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Abstract

Itis shown that Schrddinger operators, with potentials along the shift embedding of irreducible in-
terval exchange transformations in a dense set, have pure singular continuous spectrum for Lebesgue
almost all points of the interval. Such potentials are natural generalizations of the Sturmian case.
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1. Introduction and main results

In this work some techniques for the study of the spectrum of discrete Schrédinger
operators,, : (3(Z) — (3(Z),

(Ho¥)j=Yj1+vi—1+ oy, (1)

with @ = (w;) jez a sequence of real numbers (usually called potential) taking a finite
number of values, are used to show the presence of pure singular continuous spectrum for
potentials along the shift embedding of some interval exchange transformations (briefly,
IETSs) [8]. An IET preserves Lebesgue measure and our results apply for the shift associ-
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ated with a dense set of IETs and for a.e. points of the interval (the symbol a.e. with no
specification meanalmost everywheraith respect to the corresponding Lebesgue mea-
sure). See ahead for precise formulations.

One of the main interests in the spectral type of such operators comes from its relation
with the asymptotic temporal behavior of the solutions of Schrddinger equation (see, for
instance, [7] and references therein)

i = Hop ), w0 = o
For example, assume théto| = 1, let ¥ (¢t) = exp(—itH,) Yo be the solution of this
equation and denote by, (T) = (1/T) foT [(y (1), Yo)|? dt the average return probability,
attimeT, to the initial conditionyg; by Wiener theorem [1,7] lim_, . py (T) = 0 if and
only if ¥ belongs to the continuous spectral subspac#l gfit is worth noting that for
Yo in the singular continuous subspace it is possible tidt), 1) does not vanish for
t — oo, which is sometimes callegkotic behavioby physicists.

Here it will be considered the spectral type of operator (1) with sequenaisectly
related to IETs; so, in order to formulate such spectral results properly, it is convenient to
introduce some notations and a description of the IETSs.

1.1. IET: a brief account

Fix n € N, an irreducible permutation
m:{1,2,...,n}—>{1,2,...,n}
(.e.,m{1,2,...,j}#{1,2,...,j}forall 1 < j <n)and let
An={a=(ao,a1,...,an)eR"+l: 0=ao<a1<~'<an=1}
provided with the metric induced by the norm
la—bl=maxX{|a; —b;|: i =0,1,...,n},

whereb = (bg, b1, ..., b,). To eacha = (ag, a1, ...,a,) € A, it is associated the IET
E4:[0,1) — [0, 1) defined by

m(@i)—-1 i-1
Ealx)=x+ Z (an—l(k) - an_l(k)fl) - Z(ak —ag-1), x€laj-1,a;).
k=1 k=1

Let E(r) ={E4:[0,1) — [0,1): a€ A,}, i.e., the collection of all IETs associated to
the given permutatiorr. The bijectionA,, — E () is employed to transfer t& () the
metric of A,,.

Some simple properties of an IET are:

(i) Continuity, except atas, az, ..., a,—1}, where it is right continuous;
(i) Invertibility;
(iii) Piecewise isometric.

In fact, the IETs consist of the order-preserving piecewise isometrigs bf.
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An IET Ej is calledirrational if the only rational relation between the lengtlag — ao,
as—ai,...,day — ay—1} 1S (a1 — ag) + (a2 — a1) + --- + (a, — a,—1) = 1, andminimal
if for eachx € [0, 1) its orbit Oa(x) = {(Ea)*(x): k € Z} is dense in0, 1). E, is called
rational if ae Q"*1,

Lemma1(8]. (a)If E;isirrational, then it is minimal.
(b) If the orbitsOa(a;), 0 < j < n, are infinite and pairwise disjoint, thefi; is minimal.

Givena= (ag, a1, ...,a,) € A,, let
Aa:[0,1)—{1,2,...,n}

be the map such thata(x) =i ifand only if x € [a;—1, a;) for somei € {1, 2, ...,n}. Let
W, =1{1,2,...,n}* be the set of finite sequences whose terms belofg @ ..., n}, i.e.,
finite wordsor factorsin the alphabe{l, 2, ..., n}. Denote also byz, = {1,2,...,n}%,
with the topology induced by the metric

. d(wj,aj)
dist(w, a) = Z #
JEZ

(w = (w})jez anda = («;) jez) With d being the discrete metric, and By X, — X, the
left shift (Sw); = w;41. Extend naturallyd, to Oa(x) and definep = ¢4:[0,1) — %,
by ¢ (x) = Aa(Oa(x)); i.e.,¢(x) is a natural coding of the orbit of by assigning to each
entry of this orbit the number of the interval which contains it. Sgt= closurd¢ ([0, 1))}
inX,.

Lemma 2 [8]. If E5 is minimal, then the dynamical systéf2,, S) is a minimal subshift,
i.e., the orbit{S¥(w)} is dense in2, for all w € 2a.

Remark 3[8-10,13]. Fom = 2, 3 the IETs reduce to the study of rotations of a circle and,
therefore, minimality implies unique ergodicity; far> 4 it is known the upper bound

n/2 for the number of ergodic probability measures, and there are examples with

with exactly two ergodic probability measures; such results are transferred to the subshifts
(82, 5), i.e., the corresponding minimality and with a finite number of ergodic probability
measures.

1.2. Main results

As before fix an irreducible permutation
7:{1,2,...,n}—>{1,2,...,n}

and letE (r) = {E4:[0,1) — [0, 1): ac A,}. Identify the metric spaced, andE () by
the homeomorphisme A, — E; € E ().

Given w € X, and an injective map/:{1,2,...,n} — R, consider the potential
V(o) :=(V(w))) jez and the operatoHy , as in (1).
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Theorem 4. GivenV as above, there is a dense subiBat E () such that

(i) EachEa € D is minimal and aperiodi¢i.e., no sequence iz is periodiq;
(if) For eachEq € D the spectrum ofy () in (1) is the same for allv € §25;
(iii) ForeachEj, € D the corresponding Schrodinger operat¢t3with potentialV (¢ (x))
has pure singular continuous spectrum for aces [0, 1).

Corollary 5. GivenV as above, there is a dense sub®et- E(;r) such that, for each
Ea € D, the setl; C £25 for which Hy () has pure singular continuous spectrum for any
w € Iy is adensdss andvy(I3) = 1 for some ergodic probability measurg over £2;.

Remark 6. According to Gottschalk’s theorem [6,14] the sequenceR@{rare almost pe-
riodic if and only if £25 is minimal; therefore, the spectral results presented above refer to
an (aperiodic) class of almost periodic Schrddinger operators.

Remark 7. Forn =2 andn (1, 2) = (2, 1), there is only one discontinuity poiag € [0, 1),

the system is reduced to rotations of the circle by the afgle a1) and the potentials

25 are the Sturmian sequences [2,3], which take just two values and encompass the well-
known Fibonacci substitution sequence [14,17]; therefore, the potentials generated by IETs
are natural generalizations of Sturmian potentials—which have become standard models
of quasicrystals. However, it is important to underline that the dynamics foB can be

richer than the Sturmian case and it is not at all obvious which spectral results generalize
for such larger class.

Remark 8. From the proofs it is clear that does not need to be injective; it is enough to
require that the potential(w), w € §25, are not periodic.

The main parts of the proof of this theorem amount to exclude eigenvalues a.e. and ab-
solutely continuous spectrum, and those are the contents of Sections 2 and 3, respectively;
some arguments are well known, but a number of details is included for convenience of the
reader. Before going into details, this section finishes with some related open problems.

(1) Does the complement @ above lie in a set of Lebesgue measure zero?

(2) DoesD contain IETs with more than one ergodic probability measure? Masur [13] has
shown that a.eE, is uniquely ergodic.

(3) What is the Lebesgue measure of the spectrum of such operators?

(4) For which E4 the spectrum ofd,, is pure singular continuous for all € £2,? What
about the spectrum dip,)?

2. Absence of point spectrum

The discussions in this and next sections will be restricted to poteatials:, (or
suitable subsets of it). This will cause no loss, since in Lemmas 9, 18, and 19 the exact
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values of the potentials are not relevant and the fundtiofi, 2, ..., n} — R is supposed
to be injective.

An important tool to exclude eigenvalues for a given operdigt w € X, is the
Delyon—Petritis version of an argument of Gordon [5], which utilizes local repetitions and
can be stated as follows.

Lemma 9 [4]. If for givenw € X, there exists a sequenge— oo such that
Wj—ki =®j = Oj+k

forall 1 < j <k;, then the Schrédinger operatéf,, has no eigenvalues.

Given an irreducible permutation, the idea is to construct a dense suli3et E (1) so
that, for eacla e D, Lemma 9 applies té1,,, » = ¢a(x), with x in a set of total Lebesgue
measure if0, 1).

Proposition 10. There is a dense subsBtC E () such that eactE, € D is (aperiodig
minimal and, for a.ex € [0, 1), the codingpa(x) satisfies the hypotheses of Lem@rend
S0, the operatoHy, ) has empty point spectrum.

The proof of Proposition 10 will follow after a series of suitable remarks concerning
IETs. The length of a factoB € W,, will be denoted by B|; the sameaJ/ will designate
open sets of botht, and E (7). It will also be convenient to usk to indicate Lebesgue
measure ovelo, 1).

Let j, k € Z with j < k, and suppose thdtc [0, 1) is a nonempty interval (which may
be reduced to a point) such that, for all integet [, k], Ei|; is continuous; then the
sequence

[Aa(EA(D), Aa(ESTHD)), ..., Aa(EE(D))
will be said to be theE-itinerary of I associated tdj, k].

Definition 11. Givena e A, and B € W,,, a nonempty interval C [0, 1) (which may be
reduced to a point) is said to be Bftypefor Ea € E(rr) ifforall i € {—k, —k+1,..., 2k},
wherek = |B|, E|; is continuous,Aj, restricted toE; (1) is constant and

B =the E4-itinerary of I associated tp—k, 0]

=the Eg-itinerary of I associated t0, k]
=the E4-itinerary of I associated tfk, 2k].

Fora= (ao, a1, ...,a,) € A, asubinterval of [0, 1) is said to beE,-periodicof period
keN,k>1,if

(al) Eals, E2|;, ..., Ek~1|; are continuous and the intervals Ex(1), ..., EX=1(1) are
pairwise disjoint, and

(a2) EE|; is the identity map off; in particular, every € I is Ea-periodic with (mini-
mum) periodk.
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Notice that ifx is an E5-periodic point of period, thenx is of B-type, whereB is the
Eg-itinerary ofx associated tg0, ¢].

The following lemma collects some useful facts about rational IETs and since its proof
is rather simple it will be omitted.

Lemma12.If a= (ag, a1, ..., an) € A, NQ"11, i.e., E4is rational, then

(b1) TheEa-saturated set ofag, a1, . .., a,—1}, thatis

Sa = U Eg({ao, ai,...,an-1}),
keZ

is an Eg-invariant finite set

(b2) Every connected component[6f 1) \ S is an E-periodic interval therefore, there
exist positive integeraa, M5 such that every € [0, 1) is Eg-periodic and its period
belongs tdma, Mj];

(b3) For everye > 0, there exist$ = §(¢) > 0 such that.(Ns(S3)) < €, whereNs(S3) :=
{x €[0,1): Iy € {1} U S5 with |x — y| < 8}; notice that if0 < § is small enough, then
Ns(Sa) is Eg-invariant.

Leta= (ag, a1, ...,an) € A, NQ"L. A positive integers is said to be aseparating
integer foraif Vi € {0, 1, ..., n — 1}, the E5-itinerary ofa;, associated tfl, s], is disjoint
of {ag, a1, ...,a,_1}. Let

1 .
0<s< 1—6m|n{|x—y|: x,y €{1}U 8, x;éy};
thens > 0 is astability constant for the tripléa, 8, s) if § < & and, for allb € A,,, with
|a— bl < é, the following are satisfied:

e Let] be an arbitrary connected componenit®fl) \ Ns(Sa) and letr be itsE5-period;
then[ is of B-type for Ep, whereB denotes thé g-itinerary of I associated t@0, z];
e s is a separating integer fax.

Another simple and important approximation properties are as follows.

Lemma 13. Lets € N. Anya € A, can be arbitrarily approximated bip € A,, andc e
A, NQ"* such thatEy, is minimal and every orbit of is periodic having period greater
thans, which is also a separating integer for

Proof. By Lemma 1(a) any € A, can be arbitrarily approximated bye A,, such that

Ep is minimal. Thisb € A,, can be arbitrarily approximated loye A, N Q"+l As E.is
rational, all its orbits are periodic; the requirement on the period of its orbits is fulfilled by
selectingne >s. O

Lemma 14. Leta= (ag, a1, . .., an) € A, NQ" 1 and lets be a separating integer fa.
Let0 < 6§ < (1/16) min{jx — y|: x,y € {1} U Sa, x # y}. Then, there exists a stability
constant for the triplga, 3, s).
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Proof. As s is a separating integer fa, it follows from the definition of IET that if
b= (bo, b1, ...,b,) € A, is close enough ta, thenv(i, j) € {1,2,...,n} x {1,2,...,s},
Eé (b;) depends continuously dne A,. We conclude that ib € A, is close enough te,
thens is a separating integer fdx.
Now, let[c, d] be a closed interval which is a connected componef®,df) \ Ns(Sa),
then theEs-orbits ofc andd are periodic and they are ad aistance of1} U S5. Therefore,
we may apply the same argument above to the endpoints of the (finitely many) closed
intervals which are connected componenf®fl) \ Ns(Sa) so to obtain that there exists a
stability constans for the triple(a, 8,s). O

Definition 15. Consider factor®81, B2 € W,,. ThenB; precedesB,, denoted byB1 < B>,
if |B1| < |B2| and the first B1| entries of B, coincides withBj.

Proposition 10 follows immediately from the next one, where the existence of tiie set
will be proven.

Proposition 16. Let U be an open subset & (). There exists a minimal IEEa, € U
such that for a.ep € [0, 1) there exists a sequen(:Bi‘”);?il in W, such that

(c2) Foralli €N, pis of B -type for Eq,.

Proof. Fix, once for all, 0< ¢ < 1/9. Leta; € A, N Q"1 N U. Selects; > 0 such that
{be A,: |b—ai1] <281} c U and

(1.1) A(Nsy(Say)) <€/2;
(1.2) 61 < (1/16)minflx — y|: x,y € {1} U Say, x # y}.

Let s; be a separating integer faf and choosé; > 0 so that
(1.3) 81 > 0 is a stability constant for the tripl@, 81, s1).

In this proof, it will be selected inductively (among other sequences) a seq&te
in A,NQ"*1, a sequence of separating integer$; -, and sequences of positive numbers
(62, and(S,»)f?il. The elementsy, s1, 81, andd; have already been selected.

The following notation, related to the sequerieg)?°,, will be used throughout this
proof:

e If p €0, 1) andz denotes it¥,, -period, then

B/ =the Eq, -itinerary of p associated t¢0, 7].
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Now,

(2.1) Selechy € A, NQ" 1 s0 thatma, > M,, (see item (b2) of Lemma 12), the separat-
ing integers, for ay is greater than; (see Lemma 13) and

a2 —ar) < 2
2 —adl| < —,
2

(2.2) Select 0< 67 < §1 S0 thatr(Ns,(Sa,)) < €/4 and
1 .
82 < 1—6mln{lx —yli x,y €{1}U S, x #y};
(2.3) Select a stability constant9s, < 8, for the triple(ay, 82, 52).

Using the fact thag is a stability constant fofag, 81, s1), one obtains that ifa;)2 5 is
an arbitrary sequence i, N Q"1 such that, foralf =2, 3, ...,

82
l[ai41—ai| < >

then (a;)72, is not only a convergent sequence but also|éas— ai| < 81) its limit ag
belongs toU. Moreover, by (b2) of Lemma 12 and (2.1)—(2.3), it follows that

(2.4) If p €10, 1)\ {Ns,(Sa;) U N5, (Sa,)} then
e BY < BY;
e Foralli=0,1,2,..., pisof B-type for Ey;;
e Foralli=0,2,3,... (i #1), pis of BY-type forEy;
e s iS a separating integer f@a,;
(2.5) The following are true:
o A([0,1) \ {Ns,(Sa;) U Ns,(Sap)}) = 1—€/2 —€/4;
o A([0, 1)\ N5,(Sa,)) =21 —¢€/4.

Suppose inductively that;_1 € A, NQ"*1, 5;_1 €N, 8;_1 > 0, ands;_1 > 0 have
been selected. Now proceed to

(k.1) Selecty € A,NQ"*1 sothatn,, > My,_,, the separating integeg for a is greater
thans;_1 and
Sk—l'
2 9

(k.2) Select O< 8; < 8;_1 so that

lag —ax—1] <

€
and

1 .
8k < 1—6m|n{|x—y|: x,ye{l}U Sy, x;éy};



578 C.R. de Oliveira, C. Gutierrez / J. Math. Anal. Appl. 283 (2003) 570-581

(k.3) Select a stability constant95; < & for the triple (ay, 8k, si).

If (a,»)f?ikJrl is an arbitrary sequence i, N Q"+ such that, forali =k, k+1,...,

Sk
l[ajr1—ai| < >

then, by what was said abov&y);2, is not only a convergent sequence but also its limit
ap belongs taU. Also, by (b2) of Lemma 12 and (k.1)—(k.3), one obtains that

(k.4) If pe[0,1)\ U, N5, (Sa) then
e B <BY <.--<B/;
e Foralli=0,1,2,..., pisof B -type for Ey;;
e Foralli=0,23,..., pisof B-type for Ey;;

e Foralli=0,k,k+1,..., pisof B/-type for Eg,;
e s5; is a separating integer fdfy,.
(k.5) The following are true:
o M0, D\ UF N5, (Sa)) =1 —e/2—€/d— - —e/2k;
o A(0. D)\ Uiy N5, (S2)) > 1—e/d— - —e/2;

o A([0,1)\ N5, (Sa)) > 1—¢/2.

In this way the selection of the sequencas;®,, (si)7°4, (8:)724, and(S,-)l?‘il is com-
pleted. Recall thas, — ag € U ands; — oo. By using propertie$(k.4)}7° 1 —{(K.5)}72 4,
it follows that, for allp € [0, 1) \ ;24 N5, (Sa,) and for alli =1, 2, ...,

p is of B/ -type for Eq;

Bf-<B§<---<B,f<---;

A0, D\ U2y N5, (Sa)) = 1—¢;

If ag = (o, a1, - . ., &), the Eg,-orbits throughwo, o1, . . ., a,—1 are pairwise disjoint.

In other words, this proposition is true for a set of points having Lebesgue measure at least
1 — €. Notice that by Lemma 1(b) 4, is minimal.

Now fix an arbitrary positive integer. By using propertie$(k.4)}72 —{(k.5}2 , one
gets that, for alp € [0, 1) \ U2, N5, (Sa) and foralli =s,s +1,...,

e pis of BY-type for Ex;
° Bsp<Bf+l<~~;
o A([0, 1)\ U, N5, (Sa)) = 1—e/2°7 L.

Therefore, this proposition is true for a set of points having Lebesgue measure at least
1—¢/2°~1, wheres is an arbitrary positive integer. That is, the result holds for a.e.
[0,1]. O



C.R. de Oliveira, C. Gutierrez / J. Math. Anal. Appl. 283 (2003) 570-581 579

3. Absence of absolutely continuous spectrum

The absence of absolutely continuous spectrum will be gotten as a combination of two
known results, gathered in what follows in the form of lemmas, and an observation from
Section 2. In summary, ergodicity, minimality, aperiodicity, and finite valued are the key
ingredients to exclude absolutely continuous spectrum. This section aims at concluding the

Proposition 17. Let D be as in Propositiorl0. If E5 € D, then H, has no absolutely
continuous spectrum for adb € £2;.

Lemma 18[11]. If u is an ergodic probability measure ovér,, then the set of potentials
o for which H,, has no absolutely continuous spectrum has full meagyranless the
support ofu is periodic.

Lemma 19 [12]. The absolutely continuous spectrum(dj is constant over minimal sub-
sets ofy,.

Now the proof of Proposition 17 is immediate. LBt be as in Proposition 10. For
eachE, € D the setf2, is aperiodic and carries an ergodic measure, so by Lemma 18
there existso € 2, such thatH,, has empty absolutely continuous spectrum; sif2gds
minimal (Proposition 10 and Lemma 2), the conclusion of Proposition 17 follows straight
by Lemma 19.

4. Proof of the main results

First it will be discussed how Corollary 5 follows from Theorem 4l4lfs the unitary
operator representation of the shiftf(Z), i.e., (UY)j =¥ j_1, then operator (1) satisfies
the covariance relation

Hs(w)y =UH,U",

which implies
Lemma 20. The spectrum of1) is constant over orbits itt),.

Let D be as in Theorem 4 and fdf; € D let I'; be as in the corollary, i.e., the sub-
set of 25 for which the operator (1) has pure singular continuous spectrum. According to
Theorem 4(iii),Hy(x) has pure singular continuous spectrum for a.e.[0, 1); since the
Lebesgue measure is a convex sum of finitely many (probability) ergodic measures, it fol-
lows that with respect to at least one of théfy, .y has pure singular continuous spectrum
a.e.; to the latter measure corresponds an ergodic probability measaver 25, with
va(I3) = 1, that works for the corollary.

It remains to show that such s&} of potentials is a dens€s. For this purpose, an-
other auxiliary result will be used; it belongs to the set of results known as “wonderland
theorem.”
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Lemma 21 [16]. Consider a complete metric space of bounded self-adjoint operators
whose convergence in the metric implies strong operator convergence. Then, the subset
of such operators with empty point spectrum i§ a

By identifying the metric spacé’, with the set of operatorgH,: w € X,} one sees
that two operators are at a small distance only if the corresponding potentials agree for a
large block containing the position zero. Then, from

| Hyor — Hor 2 = Y |0 — ;|12
JEZ
if a sequence of potentiads® — w, the strong operator convergeniégy, — H,, follows.
Hence, Lemma 21 is applicable to closed subsets of the metric $pacew € X}, in
particular tos2;.

By Proposition 17 the sef; coincides with the set of operatofs,, w € 25, with
empty point spectrum; so, by Lemma 21, is a Gs, and it is left to show that it is also
dense. By Theorem 4(iii) thereds(x) € £25 such thatHy ) has no point spectrum (hence,
I3 # ¥), and by Lemma 20 the spectrum is invariant offafx), which is dense 2, by
Theorem 4(i). Corollary 5 is demonstrated.

Proof of Theorem 4. LetD be the dense subset#i(r) constructed in the proof of Propo-
sition 16; from such construction each elemenpois minimal and aperiodic, concluding
(i) in the theorem. Assertion (iii) follows directly from Propositions 10 and 17.

Since the convergence i, implies strong operator convergence (as discussed above),
the minimality and Lemma 20 imply (ii), as it is well known that the spectrum (as a
set) does not increase under strong limits (see Theorem VIII.24 in [15]) and so it is con-
stant over minimal sets af’, (this last abstract result seems to have originally appeared
in[17]). O
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