodic having period greate
thans, which is also a separating integer forc.

Proof. By Lemma 1(a) anya ∈ Λn can be arbitrarily approximated byb ∈ Λn such that
Eb is minimal. Thisb ∈Λn can be arbitrarily approximated byc ∈ Λn ∩ Qn+1. AsEc is
rational, all its orbits are periodic; the requirement on the period of its orbits is fulfille
selectingmc > s. ✷
Lemma 14. Let a = (a0, a1, . . . , an) ∈Λn ∩ Qn+1 and lets be a separating integer fora.
Let 0< δ � (1/16)min{|x − y|: x, y ∈ {1} ∪ Sa, x �= y}. Then, there exists a stabilit
constant for the triple(a, δ, s).
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Proof. As s is a separating integer fora, it follows from the definition of IET that if
b = (b0, b1, . . . , bn) ∈Λn is close enough toa, then∀(i, j) ∈ {1,2, . . . , n} × {1,2, . . . , s},
E
j

b(bi) depends continuously onb ∈Λn. We conclude that ifb ∈Λn is close enough toa,
thens is a separating integer forb.

Now, let [c, d] be a closed interval which is a connected component of[0,1) \Nδ(Sa),
then theEa-orbits ofc andd are periodic and they are at aδ distance of{1}∪Sa. Therefore,
we may apply the same argument above to the endpoints of the (finitely many)
intervals which are connected component of[0,1) \Nδ(Sa) so to obtain that there exists
stability constant̄δ for the triple(a, δ, s). ✷

Definition 15. Consider factorsB1,B2 ∈Wn. ThenB1 precedesB2, denoted byB1 ≺ B2,
if |B1|< |B2| and the first|B1| entries ofB2 coincides withB1.

Proposition 10 follows immediately from the next one, where the existence of theD
will be proven.

Proposition 16. Let U be an open subset ofE(π). There exists a minimal IETEa0 ∈ U

such that for a.e.p ∈ [0,1) there exists a sequence(Bp

i )
∞
i=1 in Wn such that

(c1) Bp

1 ≺ B
p

2 ≺ · · · ≺ B
p
i ≺ · · · ;

(c2) For all i ∈ N, p is ofBp
i -type forEa0.

Proof. Fix, once for all, 0< ε < 1/9. Let a1 ∈ Λn ∩ Qn+1 ∩ U. Selectδ1 > 0 such that
{b ∈Λn: |b − a1|< 2δ1} ⊂U and

(1.1) λ(Nδ1(Sa1)) < ε/2;
(1.2) δ1 � (1/16)min{|x − y|: x, y ∈ {1} ∪ Sa1, x �= y}.

Let s1 be a separating integer fora1 and choosēδ1 > 0 so that

(1.3) δ̄1 > 0 is a stability constant for the triple(a1, δ1, s1).

In this proof, it will be selected inductively (among other sequences) a sequence(ai )∞i=1
inΛn∩Qn+1, a sequence of separating integers(si)

∞
i=1, and sequences of positive numb

(δi)
∞
i=1 and(δ̄i)∞i=1. The elementsa1, s1, δ1, andδ̄1 have already been selected.

The following notation, related to the sequence(ai )∞i=1, will be used throughout thi
proof:

• If p ∈ [0,1) andτ denotes itsEak -period, then

B
p = theEak -itinerary ofp associated to[0, τ ].
k
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(2.1) Selecta2 ∈Λn ∩ Qn+1 so thatma2 >Ma1 (see item (b2) of Lemma 12), the separ
ing integers2 for a2 is greater thans1 (see Lemma 13) and

|a2 − a1|< δ̄1

2
;

(2.2) Select 0< δ2 < δ̄1 so thatλ(Nδ2(Sa2)) < ε/4 and

δ2 � 1

16
min

{|x − y|: x, y ∈ {1} ∪ Sa2, x �= y
};

(2.3) Select a stability constant 0< δ̄2 < δ2 for the triple(a2, δ2, s2).

Using the fact that̄δ1 is a stability constant for(a1, δ1, s1), one obtains that if(ai )∞i=3 is
an arbitrary sequence inΛn ∩ Qn+1 such that, for alli = 2,3, . . . ,

|ai+1 − ai|< δ̄2

2i
,

then (ai )∞i=1 is not only a convergent sequence but also (as|a0 − a1| < δ1) its limit a0
belongs toU. Moreover, by (b2) of Lemma 12 and (2.1)–(2.3), it follows that

(2.4) If p ∈ [0,1) \ {Nδ1(Sa1)∪Nδ2(Sa2)} then
• B

p

1 ≺ B
p

2 ;
• For all i = 0,1,2, . . . , p is ofBp

1 -type forEai ;
• For all i = 0,2,3, . . . (i �= 1), p is ofBp

2 -type forEai ;
• s2 is a separating integer forEa0;

(2.5) The following are true:
• λ([0,1) \ {Nδ1(Sa1)∪Nδ2(Sa2)})� 1− ε/2− ε/4;
• λ([0,1) \Nδ2(Sa2))� 1− ε/4.

Suppose inductively thatak−1 ∈ Λn ∩ Qn+1, sk−1 ∈ N, δk−1 > 0, andδ̄k−1 > 0 have
been selected. Now proceed to

(k.1) Selectak ∈Λn∩Qn+1 so thatmak > Mak−1, the separating integersk for ak is greater
thansk−1 and

|ak − ak−1|< δ̄k−1

2
;

(k.2) Select 0< δk < δ̄k−1 so that

λ
(
Nδk (Sak )

)
<

ε

2k

and

δk � 1

16
min

{|x − y|: x, y ∈ {1} ∪ Sak , x �= y
};
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(k.3) Select a stability constant 0< δ̄k < δk for the triple(ak, δk, sk).

If (ai )∞i=k+1 is an arbitrary sequence inΛn ∩ Qn+1 such that, for alli = k, k + 1, . . . ,

|ai+1 − ai|< δ̄k

2i
,

then, by what was said above,(ai )∞i=1 is not only a convergent sequence but also its li
a0 belongs toU. Also, by (b2) of Lemma 12 and (k.1)–(k.3), one obtains that

(k.4) If p ∈ [0,1) \ ⋃k
i=1Nδi (Sai ) then

• B
p

1 ≺ B
p

2 < · · · ≺ B
p
k ;

• For all i = 0,1,2, . . . , p is ofBp

1 -type forEai ;
• For all i = 0,2,3, . . . , p is ofBp

2 -type forEai ;
. . .

• For all i = 0, k, k+ 1, . . . , p is ofBp
k -type forEai ;

• sk is a separating integer forEa0.
(k.5) The following are true:

• λ([0,1) \ ⋃k
i=1Nδi (Sai ))� 1− ε/2− ε/4 − · · · − ε/2k ;

• λ([0,1) \ ⋃k
i=2Nδi (Sai ))� 1− ε/4− · · · − ε/2k ;

. . .
• λ([0,1) \Nδk (Sak ))� 1− ε/2k .

In this way the selection of the sequences(ai )∞i=1, (si )
∞
i=1, (δi)

∞
i=1, and(δ̄i)∞i=1 is com-

pleted. Recall thatak → a0 ∈ U andsi → ∞. By using properties{(k.4)}∞k=1–{(k.5)}∞k=1,
it follows that, for allp ∈ [0,1) \ ⋃∞

i=1Nδi (Sai ) and for alli = 1,2, . . . ,

• p is ofBp

i -type forEa0;
• B

p

1 ≺ B
p

2 ≺ · · · ≺ B
p
k ≺ · · · ;

• λ([0,1) \ ⋃∞
i=1Nδi (Sai ))� 1− ε;

• If a0 = (α0, α1, . . . , αn), theEa0-orbits throughα0, α1, . . . , αn−1 are pairwise disjoint

In other words, this proposition is true for a set of points having Lebesgue measure a
1− ε. Notice that by Lemma 1(b),Ea0 is minimal.

Now fix an arbitrary positive integers. By using properties{(k.4)}∞k=s–{(k.5)}∞k=s , one
gets that, for allp ∈ [0,1) \ ⋃∞

i=s Nδi (Sai ) and for alli = s, s + 1, . . . ,

• p is ofBp

i -type forEa0;
• B

p
s ≺ B

p

s+1 ≺ · · · ;
• λ([0,1) \ ⋃∞

i=s Nδi (Sai ))� 1− ε/2s−1.

Therefore, this proposition is true for a set of points having Lebesgue measure a
1 − ε/2s−1, wheres is an arbitrary positive integer. That is, the result holds for a.e.p ∈
[0,1]. ✷
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3. Absence of absolutely continuous spectrum

The absence of absolutely continuous spectrum will be gotten as a combination
known results, gathered in what follows in the form of lemmas, and an observation
Section 2. In summary, ergodicity, minimality, aperiodicity, and finite valued are the
ingredients to exclude absolutely continuous spectrum. This section aims at conclud

Proposition 17. Let D be as in Proposition10. If Ea ∈ D, thenHω has no absolutely
continuous spectrum for allω ∈Ωa.

Lemma 18 [11]. If µ is an ergodic probability measure overΣn, then the set of potentia
ω for whichHω has no absolutely continuous spectrum has full measureµ, unless the
support ofµ is periodic.

Lemma 19 [12]. The absolutely continuous spectrum of(1) is constant over minimal sub
sets ofΣn.

Now the proof of Proposition 17 is immediate. LetD be as in Proposition 10. Fo
eachEa ∈ D the setΩa is aperiodic and carries an ergodic measure, so by Lemm
there existsω ∈Ωa such thatHω has empty absolutely continuous spectrum; sinceΩa is
minimal (Proposition 10 and Lemma 2), the conclusion of Proposition 17 follows str
by Lemma 19.

4. Proof of the main results

First it will be discussed how Corollary 5 follows from Theorem 4. IfU is the unitary
operator representation of the shift in�2(Z), i.e.,(Uψ)j =ψj−1, then operator (1) satisfie
the covariance relation

HS(ω) = UHωU∗,

which implies

Lemma 20. The spectrum of(1) is constant over orbits inΣn.

Let D be as in Theorem 4 and forEa ∈ D let Γa be as in the corollary, i.e., the su
set ofΩa for which the operator (1) has pure singular continuous spectrum. Accordi
Theorem 4(iii),Hφ(x) has pure singular continuous spectrum for a.e.x ∈ [0,1); since the
Lebesgue measure is a convex sum of finitely many (probability) ergodic measures
lows that with respect to at least one of themHφ(x) has pure singular continuous spectru
a.e.; to the latter measure corresponds an ergodic probability measureνa overΩa, with
νa(Γa)= 1, that works for the corollary.

It remains to show that such setΓa of potentials is a denseGδ. For this purpose, an
other auxiliary result will be used; it belongs to the set of results known as “wonde
theorem.”
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Lemma 21 [16]. Consider a complete metric space of bounded self-adjoint oper
whose convergence in the metric implies strong operator convergence. Then, the
of such operators with empty point spectrum is aGδ .

By identifying the metric spaceΣn with the set of operators{Hω: ω ∈ Σn} one sees
that two operators are at a small distance only if the corresponding potentials agre
large block containing the position zero. Then, from

‖Hω(k)ψ −Hωψ‖2 =
∑

j∈Z

∣∣ω(k)j −ωj
∣∣2|ψj |2,

if a sequence of potentialsω(k) → ω, the strong operator convergenceHω(k) →Hω follows.
Hence, Lemma 21 is applicable to closed subsets of the metric space{Hω: ω ∈ Σn}, in
particular toΩa.

By Proposition 17 the setΓa coincides with the set of operatorsHω, ω ∈ Ωa, with
empty point spectrum; so, by Lemma 21,Γa is aGδ, and it is left to show that it is als
dense. By Theorem 4(iii) there isφ(x) ∈Ωa such thatHφ(x) has no point spectrum (henc
Γa �= ∅), and by Lemma 20 the spectrum is invariant overOa(x), which is dense inΩa by
Theorem 4(i). Corollary 5 is demonstrated.

Proof of Theorem 4. LetD be the dense subset inE(π) constructed in the proof of Propo
sition 16; from such construction each element ofD is minimal and aperiodic, concludin
(i) in the theorem. Assertion (iii) follows directly from Propositions 10 and 17.

Since the convergence inΣn implies strong operator convergence (as discussed ab
the minimality and Lemma 20 imply (ii), as it is well known that the spectrum (a
set) does not increase under strong limits (see Theorem VIII.24 in [15]) and so it is
stant over minimal sets ofΣn (this last abstract result seems to have originally appe
in [17]). ✷
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