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Fixed Points in Digital Topology
(via Helly Posets)
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Abstract

We extend some of our previous results on fixed points of graph multifunctions
to posets. The posets of most interest here are the (finite) Khalimsky spaces, in
their specialization order. Retracts of Khalimsky spaces coincide with Helly posets.
Notions of convexity can be defined in these spaces, providing the basis for certain
“geometric” fixed point theorems.
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1 Introduction

In studying fixed point properties in digital topology, we have the choice
between two main types of model, namely the graph-theoretic model [10],
and the topological (specifically, Khalimsky space) model [5,6]. In previous
work [12,13,15] we adopted the first model, focusing on fixed point results for
many-valued functions on graphs. (Multifunctions on discrete structures are
useful in approximating, or representing, ordinary continuous functions.)

Here we investigate the second model. Khalimsky spaces may be identified
with posets of a certain kind, since the topology of a Khalimsky space may
be recovered from its specialization order. This is particularly clear in the
present context, where we are concerned almost entirely with finite spaces: a
finite T0 space may of course be considered as a finite poset.

An advantage of working with posets rather than graphs is that we can
take as our multifunctions the usual upper and lower semi-continuous multi-
functions of topology (or domain theory). Thus, there is no need to introduce
any new “power structure”, as we had to do in the graph context [12,13]. Also,
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the fixed points are exact, rather than the “almost fixed points” of [12,13,15].
For our main fixed point result(s), in Section 5, we need to assume that the
multifunctions in question map each point to an image-set which is “convex”
in a suitable sense. A suitable notion is most readily available if the posets
are required to satisfy a certain Helly condition (see Section 2). As mentioned
below, these Helly posets have previously put in an appearance (in computer
science) in studies of subtyping, but this is not our motivation for considering
them here. Rather, the justification for studying them here is the extremely
strong, though hitherto unnoticed, connection between these posets and Khal-
imsky spaces. This key idea of the paper receives its precise formulation in
Section 3: Helly posets are exactly the retracts of Khalimsky spaces.

In Section 4 we adapt to posets a notion which is standard in the theory
of “Helly” metric spaces (that is: hyperconvex metric spaces [1,14]), namely
admissible subsets. An admissible set is simply an intersectioin of (closed)
balls. It provides our notion of convex set, for Helly posets. As mentioned,
Section 5 contains the main result of the paper: every Helly poset has the
fixed point property (FPP) for lower and upper semi-continuous poset mul-
tifunctions which map points to admissible subsets. Section 6 is concerned
with the approximation of continuous real functions by (suitable) functions
between Khalimsky spaces (or Helly posets). In that context, the FPP result
for Helly posets provides a discrete version of Brouwer’s fixed point theorem.

2 Preliminaries

A set S with a distinguished collection C of subsets may be said to have the
(2-) Helly property if, whenever a subset A of C is such that each pair of
members of A has non-empty intersection, then ⋂A �= ∅. In the typical cases
of interest in computer science, S is structured as a graph, a poset, or a metric
space, with a distance function d, and C consists of the (closed) metric balls
BS(x, r).

In some recent applications in semantics [2,11], Helly posets have been used
to model type structure. Like domains, Helly posets are well-suited to this role
because of the wealth of constructions they enjoy: closure under products,
disjoint sums, retracts, various subtype constructions, function spaces, fixed
points and more. (Not all of these constructs have been employed so far in
the semantics literature.)

Of most significance is the fact that, typically, the Helly structures are the
injective objects of the appropriate category. (For a recent discussion of the
significance of injectivity for semantics, see [4].) It may be helpful here to give
some informal explanation as to why we (expect to) have the equation:

Helly = injective.

We consider (undirected) graphs equipped with the usual graph distance.
(This is the simplest case: the pattern of the argument is similar in the
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cases of posets and of metric spaces, but involves certain complications.)

Notice that a graph mapping is a homomorphism (i.e. relation-preserving)
if and only if it is non-expansive with respect to graph distance. Now suppose
that h : G → H is a graph homomorphism into the Helly graph H , and
that G is isometrically embedded (see Section 3 for the exact definition) in
the graph G′. We seek to extend h over G′. Let v be an arbitrary vertex of
G′ −G. For any vertex x of G, abbreviate dG′(x, v) by xv. Then we have, for
any vertices x, y of G, dH(h(x), h(y)) ≤ dG(x, y) ≤ xv + yv. Hence the balls
BH(h(x), xv), BH(h(y), yv) meet. By the Helly property, the entire family of
balls BH(h(x), xv) as x ranges over G has non-empty meet, and we may select
(arbitrarily) a vertex w from this meet to be the image of v. It is easily
seen that in this way we have a graph homomorphism from G ∪ {v} into H .
Repeating the construction, we extend h over G′.
The pattern of the argument is similar in the case of metric spaces, but to

make it go through the Helly property as stated above has to be supplemented
with a certain convexity condition, leading to the notion of a hyperconvex
metric space [1,14]. The argument for posets is again similar; the complication
this time concerns the distance function itself, which cannot be expressed as
a mapping into the reals. We return to this point in a moment.

The distance from x to y in a connected poset is measured by the minimal
(zig-zag) paths from x to y. The complication lies in the fact that, as between
paths of a given length, we have to distinguish the zig-zag which begins with
an upward link from that which begins with a downward link. (For what goes
wrong when we ignore this distinction and take distance simply to be minimal
path-length, see Example 2.2 below.) To be precise, define a code to be a finite
alternating sequence of the symbols +,−. Then we say that x, y are related
by the code σ = (s0, s1, . . . , sk−1) if there exists a path x = x0x1 · · ·xk = y of
P such that, for all i with 0 ≤ i ≤ k − 1, xi ≤P xi+1 if si = + and xi ≥P xi+1

if si = −.
By repeating points where necessary in a given path we see that if xσP y,

and the cardinality #σ < #τ , then xτP y. The only obstacle to taking distance
to be minimal path-length thus lies in the fact that, for each k > 0, we have
two incomparable codes of length k. This leads to the idea of expressing
dP (x, y) as a pair of integers. The pairs in question are ordered in a certain
lattice (of width 2). For a detailed presentation of this idea, see [11].

In favour of codes (as against integers, or integer-pairs), it may be pointed
out that they can be used to handle “distance” in digraphs just as easily as
in posets. In any case we shall define the σ-ball with centre x (x ∈ P ) to be
the set

BP (x, σ) = {y ∈ P | xσP y};
that P is Helly then means that it is 2-Helly with respect to these balls.

Example 2.1 Every finite lattice is a Helly poset. Indeed, to check that a
lattice P is Helly, we need only consider the codes + and −, since a ball whose
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a b

c

Fig. 1. W

“radius” is a code of length greater than 1 coincides with P . Thus we only
have to consider balls which are, in fact, up-sets or down-sets of individual
points of P . Let, then, A be a collection {↑P a1, . . . , ↑P ak, ↓P b1, . . . , ↓P bl}
of subsets of P which meet in pairs, where ↑P x = {y ∈ P | x ≤P y},
↓P x = {y ∈ P | y ≤P x}. This implies in particular that the set of ai has a
(least) upper bound, and also that each bj is an upper bound of all the ai. So
we can take the least upper bound

∨
1≤i≤k ai as the witness that P is Helly.

Example 2.2 The poset W in Fig. 1 is a Helly poset (in fact, a Khalimsky
space �� ×��, see Section 3). However, if we were to use minimal path-
length as our poset “distance”, we would have to say that W is not Helly:
consider the collection of balls A = {BW (x, 1) | x = a, b, c}. It is clear that
each pair of members of A has non-empty intersection. However, ⋂A = ∅.
Finally, we review briefly the notion of a Khalimsky space (which rep-

resents one of the two main approaches to digital topology). This may be
described either as a (partially) ordered structure, or as a topological space.
The description as a partial order is most concisely achieved by saying that
it is the face order of cells resulting from a rectilinear cubical subdivision of
a cube in Rn. Specifically, an one-dimensional Khalimsky “space” K is ob-
tained by dividing an interval [k, l] (k, l ∈ N, k < l) into the cells (i, i+ 1) for
k ≤ i < l and {j} for k ≤ j ≤ l, the ordering of K being given by: c ≤ c′ if c
is an end-point of the interval (i.e. cell) c′. (A more formal definition appears
in the next section.) Topologically, a Khalimsky space is given as the quotient
of a subdivided cube C of Rn, by the equivalence relation ≡, where:

x ≡ y ⇔ x, y belong to the same cell of C.

3 Khalimsky spaces and Helly posets

A (binary) code is a finite sequence (s0, . . . , sk) of elements of the set {+,−}.
For codes σ and τ , σ is said to be a subcode of τ , denoted by σ ≤Σ τ (called
Higman ordering), if σ is a subsequence of τ , where Σ is the set of all codes
together with the null code ε.

It is clear that every path Π = x0 · · ·xk of the finite poset P can be
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associated with a minimal code σ = (s0, . . . , sk−1), namely

si =

{
+, if xi ≤P xi+1,
−, if xi ≥P xi+1,

for all i, 0 ≤ i ≤ k− 1. A code τ is said to be associated with Π if and only if
σ ≤Σ τ (thus the null code ε is associated with every singleton). For any code
σ ∈ Σ and any pair of points x, y in P , we write xσPy if there exists a path
Π = x · · · y of P such that σ is associated with Π. The σ-ball of the point x
in P , denoted by BP (x, σ), is the subset of P which contains all points z ∈ P
such that xσP z. For any finite poset P , denote by B(P ) the set of all σ-balls
of P , i.e., B(P ) = {BP (x, σ) | ∀x ∈ P, ∀σ ∈ Σ}:
Definition 3.1 ([9]) The poset P is said to be Helly if P is finite connected
and B(P ) satisfies the Helly property.
A map f : Q → P of posets is said to be non-expansive (with respect to

codes) if, for any code σ ∈ Σ and x, y ∈ Q:
xσQy ⇒ f(x)σPf(y).

Clearly, any non-expansive map is monotone, but not conversely. A poset
P will be called injective if the following holds: for any poset Q and subset
A ⊆ Q, any non-expansive map from A to P can be extended to a non-
expansive map from Q to P . Then we have the following:

Theorem 3.2 ([9, Quilliot]) A finite poset is injective if and only if it is
Helly.

Some care is needed in interpreting the injectivity condition involved here.
The mapping f : A→ P , whose extension over Q is sought, is required to be
non-expansive with respect to codes inherited from Q. For example, let Q be
the 4-element Boolean algebra {⊥, t, f,�}, with A = {⊥, t, f}. The identity
map id : A → A obviously cannot be extended to Q. The non-expansiveness
condition fails because t(+−)f holds in Q but not in A considered as a poset
in its own right.

A subset A of the poset P is said to be a retract of P if there exists an
order-preserving map r : P → A, called retraction, such that r(a) = a for all
a ∈ A. We say that A ⊆ P is isometrically embedded in P if the code-distances
inherited from P coincide with those derived from the poset structure of A;
that is, if for all codes σ ∈ Σ, and x, y ∈ A:

xσAy ⇔ xσP y.

It is easy to see, in particular, that if A is a retract of P , then it is isometrically
embedded in P . At the same time a retraction mapping is necessarily non-
expansive. From these facts, and related ones about products (and projection
maps), we deduce by a standard argument:

Theorem 3.3 The class of finite injective posets is closed under retracts and
products.
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We give an original (topological) definition of Khalimsky spaces: the so-
called Khalimsky (integer) line is defined to be the set of all integers Z with its
natural order together with its interval alternating topology defined by sets of
types (−∞, 2i], [2j,∞) for i, j ∈ Z (or alternately (−∞, 2i−1], [2j−1,∞) for
i, j ∈ Z) as a subbasis. The Khalimsky (digital) arc then can be defined as a
finite connected subspace of the Khalimsky line. The n-dimensional Khalimsky
space is a topological product of n Khalimsky arcs [5,6].

Using the specialization order of a Khalimsky space, we can view Khalim-
sky space as a poset. For example, Fig. 3 shows a 2-dimensional Khalimsky
space. In the following we denote Kn

m as the n-dimensional Khalimsky space
such that Km, the m-Khalimsky arc, has m open points and m + 1 closed
points for m ≥ 1 .
For any poset P , we know that the comparability graph of P , denoted

by cmp(P ), is the graph cmp(P ) = (V,E) with point set V = P , such that
(x, y) ∈ E in cmp(P ) if and only if x ≤P y or y ≤P x in P . A fence
(or zig-zag) is a poset whose comparability graph is a path. Any fence is
evidently Helly, and therefore (by Theorem 3.2) injective. What is interesting
for us in this is that the fences of poset theory can be identified with the one-
dimensional Khalimsky spaces (arcs) of digital topology. Thus Theorem 3.3
has as a corollary:

Corollary 3.4 Every retract of a Khalimsky space is, in its specialization
order, a Helly poset.

The converse of this (as is well-known) is also true. The key point in the
proof of this converse is the following Theorem 3.5. We have not been able to
find any detailed exposition of this result (which is of independent interest for
digital topology) in the literature, so we provide here some of the details.

We begin with an application of Theorem 3.2 which will be useful in the
proof: The ordering of codes is the Higman ordering (so that σ ≤Σ τ if τ
can be obtained from σ by prefixing, inserting or suffixing instances of + and
−). Let P be a finite connected poset, and x, y ∈ P . Consider the geodesics
between x and y, that is, the zig-zags whose code is minimal. Two cases are
possible: either all the geodesics have the same code, or two distinct codes σ, σ ′

are associated with these geodesics, where σ′ arises from σ by interchanging
+,−. Let us take the second case, and assume the cardinality #σ = #σ′ = k.
Then it is easy to find in the Khalimsky space K = K2

�k
2
� two points u, v and

geodesics Π = uw1w2 · · ·wk−2wk−1v, Π
′ = uz1w2 · · ·wk−2zk−1v, having the

codes σ, σ′ associated with them. By assigning x �→ u, y �→ v we determine an
order isomorphism of the geodesics Π,Π′ onto these two geodesics in K; thus
a map h : Π ∪ Π′ → K. It is clear that this map h satisfies the condition of
Quilliot’s theorem. Hence we may extend to a morphism from P to K.

Theorem 3.5 Every finite connected poset may be isometrically embedded
into a Khalimsky space.
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(0, 2) (2, 2)

(1, 1) (1, 3)

(0, 1) (2, 3)(1, 2)

Fig. 2. X

Proof. Let the diameter (maximal length of geodesic) of the poset P be d,
and let K be the Khalimsky space Kn

m, where n = 2·(#P
2 ) and m = �d

2
�. With

each pair x, y of distinct points of P we associate a two-dimensional Khalimsky
spaceKxy, a product of two components ofK. (In case all geodesics between x
and y have the same code, it suffices to take an one-dimensional Kxy.) By the
preceding remarks we have a projection morphism πxy : P → Kxy, isometric
on the set {x, y}. Combining all these projections, we get an isometry from
P into K. ✷

Corollary 3.6 Every Helly poset is a retract of a Khalimsky space.

Proof. In fact, this corollary is just a special case of Theorem 3.2: Let P
be any Helly poset. From Theorem 3.5, P can be isometrically embedded
into a Khalimsky space, say K. Thus then, from Theorem 3.2, the identity
map id : P → P has an extension r : K → P . The extension r is clearly a
retraction of K onto P . ✷

Summarizing, we have:

Theorem 3.7 The Helly posets are exactly the retracts of the Khalimsky
spaces.

Example 3.8 As for an illustration of Theorem 3.7, it is easy to check that
the poset X in Fig. 2 is a retract of the Khalimsky space K2

2 in Fig. 3. Clearly,
X is a Helly poset.

4 Admissible subsets

In this section, we define a special collection of subsets called “admissible
subsets” for any finite poset P , which contains B(P ) and all finite intersections
of elements of B(P ). We show that every admissible subset of a finite poset
P is order convex, and especially, the set of admissible subsets of P forms a
graph convexity if P is Helly.

Definition 4.1 The admissible subsets of the finite poset P are the sets of
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the form ⋂
i

BP (xi, σi), xi ∈ P, σi ∈ Σ.

Example 4.2 In the case of a lattice (Example 2.1), the admissible subsets
coincide with the intervals of the lattice P .

The jth projection prj :
∏

1≤i≤n Pi → Pj, from the product
∏

1≤i≤n Pi =

P1 × · · · × Pj × · · · × Pn to its j
th factor Pj, is the surjective order-preserving

map satisfying prj((x1, . . . , xj , . . . , xn)) = xj for all j, 1 ≤ j ≤ n.
Lemma 4.3 Every admissible subset of a finite product of finite posets is equal
to the product of its projections.

Proof. Note that, given x = (x1, . . . , xn), y = (y1, . . . , yn) of a finite product
of posets P =

∏
1≤i≤n Pi, clearly x ≤P y if and only if xi ≤Pi

yi for each
i, 1 ≤ i ≤ n. Since the poset relations are reflexive, therefore it is easy to
check that, for any ball BP (x, σ) we have

BP (x, σ) = BP1(x1, σ)× · · · ×BPn(xn, σ)

= pr1(BP (x, σ))× · · · × prn(BP (x, σ))

=
∏

1≤i≤n pri(BP (x, σ)).

(1)

Let A be an admissible subset of P . It is clear that A ⊆ ∏
1≤i≤n pri(A).

Thus, we show the converse: Since A is admissible, A can be represented as
a finite intersection of finite balls. Assume that A =

⋂
j∈J BP (zj , σj) for some

finite index set J . Hence∏
1≤i≤n pri(A) =

∏
1≤i≤n pri(

⋂
j∈J BP (zj, σj))

⊆ ∏
1≤i≤n

⋂
j∈J pri(BP (zj, σj)).

(2)

Let w = (w1, . . . , wn) be any point of
∏

1≤i≤n

⋂
j∈J pri(BP (zj , σj)). It

is clear that wi ∈
⋂

j∈J pri(BP (zj , σj)) for each i, 1 ≤ i ≤ n; hence wi ∈
pri(BP (zj, σj)) for each j, j ∈ J . From Eq. 1, we have w ∈ BP (zj , σj) for
each j, j ∈ J . Thus w ∈ ⋂

j∈J BP (zj , σj) = A. Then from Eq. 2, we have∏
1≤i≤n pri(A) ⊆ A. ✷

Lemma 4.4 Every admissible subset of a finite poset is order convex.

Proof. For this, we need only to point out that every ball is an up-set, a down-
set, or a singleton. In more detail: for any non-null code σ ∈ Σ∗ = Σ − {ε},
define the function tl : Σ∗ → {+,−} by

tl(σ) =

{
+, if σ = ρ+ for some ρ ∈ Σ,
−, if σ = ρ− for some ρ ∈ Σ.

It is clear that, for any x ∈ P and any non-null code σ ∈ Σ∗, BP (x, σ)
is, respectively, an up-set if tl(σ) = +, and a down-set if tl(σ) = −. Since
BP (x, ε) = {x}, therefore every admissible subset of P is the intersection of
singletons, up-sets and down-sets of P , hence must be order convex. ✷
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Evidently, order convex sets of connected posets need not themselves be
connected. But we do at least have the following:

Lemma 4.5 Every admissible subset of the Helly poset is connected.

Proof. If σ = (s1, . . . , sk) is a non-null code, we denote by σ
−1 the code

(−sk, . . . ,−s1), e.g., (+− +)−1 = (−+ −) and (− +−+)−1 = (− +−+). If
the cardinality of σ is k ≥ 1, for any j, 1 ≤ j ≤ k, let j|σ denotes the subcode
(s1, . . . , sj), and σ|j denotes the subcode (sk−j+1, . . . , sk), e.g., 4|(+−+−+−
+−) = (+−+−), (+−+−+−+)|3 = (+−+), and ((+−+−+−+)|3)−1 =
(−+−).
Suppose A is an admissible subset of the Helly poset P which is not con-

nected. Since A is admissible, A can be represented as the intersection of
finite balls of P , we assume that A =

⋂
i∈I BP (xi, σi) for some finite index

set I. From the assumption that A is disconnected, and P is finite connected,
there exist x, y belonging to different components of A such that the codes of
geodesics between x and y are minimal. Let τ be one of the minimal codes. We
define two balls: B1 = BP (x, �#τ

2
�|τ) and B2 = BP (y, (τ |�#τ

2
�)−1). Clearly,

any two elements of the family of balls B = {BP (xi, σi) | i ∈ I}∪{B1, B2} are
intersection non-empty. However, it is easy to check that

⋂B = ∅. Hence P
is not Helly: contradiction ✷

Recall that a convexity on a non-empty set X is a family C of subsets of
X satisfying

• ∅, X ∈ C,
•

⋂
S ∈ C for any S ⊆ C,

•
⋃
T ∈ C for any chain T ⊆ C.

The ordered pair (X, C) is called a convexity space. A graph convexity space [3]
is an ordered pair (G, C) formed by a connected graph G = (V,E), and a
convexity C on V such that (V, C) is a convexity space satisfying the additional
condition:

• C induces a connected subgraph of G for any C ∈ C.
Let H(P ) denote the collection of admissible subsets of the finite poset P .

From Lemma 4.5 and some simple observations, it is easy to check that we
have

Proposition 4.6 (cmp(P ),H(P )) is a graph convexity space if P is Helly.

We remark here that in [14,15], we calledH(G) the neighbourhood convexity
of the Helly graph G.

From the original definition of one-dimensional Khalimsky space (Khal-
imsky arc, see [5,6]), we know that Km also inherits the natural order from
Z. Thus, we may consider Kn

m as a point lattice under the usual pointwise
order ≤Nn , in which every point x of Kn

m is represented with n coordinates
(x1, . . . , xn), all integers between 0 and 2m (see Fig. 3 for an example). Then,
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Fig. 3. A two-dimensional Khalimsky space K2
2 with coordinates

if x, y ∈ Kn
m such that x ≤Nn y, we write [x, y] for the segment

[x, y] = {z ∈ Kn
m | x ≤Nn z ≤Nn y}.

Lemma 4.7 Every admissible subset of the Khalimsky space is a segment, but
the converse is not true.

Proof. The first part of the assertion is just a direct consequence of Lem-
mas 4.5 and 4.3. On the other hand, it is easy to check that the segment
[(0, 0), (4, 0)] in Fig. 3 is not an admissible subset of K2

2 . ✷

5 Fixed point properties for Helly posets

In this section, we introduce (poset) multifunctions which can be regarded as,
respectively, lower-semi continuous, upper-semi continuous, and continuous
multifunctions in the sense of topological spaces (or domain theory). We
show that every Helly poset has the fixed point property for both lower and
upper semi-continuous multifunctions which map each point to an admissible
subset of the poset.

Let P,Q be posets. By a multifunction f : P → Q we understand a
mapping that assigns to a point x ∈ P a non-empty subset f(x) ⊆ Q:
Definition 5.1 The multifunction f : P → Q is said to be lower semi-
continuous if

x ≤P y ⇒ ∀x′ ∈ f(x), ∃y′ ∈ f(y), x′ ≤Q y
′.

f is upper semi-continuous if

x ≤P y ⇒ ∀y′ ∈ f(y), ∃x′ ∈ f(x), x′ ≤Q y
′.

Finally, f is said to be continuous if f is lower semi-continuous and upper
semi-continuous.
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It is clear that each class of multifunctions is closed under compositions.
Also, in case f is single-valued, each of the three conditions reduces to mono-
tonicity.

Recall that a (closed) n-simplex Sn is the convex hull of n + 1 affinely
independent points {v0, . . . , vn} in Rm, for m ≥ n; the points are called the
vertices of the simplex. A k-face of Sn, k ≤ n, is a k-simplex all of whose
vertices are vertices of Sn. For i ∈ N (= {0, 1, . . . , n}), let Sn

i denotes the face
of Sn opposite the vertex vi. A triangulation T of Sn is a finite collection of
(distinct) n-simplices satisfying: (1) the n-simplices cover Sn; and (2) if two
n-simplices meet, their intersection is a common face. Then Sperner’s lemma
applies in the form: Let T be a triangulation of Sn with each vertex of T
labeled with an integer in N such that no vertex in Sn

i is labeled i. (Such a
labeling is called Sperner or admissible.) Then there is a simplex in T whose
vertices carry all the labels in N (called a complete-labeled simplex).

Definition 5.2 A graph G = (V,E) is said to be an n-dimensional triangu-
lation graph if, there exists a triangulation T of Sn with VT the 0-face set and
ET the 1-face set such that V = VT and E = ET .

The Sperner lemma for simplicial complexes can be reformulated for tri-
angulation graphs: Any Sperner labeling of an n-dimensional triangulation
graph contains a complete-labeled clique (simplex).

Lemma 5.3 cmp(Kn
m) is an n-dimensional triangulation graph.

It is clear that every point of cmp(Kn
m) carries the same coordinate repre-

sentation as it is in Kn
m. We say a function L : cmp(K

n
m)→ 1̇n from the point

set of cmp(Kn
m) to the n-product of 1̇ = {0, 1}, 1̇n, is a labeling of cmp(Kn

m)
if

Li(x) =

{
0, xi = 0,
1, xi = 2m,

for all i, 1 ≤ i ≤ n, where x = (x1, . . . , xn) and L(x) = (L1(x), . . . , Ln(x)).

Lemma 5.4 Let L be any labeling of cmp(Kn
m). Then there exist maximal

cliques (simplexes) ∆ and Λ, where clearly #∆ = #Λ = n+ 1, such that

1. (0, . . . , 0) ∈ L(∆), and for every coordinate i, 1 ≤ i ≤ n, there exists an
individual point x ∈ ∆ such that Li(x) = 1,

2. (1, . . . , 1) ∈ L(Λ), and for every coordinate j, 1 ≤ j ≤ n, there exists an
individual point y ∈ Λ such that Lj(y) = 0.

Proof. Similar to the proof of Theorems 4.4 and 4.5 in [15] (where we used
Sperner’s lemma to prove our theorems). ✷

Let f : P → P be a self-mapping multifunction of the poset P , and x
any point of P . Then x is said to be a fixed point of f if x ∈ f(x). Given
posets P and Q. Let φ be a property of subsets of Q, then the multifunction
f : P → Q is said to be a φ-multifunction if f sends points of P into subsets
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of Q satisfying φ. Finally, the poset P is said to have the fixed point property
(FPP) for φ-multifunctions if every φ-multifunction of P has a fixed point.

Lemma 5.5 Kn
m has the FPP for lower semi-continuous multifunctions which

map each point to a segment of Kn
m.

Proof. Let f : Kn
m → Kn

m be any self-mapping lower semi-continuous mul-
tifunction which maps each point of Kn

m to a segment of Kn
m. We define the

multifunction g : Kn
m+1 → Kn

m+1 by x �→ f(x) if x ∈ Kn
m, and x �→ f(y) if

x ∈ Kn
m+1 − Kn

m, where y ∈ Kn
m such that pri(y) = pri(x) if pri(x) ≤ 2m,

pri(y) = pri(x) − 2 if pri(x) > 2m. The extension of g in this way to Kn
m+1

enables some tedious case analysis to be avoided, later on.

It is easy to check that g is a lower semi-continuous multifunction which
maps each point of Kn

m+1 to a segment of K
n
m+1 (in fact, K

n
m). Notice that if

z ∈ Kn
m is a fixed point of g, that is, z ∈ g(z) ⊆ Kn

m, then it is clear that z is
also a fixed point of f , and hence we complete the proof. Let us, then, show
that g has a fixed point in the subset Kn

m of Kn
m+1: We define the function

L : cmp(Kn
m+1)→ 1̇n by

Li(x) =

{
0, pri(x) ≤ y for some y ∈ (pri ◦ g)(x) and pri(x) �= 2m+ 2,
1, pri(x) > y for every y ∈ (pri ◦ g)(x) or pri(x) = 2m+ 2.

It is easy to check that L(x) = (L1(x), . . . , Ln(x)) is a labeling. Hence from
Lemma 5.4, there exists a maximal clique ∆ of cmp(Kn

m+1), #∆ = n+1, such
that (0, . . . , 0) ∈ L(∆), and for every coordinate i, 1 ≤ i ≤ n, there exists an
individual point x ∈ ∆ such that Li(x) = 1. Note that ∆ is a chain of K

n
m+1,

and for any point x = (x1, . . . , xj , . . . , xn) such that xj ≥ 2m + 1, we have
Lj(x) = 1.

Let z be the point of ∆ which is labeled (0, . . . , 0). Clearly, z ∈ Kn
m. We

show that z is a fixed point of g: suppose not, then there exists j, 1 ≤ j ≤ n,
such that prj(z) < prj(y) for all y ∈ g(z). Let w ∈ ∆ be the (unique) point
such that Lj(w) = 1. By the definition of L, clearly we have prj(w) > prj(y)
for all y ∈ g(w). Since ∆ is a chain in Kn

m+1, we have either z ≤Kn
m+1

w or
w ≤Kn

m+1
z. Thus we have

(1) z ≤Kn
m+1

w and prj(w) ≤ prj(z); or w ≤Kn
m+1

z and prj(w) ≤ prj(z):
Since g(z) and g(w) are segments of Kn

m+1, therefore it is easy to check
that g(z) and g(w) are incomparable (with respect to the lower semi-
continuous power ordering). Contradiction.

(2) z ≤Kn
m+1

w and prj(z) ≤ prj(w): It is easy to check that we must have
max(prj(g(w))) ≤ prj(z) and min(prj(g(z))) ≥ prj(w). However, since
g is a lower semi-continuous multifunction, therefore for any x ∈ g(z),
there exists y ∈ g(w) such that x ≤Kn

m+1
y. Then, picking up any point

x ∈ g(z) such that prj(x) = min(prj(g(z))). It is clear that no point of
g(w) would be greater than or equal to x: contradiction.

(3) w ≤Kn
m+1

z and prj(z) ≤ prj(w): This can be proved in a similar way
as (2) above.
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1

Therefore we complete the proof. ✷

Example 5.6 Note thatKn
m does not have the FPP for lower semi-continuous

multifunctions which map points to connected order convex sets of Kn
m. As

for a simple example, let us consider K2
1 (see Fig. 4) and the multifunction

f : K2
1 → K2

1 defined by

f(r) = {t, u, v, w, x}, f(s) = {u, v, w, x, y},
f(t) = {r, v, w, x, y}, f(u) = {r, s, w, x, y},
f(v) = {r, s, t, x, y}, f(w) = {r, s, t, u, y},
f(x) = {r, s, t, u, v}, f(y) = {s, t, u, v, w},
f(z) = {r, s, t, u, v, w, x, y}.

It is easy to check that f is a lower semi-continuous multifunction with images
the connected order convex sets of Kn

m. However, it is clear that f has no fixed
point.

Corollary 5.7 Kn
m has the FPP for upper semi-continuous multifunctions

which map each point to a segment of Kn
m.

Proof. Let f : Kn
m → Kn

m be any self-mapping upper semi-continuous multi-
function which maps points of Kn

m to segments of K
n
m. Define the multifunc-

tion g : K̂n
m → K̂n

m by

g(x) = f(x),

for any x ∈ K̂n
m, where K̂

n
m is the dual poset of Kn

m. It is easy to check that
K̂n

m is a Khalimsky space, and any segment of K
n
m is also a segment of K̂

n
m. By

duality, g is a lower semi-continuous multifunction. Hence, from Lemma 5.5,
g has a fixed point, say z ∈ K̂n

m. Clearly, z is also a fixed point of f . ✷

Note that every admissible subset of the Khalimsky space is a segment:

Theorem 5.8 Every Helly poset has the FPP for lower semi-continuous mul-
tifunctions which map points to admissible subsets of itself.
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Proof. Let P be a Helly poset and f : P → P any lower semi-continuous
multifunction which maps points of P to admissible subsets of P . From The-
orem 3.7, the poset P is a retract of Kn

m, for some m,n ∈ N. Let r : Kn
m → P

be the retraction. For any admissible subset A of P , denote HA to be the
least admissible subset of Kn

m such that A ⊆ HA. We define the multifunction
g : Kn

m → Kn
m by

g(x) =
⋂
{A | (f ◦ r)(x) ⊆ A,A ∈ H(Kn

m)} = H(f◦r)(x)

for any x ∈ Kn
m. Clearly, g is a multifunction which maps points of K

n
m

to admissible subsets of Kn
m. We claim that g is lower semi-continuous: let

x, y ∈ Kn
m such that x ≤Kn

m
y. For any z ∈ g(x), we have, for every i in the

range 1, . . . , n, pri(z) = pri(a(i)) for some a(i) ∈ (f ◦ r)(x). Since for any
a ∈ (f ◦ r)(x), there exists b ∈ (f ◦ r)(y) such that a ≤P b (hence a ≤Kn

m
b),

therefore every a(i) is less than or equal to some element of (f ◦ r)(y), say
b(i) in P . Hence z is less than or equal to w = (pr1(b(1)), . . . , prn(b(n))), and
clearly w ∈ g(y).
Thus from Lemmas 4.7 and 5.5, g has a fixed point, say z ∈ Kn

m. We show
as follows that r(z) is a fixed point of f : indeed, since z ∈ g(z) = H(f◦r)(z),
therefore it is sufficient to show that r(H(f◦r)(z)) ⊆ (f ◦ r)(z). Note that for
any x ∈ P and σ ∈ Σ, we have r(BKn

m
(x, σ)) ⊆ BP (x, σ), since r(x) = x and

r is a non-expansive map. Now, we know that (f ◦ r)(z) = ⋂
j∈J BP (xj , σj),

for some suitable finite index set J , where xj ∈ P, σj ∈ Σ. Hence the set
C =

⋂
j∈J BKn

m
(xj , σj) is mapped into (f ◦ r)(z) by r. But C is an admissible

subset of Kn
m, and hence contains H(f◦r)(z). Therefore we have r(H(f◦r)(z)) ⊆

(f ◦ r)(z). ✷

By duality, we have

Corollary 5.9 Every Helly poset has the FPP for upper semi-continuous mul-
tifunctions which map points to admissible subsets of itself.

Corollary 5.10 Every Helly poset has the FPP for continuous multifunctions
which map points to admissible subsets of itself.

6 Approximation of continuous real functions

In order to relate our fixed point theorem with classical fixed point theory, we
consider the approximation of continuous real functions by (suitable) functions
between Khalimsky spaces (or Helly posets). Given the n-dimensional unit
cube In, we shall understand by the Khalimsky k-partition, denoted by P n

k , the
subdivision of In into cubical cells of length 2−k and their faces of dimension
n, . . . , 0. The k-partition P n

k is partially ordered by the incidence order of its
cells.

We begin with a simple lemma about Khalimsky partitions. This lemma
could be formulated for some much more general notion of “cellular partition”,
but the restricted version is sufficient for our purposes here.
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Lemma 6.1 Let P (= P n
k ) be a Khalimsky partition of In, α, β ∈ P , α ≤P β

and x ∈ α. Then:

(1)
⋃
(↑P α) is a topological (open) neighbourhood of x;

(2) For every topological neighbourhood N of x, we have N ∩ β �= ∅.
Proof. The cell α lies within the boundary of every cell of which it is a face
(in particular, of β). ✷

Given a real function f : Im → In, where Im, In have the Khalimsky
partitions Q,P respectively, we want to “approximate” f by a function from
Q to P . The idea is that the approximating function (actually a multifunction)
maps the cell α ∈ Q to the smallest segment (admissible subset) of P which
contains all cells β ∈ P such that every β meets f [α] ≡ {f(x) | x ∈ α}.
Formally:

φf : Q→ P, α �→ HD(α),

where D(α) = {β ∈ P | β ∩ f [α] �= ∅}.
Proposition 6.2 If f is continuous, then φf is a lower semi-continuous mul-
tifunction.

Proof. The proof is divided into two steps: Let α, β ∈ Q with α ≤Q β.

(1) We show that, for any element (cell) µ of D(α), there exists ν ∈ D(β)
such that µ ≤P ν: If x ∈ α and f(x) ∈ µ, then (by (1) of Lemma 6.1),
f−1(

⋃
(↑P µ)) is an open neighbourhood of x which (by (2) of Lemma 6.1)

must meet β. It follows that f [β] meets
⋃
(↑P µ), and hence D(β) meets

↑P µ.

(2) We show that, for any element µ of HD(α), there exists ν ∈ HD(β) such
that µ ≤P ν: Since HD(α) is the minimal segment of P containing D(α),
therefore for every index i, i = 1, . . . , n, there exists ω(i) ∈ D(α) such
that pri(ω(i)) = pri(µ). From (1) above, there exists υ(i) ∈ D(β)
such that ω(i) ≤P υ(i) for every ω(i). Hence, it is clear that we have
µ = (pr1(ω(1)), . . . , prn(ω(n)) ≤P (pr1(υ(1)), . . . , prn(υ(n)). Let ν =
(pr1(υ(1)), . . . , prn(υ(n)). Clearly, we have ν ∈ HD(β) since HD(β) is the
minimal segment of P containing D(β).

Thus φf is lower semi-continuous. ✷

Let Q0, . . . be the successive Khalimsky partitions of I
m; likewise P0, . . .

for In. For any x ∈ Im, we have the (unique) approximating sequence of
cells α0 ∈ Q0, . . . such that x ∈ αi (i = 0, . . .); moreover, {x} = ⋂

i αi. Let
〈φi

f : Qi → Pi〉i=0,... be a sequence of multifunctions, and suppose that, for
each x ∈ Im with approximating sequence α0, . . ., 〈

⋃
φi

f(αi)〉i is a decreasing
sequence of subsets of In with singleton intersection, say f(x). Then we say
that 〈φi

f〉 is an approximating sequence for f : Im → In.

Suppose now we start with a continuous map f : Im → In, and consider its
approximating multifunctions φi

f : Qi → Pi. By uniform continuity it follows
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that 〈φi
f〉 is an approximating sequence, and indeed it is easy to see that we

have

Proposition 6.3 (1) 〈φi
f〉 is an approximating sequence for f ,

(2) Suppose that i > 0, and αi+1, αi are cells of the partitions Qm
i+1, Q

m
i with

αi+1 ⊆ αi. Then
⋃
φi+1

f (αi+1) ⊆
⋃
φi

f(αi).

Taking now the case that m = n, we have (by Theorem 5.8) that each φi
f

has a fixed point, and by Proposition 6.3(2) that each fixed point of φi+1
f is

contained in a fixed point of φi
f . By König’s lemma we can select a decreasing

sequence α0 ⊇ α1 ⊇ · · · of fixed points of φ0
f , φ

1
f , . . ., and by Proposition 6.3(1)

we find that α0, α1, . . . converges to a fixed point of f . Thus we get a version of
Brouwer’s fixed point theorem: the unit cube In has the fixed point property
for continuous functions.

7 Concluding remarks

From the preceding Section, we see that Theorem 5.8 (and Corollary 5.9) may
be regarded as providing a discrete version of Brouwer’s fixed point theorem.
Since we work in this paper with posets rather than graphs, we have exact
fixed point results, rather than the “almost fixed point property” of [12,13,15].

In future work we plan to examine the possible implications of the ideas
discussed here for domain theory and semantics. In Example 2.1 we pointed
out that every finite lattice is a Helly poset. Here we observe that the argument
readily extends to (finite!) coherent CPO’s in the sense of Markowsky and
Rosen [7], Plotkin [8]. (In the finite case, a coherent CPO is a poset P with
least element, such that the collection of up-sets {↑P x | x ∈ P} has the Helly
property.) In this paper we have required Helly posets to be finite, but this
is in fact an unnecessary restriction. If “finite” is deleted from Definition 3.1,
then we have an evident generalization of Example 2.1: every complete lattice
is Helly. We may ask: can these ideas be extended in a useful way to coherent
domains?
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