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1. Introduction

Fuzzy integral equations are important in studying and solv-
ing a large proportion of the problems in many topics in
applied mathematics, in particular in relation to physics,
geographic, medical, biology. Usually in many applications
some of the parameters in our problems are represented by
fuzzy number rather than crisp, and hence it is important to
develop mathematical models and numerical procedures that
would appropriately treat general fuzzy integral equations
and solve them.

Recently, Mirzaee and Bimesl (2014) adapted the matrix
method for the Fredholm integral equations. The study of
fuzzy integral equations (FIEs) which attracted growing

* Corresponding author. Tel./fax: +98 81 32355466.

interest for some time, begins with the investigations of
Kaleva (1987) and Seikkala (1987) for the fuzzy Volterra inte-
gral equation that is equivalent to the initial value problem for
first order fuzzy differential equations. These studies
continued by Wang (1984), Nanda (1989), Ralescu and Adams
(1980), Bede and Gal (2005), Goetschel and Voxman (1986)
and others. In Wu (2000) investigated the fuzzy Riemann in-
tegral and its numerical integration. Molabahrami et al. (2011)
have used the parametric form of a fuzzy number and they
have converted a linear fuzzy Fredholm integral equation to
two linear systems of integral equations of the second kind in
the crisp case.

Recently, some numerical methods have been investigated
to solve linear fuzzy Fredholm integral equations of the
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second kind in two-dimensional space. For example, Rivaz
and Yousefi (2012) and Ezzati and Ziari (2013) used homo-
topy perturbation method and fuzzy Bivariate Bernestein
polynomials method for solving 2D-FFIE-2, respectively. Deb
et al. (2006) introduced a new set of orthogonal functions, a
numerical scheme based on such functions was applied for
solving variational problem and integral equation by Babolian
et al. (2007, 2009; 2010).

In this paper, we apply the triangular functions for
approximate the solutions of the linear two-dimensional
Fredholm fuzzy integral equations of the second kind for the
first time.

This paper is organized as follows. In Section 2, we present
some definitions and properties of one and two-dimensional
triangular functions which will be used later. In Section 3,
we give an overview of elementary concepts of the fuzzy
calculus. two-dimensional fuzzy Fredholm integral equation
is described in Section 4. In Section 5, we apply 2D-TFs for
solving linear two-dimensional fuzzy Fredholm integral
equation. Section 6 is concerned with discussing the conver-
gency of the proposed method then this method is imple-
mented for solving two illustrative examples in Section 7 and
finally, conclusion is drawn in Section 8.

2. Preliminaries
2.1. A review of one-dimensional triangular functions

Definition 2.1. Two m-sets of triangular functions (TFs) are
defined over the interval [0,T] as:

t—ih . .
1- h<t< 1)h
Tlf(t)—{ po metsieun &)
0 otherwise,
t—ih . .
T2 - { L ih<t< i+ Dh, 2
0 otherwise,

wherei=0,1,...,m — 1, h="T/m, with a positive integer value for
m. We have

1 1 h . .

/ TL(t)T1(t)dt = / T2,(t)T2 (t)dt = {3 1= (3)
0 0 0 i#j,
and

1 1 h . .

/ TL(t)T2;(t)dt = / T2,(t) T (t)dt = {6 1= @)
0 0 0 i#j.

Also, consider T1; as the i th left-handed triangular func-
tion and T2; as the i th right-handed triangular function. In this
paper, it is assumed that T = 1.

Consider the first m terms of the left-handed triangular
functions and the first m terms of the right-handed triangular
functions and write them concisely as m-vectors:

T1(t) = [Tlo(t), TL(t), ... Tlu 1 (0], 5)

T2(t) = [T20(t), T21(t), .., T2m 1 (1)), (6)

where T1(t) and T2(t) are called left-handed triangular func-
tions (LHTF) vector and right-handed triangular functions
(RHTF) vector, respectively. We have:

/ T1(t)T1"(t)dt = / T2(t)T2T(t)dt:2L 7)
0 0
/ T1(t)T2" (t)dt — / T2(t)T17(t)dt — 21, ()

which I is an m x m identity matrix. We denote the 1D-TF
vector T(t) as follows

T1(t
- 3]
The expansion of the function f(t) over [0,1] with respect to

1D-TFs may be written as

m-1

fy=> aTL(b) + midiTZf(t) = CT-T1(t) + D"-T2(t)
i= i=0
cl’ [Tt
= {D} [T2Et” =FTT(),

where C; and D; are samples of f, for example C; = f(ih) and
D; = f((i + 1)h) for i = 0,1,...,m — 1, so there is no need for
integration. The vector F is called the 1D-TF coefficient vector.

2.2.  Two-dimensional triangular functions and their
properties

An (m; x my)-set of the region (2 = [0,1] x [0,1]) is defined by

(17s—ihl)(17t_}'h2 ihy <s < (i+1)hy,
Tij(s:t) = hy h ' jh<t<(+1h, (10)
0 otherwise,
( 7s—ih1)(t—jh2) ihy <s < (i+ 1)hy,
T (s,t) = hy he 7 jh, <t <+ Dhy, (11)
0 otherwise,
(sfihl)(l_tfjhz) ihy <s < (i+ 1)hy,
Tﬁ)-_l(s,t) = hy hy jha <t < (j+ Dhy, 12)
0 otherwise,
(s—ihl)(tf}'hz ihy <s < (i+ 1)hy,
THst=q M hy 7 jh, <t< (+ Dh, (13)
0 otherwise,

wherei=0,1,....m; — 1,j=0,1,....m, — 1and h; = 1/m4, h, = 1/
m,. my and m, are arbitrary positive integers. It is clear that

it (5,t) = TLi(s).TL(t),
Ti(s,t) = TLi(s).T2;(t), "
T (s,t) = T2i(s).TL(t), (14)
T22(s,t) = T2i(s).T2(t).

Furthermore,

T (s, t) + i (s,0) + T (5, 1) + Ti (s, t) = @y(s, 1),
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where &; (s,t) is the {im, + j + 1} th block-pulse function defined
onih; <s < (i + 1)h; and jh, <t < (j + 1)h, as

®i.j(svt) = {(1)

From Eq.s (3), (4) and (14) we have:

ihy <s < (i+1)hy,
jhy <t < (j+ 1)hy,
otherwise.

1 1
/ /Tﬁll?l S t sz 2 (S t)dsdt = APMJQ 51'1_1'2 'Afh-‘h 6}1:1'27
0 0
where 6 denotes the Kronecker delta function and
a=pe{1,2},

Aavﬁ =
a#0.

S wls

On the other hand, if
T
T11(s,t) = [T50(5 0, s Tomy (8,0, Tha(8: 0 oo, Tt 1y 1(8:0)]
T
T12(s,t) = [Téf,(&t) ST 4 (,1), TH(s, ), ...,T},;f,mrl(s,t)] ,
T21(s,t) = [T33(s.1), ..

T
Tg}nz 1(s: 1), 10(3 t)?"'var&—l.mz—l(s‘rt)] )

T
T22(S,t) = [ngg(s,t), ...7Tg:,2"271(s,f),Tijg(S,t), '“7T3vﬁ71.m271(s=t)] )

then T(s,t), the 2D-TF vector, can be defined as

T11(s,t)
T12(s,t)
T(s,t) T21(s.1) (15)
TZZ(S,t) 4mimyx1
We have

1 1
//T11T s, ) T11(s, t)dsdt_% mlxm1®};2 Lingcmy s
0 0

1
/TllT (s,t)T12(s, t)dsdt = h Iy xm, ®%Imzxmz7
0

o\H

1
hy h
/ TA17(5, HT21(s, 6)dSdt = 2 s, O I,
0

ot

1
/T11T (5,)T22(s, t)dsdt = hel Ly, ®h62 Ly ey
0

O

where ® denotes the Kronecker product defined for two
arbitrary matrices P and Q as

P®Q =pi;Q.

The same equations are implied for T12(s,t), T21(s,t) and
T22(s,t), by similar computations. Hence, we can carry out
double integration of T(s,t):

/ / (s, t)T(s, t)dtds — D, (16)
3

which D is (4m;m, x 4m;m,)-matrix as follows:

hy. h,. h. hy,. hi. h,. h. h
%11@9%12 ?111®€212 glh@?zlz 3111693212

bpele, Mpeley, Mgl Myghy

R
€111®§212 6111®€212 3111@%12 §111®€212

h hy. hi. hy. h. h h h
_511@%12 3111@{12 5111@%12 %1@%12

which I = I, xm, and I, = I, xm, -
2.3. Function expansion with 2D-TFs

We can approximate the function f (s,t) defined over Q by 2D-
TFs as follows

—1 my—1 -1 mp-1
Z ZCUT“(St +Z ZdUT”st
i=0 j=0 i=

—1 my—1 mi—1 my—1

+Z ZelJ s+ Yy le)T“st
i=0 j=0 i=0 j=0
=CT-T11(s,t) + DT-T12(s, t) + ET-T21(s, t)
+LT-T22(s,t) = FT-T(s, t),

where F is a 4m;m,-vector given by
F=[c" D' ET L7]",

and T(s,t) is defined in Eq. (15). The 2D-TF coefficients in C, D, E
and L can be computed by sampling the function f(s,t) at grid
points s; and tj such that s; = ih, and t; = jh,, for various i and j.
So we have

Cr =iy =f(si. 1),
Dy = dij = f(si, tjsa),
Erx = eij = f(Sis1. tj),

L = lij = f(Si+1, j21),

where k =im, +jandi=0,1,...m; — 1,j =0,1,....,my — 1. The
4mym,-vector F is called the 2D-TF coefficient vector.

Let u(s,t,r) be a function of three variables on (@ x [0,1]). It
can be approximated with respect to 2D-TFs and 1D-TFs as
follows:

u(s,t,r)=T'(s,t)-U-T(r), (18)

where T(s,t) and T(r) are 2D-TF vector and 1D-TF vector of
dimension 4miym, and 2ms, respectively and U is a
(4mymy x 2mj3) 2D-TF coefficient matrix. This matrix can be
represented as

U1l U12

yo | U2l 22
U3l U32 |’
U4l  U42
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where each block of U is an (m;ym, x ms)-matrix that can be
computed by sampling the function u(s,t,r) at grid points
(si,tj,re) such that

o 1
si=tih, 1=0,1,...m; -1, hl*ﬁf
t =iy, j=0,1,..my—1, hy——
J] I [t} mZ/
re—khs k—=01,..ms—1 hs— .
ms

Let [ =im, + j, then

Ul = u(s:, b, 1),
U12yp = u(si, tj, Tesa),
U211 = u(si, Gy, Te),
U221 = u(Si, tis1, Tes)s
U31 = u(Siya, 4, Te),
U32;, = M(Sm,t] Tesi1),
U4l = u(Sis1, G, Te),
U42), = u(Si1, 1, Tes)-

Let k(s,t,x,y) be a function of four variables on (Q x Q). It can
be approximated with respect to 2D-TFs as follows:

k(s t,x,y) =T (s, t)-K-T(x,y), (19)

where T(s,t) and T(x,y) are 2D-TF vectors of dimension 4m;m,
and 4msmy, respectively and K is a (4m;my x 4msmy) 2D-TF
coefficient matrix. This matrix can be represented as

K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34|’
K41 K42 K43 K44

(20)

where each block of K is an (m;m, x msm,)-matrix that can be
computed by sampling the function k(s,t,x,y) at grid points
(siy» tj,, X3, yj,) such that

si1:i1h13 i1:0,1,.“,m171, hlzi

1
t —=ih,. 31=01. .. mr—1. h,=—.
o =Ji2, 1 y Ly, M2 ) 2 m,’
x, =i, =01,..m—1 hy= -
ip — 23, 2 = U, 1,...,IM3 s 3717137

. . 1

YJz:}Zh‘h ]2:0,1,...,]’)'1471, h4:7.

My

Let p = iym, + j; and q = imy + j,, then

K11p4 = kR(Siys tjy, Xiy, ¥jp ),
K12, 4 = k(Si, s tjy, Xip, Yjp+1),
K13, 4 = k(Si,, 5 Xip+1, Yj, )
K14y, 4 = R(Si; s Gy, Xig11, Yo +1),
K21, 4 = k(Si,, 41, X5, Vi, )
K22, 4 = R(Si; s G, 15 Xiy, Yo 1),
K23, 4 = R(Siy s Gy 415 Xip 415 V) )
K24y 3 = R(Siy, tj, 11, Xip 41, Yjp+1),

K31, 4 = k(Siy+1, by, Xy, Vo )
K32,4 = k(Si;11, G5 Xiy s Yip 1)
K33, 4 = R(Siy41, 1 Xip 415 V), )
K34, = R(Si; 11, Gy s Xiy15 Vi 1),
K41y, 4 = R(Siy41, Gy+15 Xip» Vi )
K42, 4 = R(Si; 11, Gy 41, Xiy s Yjps1),
K43, 5 = R(Siy41, G415 Xip 415 Yjp )
K44,, = k(5i1+1s tj1+lyxi2+17}Ijz+l)<

In this paper we supposed that m; = m, = mz = my = M, for
convergence.

3. The basic concepts of fuzzy equations
We now recall some definitions needed through the paper.

Definition 1. A fuzzy number is a set v:Rp — I = [0,1] which
satisfies in the following statements:

e U is upper semi continuous,

e U(x) = 0 outside of some interval such as [c,d],

e There are real numbers a,b thatc < a <b < dand
- v(x) is monotonic increasing on [c,a],
- v(x) is monotonic decreasing on [b,d],
-u(x)=1,a<x<bh.

The set of all such fuzzy number is denoted by Rr (Kaleva,
1987).

Definition 2. Let V be a fuzzy set on Re. V is called a fuzzy
interval if:

e Vis normal, there exists xo € R such that V(xo) = 1.

e Vis convex, it holds that V(ix + (1 — A)t) > min{V(x),V(t)}, for
all x,t € Rrand 0 < A < 1.

e Vis upper semi-continuous, V(xo) > limi V(x), forany xo €
RF, X—Xg

e [V]° = Cl{x € R¢|V(x) > 0} is a compact subset of Ry.

The a-cut of a fuzzy interval V, with 0 < « < 1is the crisp set,
[V]* = {x € Re|V(x) > a}.

For a fuzzy interval V, its a-cuts are closed intervals in R
(Kaleva, 1987). Let denote them by [V]* = [V(«), V(«)].

An alternative definition or parametric form of a fuzzy
number which yields the same R is given by Kaleva (1987) as
follows:

Definition 3. An arbitrary fuzzy number i in the parametric
form is represented by an ordered pair of functions (u(r), u(r))
which satisfy the following requirements (Ralescu and Adams
(1980)):

e u(7) is a bounded left-continuous non-decreasing function
over [0,1],
U(r) is abounded right-continuous non-increasing function
over [0,1],
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e u(r) <u(r),forall0<r<1.

For arbitrary fuzzy numbers U = (u(r),U(r)), w = (w(r),w(r))
and real number 1, we can define the addition and the scalar
multiplication of the fuzzy numbers by using the extension
principle as follows:

e U =w if and only if u(r) =
GOW = (u(r) + w(r), v(r) + W(r)),

| Gy e
* (1&0) ‘{ (o), 20y

Definition 4. For arbitrary numbers U= (u(r),U(r)) and

w = (w(r),w(r)) (Nanda, 1989)
D(v,w) = max{ Oil;tgl\ﬁ(r) - W(r)|,os<1;1£)1 u(r) — y(r)\},

in the distance between U and w. It is proved that (Rg,D) is a
complete metric space with the properties (Nanda, 1989).

o Vi,0,wER; ; D(U®W,T@®W)=D(ii,0)
o Yii,i€R;, VkER ; D(k®i,k®V) = [kD(il,0),
o Vii,U,W,é€Rr ; D(U®U,WwE) < D(iL, W)+ D(U,8)

Definition 5. Let f,§ : [a,b] - Ry, be fuzzy real number valued
functions. The uniform distance between f,§ is defined by
Wang (1984):

Dy(f,9) = sup{D(f(x).§(x))x< [a,b] }. 1)

In Bede and Gal (2005), the authors proved that if the fuzzy
function, f(t), is continuous in the metric D, its definite inte-
gral exists and also,

Definition 6. A fuzzy real number valued function f : [a,b] —Rg
is said to be continuous in x, € [a,b], if for each ¢ > 0 there is
6 > 0 such that D(f(x),f(xo)) <&, whenever x € [a,b] and
|x — Xo| < & (Wu, 2000). We say that f is fuzzy continuous on
[a,b] if f is continuous at each xo € [a,b] and denote the space
of all such functions by Cg([a,b]).

Definition 7. Let f : [a,b]—>Rr be a bounded function, then
function wyey(f,.) : RTU{0} - R™,

o (f,8) = sup{D(F(x).F(y)|x.y € [a.b] . lx —y| < 6}, (22)

where R* is the set of positive real numbers, is called the
modulus of continuity of f on [a,b] (Wu, 2000).

Definition 8. Let f : [a,b] — Ry, f is fuzzy-Riemann integrable to
I € Rp if for any e > 0, there exists 6 > 0 such that for any di-

vision P = {[u,v] ; ¢} of [a,b] with the norms 4(p)<é, we have (Wu,
2000):
D(3_*(v - wef(®).]) <, (23)

p

where " denotes the fuzzy summation. In this case it is
denoted by I = (FR) ‘jff(x)dx

Lemma 1. Iff,§ : [a,b]SR— Ry are fuzzy continuous functions,
then the function F:[a,b] —Rr by F(x) = D(f(x) ) is contin-
uous on [a,b] and by (Wu, 2000).

(/bf /g )/(f

Definition 9. A function f : R2— R is called a fuzzy function in
two-dimensional space. f is said to be continuous (Rivaz and
Yousefi (2012)), if for arbitrary fixed to € R?and e >0a >0
exists such that

[t — toll <6=D(f(t).f(to)) <& ; t=(x¥),to = (Xo,Yo)-

Definition 10. Let f:[a,b] x [c,d]—»Rr. For each partition
p = {X1,X2,...,Xm} Of [a,b] and q = {y1,y2,...,yn} Of [c,d] and for
arbitrary &x; - 1 < & < x;, 2 < 1 < m and for arbitrary
Ny —1<n<y,2<j<n,let

n

2: FE )

i=2 j=2

X — Xi-1)(¥j = Yj-1)-

The definite integral of f(x,y) over [a,b] x

d b
// (x,y)dxdy = limR,,

<max\xl - Xi_1), max’y ¥j- ‘)—»(0,0)7

2<i<m <

[c,d] is

provided that this limit exists in metric D (Rivaz and Yousefi
(2012)).

If the function f(x,y) is continuous in the metric D, it’s
definite that integral exists (Goetschel and Voxman (1986)).
Furthermore

d b d b
//fxy7 r)dxdy // (x,y,r)dxdy,

N d b
//fxy, r)dxdy :// (x,y,r)dxdy.
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4. Two-dimensional fuzzy Fredholm integral
equation

Two-dimensional Fredholm integral equation of the second
kind is defined as the following from (Xie and Lin (2009))

b d
ux,y) = F(x,y) + 4 / / K(x,y, s, t)u(s, t)dsdt. (24)

The linear two-dimensional fuzzy Fredholm integral
equation of the second kind (2D-FFIE-2) is

=f(x,y)01® // X,y,s,t)®1(s, t)dsdt, (25)

where k(x,y,s,t) is an arbitrary kernel function over
S =[a,b] x [c,d] x [a,b] x [c,d] and {i(x, y) and f(x, y) are fuzzy real
valued functions and u(x,y) is unknown.

Now, we introduce parametric form of a 2D-FFIE-2 with
respect to definition (3).

Let (f(x7y7r)7f(x7y,r)) and (u(x,y,r),u(x,y,r)), 0 <r <1, be
paramefric form of. f(x,y)and {i(x,y), respectively. Then
parametric from of 2D-FFIE-2 is as follows:

b d
u(x,y,r) = xy, +A//U1xy,stustr) u(s,t,r))dsdt,

(26)

b d
ux,y,r =f(xy,r +A//U2 X,y,s,t,u(s,t,r),u(s, t,r))dsdt.

(27)
Where
— u
Ul(X7Y7S7t7u(s,tTY),U(S7t7 r)) - {k(x7y757t)ﬁ(s7t:7’) k(x7)l1s7t)<07

and

U2(X,Y,8, L U(s,t7), W(s, 7)) = {k(w;s‘t)ﬁ(sm

for 0 <r < 1. We can see that Eq.s (26) and (27) are systems of

Fredholm integral equations of the second kind with three
variables in crisp case.

5. Solving linear two-dimensional fuzzy
Fredholm integral equation by 2D-TFs

In this section, we present an effective method for solving a
2D-FFIE-2 by using 2D-TFs. The parametric form of (25), with
a=c=0,b=d=1and 1=1,is:

1 1
u(x,y,n) =f(xyr) + / /k x,y,s, t)u(s,t,r)dsdt, (28)
0 0
1 1
ux,y,r) =f(xy,1) +//kxyst) (s,t,7)dsdt. (29)
0 0

2D-TFs are applied for Eq.s (28) and (29) respectively. To
explain this method for Eq. (28), first let us expand u(x,y,r),
f(x,y,7) and k(x,y,s,t) by 2D-TFs as follows:

u(x,y,n) =TT (x,y)UT(r), (30)
fxy,1)=T"(x,y)FT(r), (31)
k(x,y,s,t) =TT (x,y)KT(s, t). (32)

Where T(x,y) and T(r) are defined in Eq.s (15) and (9), respec-
tively and U and F are (4M? x 2M)-matrices of 2D-TFs co-
efficients of u(x,y,r) and f(x,y,r), respectively, and K is
(4M? x 4M?)-matrix 2D-TFs coefficients of R(X,,5,t).

To approximate the solution of Eq. (28), from Eq.s (30)—(32),
we have

11
T (x,y)UT(r) =TT (x,y)FT(r) + / /TT X,y)KT(s,t)T"(s,t)UT(r)dsdt,
0 0

T' (x,y)UT(r)=T" (x,y)FT(r)

+TT(x,y)K(/ /T(s,t)TT(s,t)dsdt> UT(r),
0 0

using the Eq. (16) we have

Table 1 — Numerical results of Example 1 with 2D-TFs method

2D-TFs method for
x=01,y=01landM=5

r Exact solution

(u(x,y,n),u(x,y,r))

Absolute error for
x=0.1y=0.1and M =10

2D-TFs method for
x=0.1y=01and M =10

0.0 (0.00000000, 0.02036474) (0.00000000, 0.02071364)
0.1 (0.00056003, 0.01985053) (0.00062140, 0.02017509)
0.2 (0.00122188, 0.01930578) (0.00124281, 0.01963653)
03 (0.00198556, 0.01869993) (0.00207136, 0.01897370)
0.4 (0.00285106, 0.01800243) (0.00289991, 0.01831086)
0.5 (0.00381839, 0.01718275) (0.00393559, 0.01739946)
06 (0.00488753, 0.01621034) (0.00497127, 0.01648806)
0.7 (0.00605851, 0.01505464) (0.00621409, 0.01520381)
08 (0.00733130, 0.01368511) (0.00745691, 0.01391957)
0.9 (0.00870593, 0.01207120) (0.00890686, 0.01213819)

(0.00000000, 0.02036484)
(0.00056003, 0.01985063)
(0.00122189, 0.01930587)
(0.00198557, 0.01870002)
(0.00285107, 0.01800252)
(0.00381840, 0.01718284)
(0.00488756, 0.01621042)
(0.00605854, 0.01505471)
(0.00733134, 0.01368517)
(0.00870597, 0.01207126)

(0.00000000e-00,9.9976971e-08)
(2.7493667€-09, 9.7452553¢-08)
(5.9986183e-09, 9.4778169¢-08)
(9.7477547€-09, 9.1803854¢-08)
(1.3996776€-08, 8.8379643¢-08)
(1.8745682¢-08, 8.4355570e-08)
(2.3994473e-08, 7.9581669¢-08)
(2.9743149¢-08, 7.3907976€-08)
(3.5991709e-08, 6.7184525¢-08)
(4.2740155€-08, 5.9261350e-08)
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Table 2 — Numerical results of Example 1 with 2D-TFs method.

r

Exact solution
(u(x,y,r),u(x,y,r)

x=03,y=06and M =10

2D-TFs method for

Absolute error for
x=03,y=0.6and M =10

Absolute error

the method of Rivaz and
Yousefi (2012) for n = 52

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00000000, 0.37477066)
0.01030619, 0.36530770)
0.02248623, 0.35528258)
0.03654013, 0.34413315)
0.05246789, 0.33129726)
0.07026949, 0.31621274)
0.08994495, 0.29831744)
0.11149427, 0.27704921)
0.13491743, 0.25184588)
0.16021445, 0.22214530)

(0.00000000, 0.37477605)
(0.01030634, 0.36531296)
(0.02248656, 0.35528770)
(0.03654066, 0.34413811)
(0.05246864, 0.33130203)
(0.07027051, 0.31621274)
(0.08994625, 0.29832174)
(0.11149587, 0.27705320)
(0.13491938, 0.25184951)
(0.16021676, 0.22214850)

0.0000000e-00, 5.3987564e-06)
1.4846580e-07, 5.2624378e-06)
3.2392538e-07, 5.1180211e-06)
5.2637875e-07, 4.9574081e-06)
7.5582590e-07, 4.7725007e-06)
1.0122668e-06, 4.5552007e-06)
1.2957015e-06, 4.2974101e-06)
1.6061300e-06, 3.9910307e-06)
1.9435523e-06, 3.6279643e-06)
2.3079683e-06, 3.2001129e-06)

(0.0009, 0.0000)
(0.0007, 0.0004)
(0.0003, 0.0007)
(0.0002, 0.0011)
(0.0009, 0.0016)
(0.0020, 0.0008)
(0.0015, 0.0004)
(0.0007, 0.0003)
(0.0001, 0.0012)
(0.0011, 0.0024)

I ! Exact solution
09} ) ® O Present method for M=5
*  Present method for M=10
0.8 22l 0
0.7 o 2]
0.6 3] %O
0.5 © )
0.4 #® *0
0.3 HO -
02 - #® *0
01#® *O
1 1 1 1 TSN
0 0.005 0.01 0.015 0.02 0.025

Fig. 1 — Comparison between the exact solution and the approximate solution by present method for M = 5, 10.

TT(x,y)UT(r) = T"(x,y)FT(r) + T (x,y)KDUT(r),

where U and F are (4M? x 2M)-matrix and KD is (4M? x 4M?)-
matrix, so KDU is (4M? x 2M)-matrix, where U is unknown.

then
Then we have
U =F+KDU, (I-KD)U =F,
1 T T T T T T n X
Exact solution
09} 6 %0 O BPFs method
¥ Present method
08 ® *0O
0.7 B &
06 # 0
0.5 #O *
0.4 # %O
0.3 & ¥
0.2 © ©
01| # ©
G 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 2 — Comparison between the exact solution, the approximate solution by BPFs method for n = 52 and present method

for M = 10.
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Table 3 — Numerical results of Example 2 with 2D-TFs method method.

2D-TFs method for

x=01,y=04and M =12

Absolute error for
x=0.1,y=04and M =12

0.00000000, 0.08000985)
0.00400049, 0.07600936)
0.00800098, 0.07200886)
0.01200147, 0.06800837)
0.01600197, 0.06400788)
)
)
)

0.02400295, 0.05600689
0.02800344, 0.05200640
0.0320039, 0.04800591)

0.0000000e-00, 9.8553102e-06,
4.9276551e-07, 9.3625447e-06,
9.8553102e-07, 8.8697792e-06
1.4782965e-06, 8.3770137e-06,

2.4638275e-06, 7.3914826e-06,
2.9565930e-06, 6.8987171e-06,
3.4493585e-06, 6.4059516e-06,
3.9421240e-06, 5.9131861e-06

r Exact solution 2D-TFs method for
(u(x,y,r),u(x,y,r)) x=01y=04and M =4

0.0 (0.00000000, 0.08000000) (0.00000000, 0.07973560)
0.1 (0.00400000, 0.07600000) (0.00398678, 0.07574882)
0.2 (0.00800000, 0.07200000) (0.00797356, 0.07176204)
0.3 (0.01200000, 0.06800000) (0.01196034, 0.06777526)
0.4 (0.01600000, 0.06400000) (0.01594712, 0.06378849)
0.5 (0.02000000, 0.06000000) (0.01993390, 0.05980170)
0.6 (0.02400000, 0.05600000) (0.02392068, 0.05581492)
0.7 (0.02800000, 0.05200000) (0.02790746, 0.05182814)
0.8 (0.03200000, 0.04800000) (0.03189424, 0.04784136)
0.9 (0.03600000, 0.04400000) (0.03588102, 0.04385458)

( ( )
( ( )
( ( )
( ( )
( (1.9710620e-06, 7.8842481e-06)
(0.02000246, 0.06000739 ( )
( ( )
( ( )
( ( )
( ( )

0.03600443, 0.04400542) 4.4348896e-06, 5.4204206e-06,

where Iyp, e is identity matrix. Then we can write above
equation as follows

U=(-KD)'F.

By solving this matrix system we can find matrix Uy ,om
and we can approximate u(x,y,r) from

u(x,y,r) = TT(x,y)UT(r).

The same trend holds for Eq. (29).

E‘z

D(u(x,y), tm(x,y))

\H

1 1 1
/kxy7st stdsdt//k(x y,s.t)
0

1

= o
AN
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1, T2 (s, 1) dsdt)
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*eUT“(s t) +
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1 1
" 1 T22(s, 1)) dsdt < P / / D((s, ), Y * 3 feyTH (s, + 3 * D TH(s, 1
J , _
1

6. The convergence of the method

In this section, we obtain error estimate for the numerical
method proposed in previous section.

Theorem 1. The solution of two-dimensional Fredholm fuzzy
integral equations such as Eq. (25), by using 2D-TFs are
convergence to exact solution if

P= max |k(x,y,s,t)]<1.

0<xy,st<1

Proof. Assume 1i(x,y) and iy (x,y) show approximate and
exact solution of Eq. (25) respectively. Then

M-1 M-1 M-1 M-1 M-1

* Z e TH (s, 0 + Y * > *dyTi(s,t) + ) * > *eTo(s, 1)

j=0 i=0 j=0 i=0  j=0

/D (R(x,Y,5,0(5,8), k(x,y,5,0( 3 * 3y Th(s, )+ > * Y *dyTH(s,1)

=0 j=0 i=0 j=0

§
L
g
N
=
N
=<
N

0
1
*1,To (s, t))dsdt = P// D(ui(s, t), ty(s, t))dsdt,
0 0

0.7 ¥

062 *

0.5 ¥

0.4 #

0.3 ¥

0.2} ¥

0.1F ¥

[s;

Exact solution

%  Present method for M=12

1 1 1 !
0 0.01 0.02 0.03 0.04

! 1 1 k
0.05 0.06 0.07 0.08 0.09

Fig. 3 — Comparison between the exact solution and the approximate solution by present method for M = 12.
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therefore we have

D(ﬂ(XVY)v aM(va)) < PD(Q(&)’)J}M(XJ)%

sup [0,1) x[0,1))D(U(x,y), uum(x,y))

xy)eQ

<P sup [0.1)x [0.1)D(u(x.).t.y)).
Xy)EQ

Therefore, if P < 1, we will have:

lim sup D(u(x,y),um(x,y)) = 0.

M= xy)e

7. Numerical examples

Here, two examples are given to certify the convergence and
error bound of the 2D-TFs method for Two-dimensional fuzzy
Fredholm integral equations. All results are computed by
using a program written in the Matlab. In this regard, we have
presented with tables and figures.

Example 1. Consider the following 2D-FFIE-2 (Rivaz and
Yousefi (2012)).

f(x,y,1) = xsin(2)(r* +71),

NI<

Fx,y,1) = xsin(%)(él ),
and

k(x,y,8,t) =x*ys, 0<xy,5t<1 andi=1

That the exact solution is

u(x,y.) = (xsin() — 22 (cos(5) ~ 1xY) (7 +7),

ux,y,m = (xsin(¥) - 22

1
L) - 35 (cos(5) — 1pxy) (4 — 1 =)

2

Tables 1 and 2 show the exact solution and the numerical
solutions by the presented method and absolute error of this
method. Figs. 1 and 2 show comparison between the exact so-
lution and the numerical solutions by the presented method.

Example 2. Consider the following 2D-FFIE-2

fxy.n= Y(Xy+ﬁl6(xz +y*-2)),

_(2_ 1 o2
f(xv)hr)*(z r)(xy+676(x +y 2))7
and

,i 2 2 _ 2, 42
k(x,y,s,t)—169(x +y*—2)(s*+t°—2),
<1 andi=1.

0<x,y,s,t

The exact solution is

u(x,y,r) =rxy,

ux,y,r) = (2-r1)xy.

Absolute values of the error function are provided in
Table 3 by taking M = 4, 12. The numerical histories for N = 12
is depicted in Fig. 3.

8. Conclusion

Fuzzy integral equations are important for studying and
solving a large proportion of the problems in many topics in
applied mathematics, particularly in fuzzy control. In this
study, we introduce 2D-TFs method for approximating the
solution of linear (2D-FFIE-2). By this method, the original
equation is converted into two crisp (2D-FFIE-2). The efficiency
and simplicity of this method are illustrated by introducing
some numerical examples with known exact solutions. The
main advantage of this method is low cost of setting up the
equations without using any projection method and any
integration.
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