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A b s t r a c t - - W e  consider a system of ordinary differential equations with constant  coefficients and  
deduce asymptot ic  est imates for the Tau Method approximation error vector per  step for different 
choices of the per tu rba t ion  term H,~(x). The cases considered are Legendre polynomials, Chebyshev 
polynomials, powers of x and polynomials of the form (x 2 - r2) n, - r  <_ x _< r. The  first two 
are s tandard  choices for the Tau Method, for Chebyshev and Legendre series expansion techniques 
and  also for collocation; the  th i rd  one realizes the classical power series expansion techniques in the 
framework of the Tau Method and  the last is related to the trial  functions used in weighted residuals 
methods;  we shall refer to it as the weighted residuals choice. We show tha t  the resulting Tau Method  
implementat ions can be arranged into the following scale of increasing error estimates at  the end point  

Legendre < Chebyshev < <  Power series < Weighted residuals. 

For the interesting case of Legendre Tau approximations,  we offer upper  and lower error bounds for 
the end point  of the interval of approximation. In particular,  this last  estimates solve a conjecture 
on increased accuracy at the end point  of the interval of approximation formulated by Lanczos in 
1956. Such conjecture has  equivalent forms for other  polynomial methods for the numerical solution 
of differential equations. 

Al though formulated in the convenient framework of the  recursive Tau Method (see Ortiz [1]), the 
results given here apply, without  essential modifications, to Chebyshev or Legendre series expansion 
tedmlques  for differential equations, collocation and  spectral  methods.  

We give numerical examples which confirm the sharpness of the lemmas and theorems given in this 
paper.  Finally, we discuss in an  example the application of our results to the analysis of singularly 
per turbed  differential equations. 

1. I N T R O D U C T I O N  

This investigation is motivated by the fact that the members of a large family of numerical 
methods can be regarded as special realizations of the Tau Method corresponding to suitable 
choices of perturbation terms H__n(x ) (see [2] for a detailed discussion of this problem). They 
include methods based on the representation of the approximate solution vector in a preassigned 
form, usually a truncated series expansion with free coefficients which may be given in terms of 
powers of x; a finite segment of a Fourier expansion expressed in terms Chebyshev, Legendre, 
Hermite (as in [3]) or other special polynomials, as used in spectral methods, or alternatively, it 
can be given in terms of a special basis which takes care of the supplementary conditions. 

In these techniques, the free parameters are determined 

(i) by a direct substitution of the approximating expression in the given equation and supple- 
mentary conditions, equating the result with the right hand side of the differential equation 
and supplementary conditions to fix the free parameters; 

(ii) by point evaluation techniques based on an interpolation process in the image space of 
the differential operator to determine the coefficients of the approximate solution. These 
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techniques are referred to as Lanczos' method of selected points (see [4]), collocation or 
pseudo-spectral techniques; 

(iii) or through an averaging or weighted residuals procedure, which uses the geometric idea 
of orthogonality between the hyperplane of approximation and a function of the residual 
term, such as in projection and Galerkin's methods. 

The arguments given in this paper apply, without essential modifications, to the error analysis 
of these numerical techniques. Further details are given in a separate paper. 

2. T H E  R E C U R S I V E  F O R M U L A T I O N  O F  T H E  TAU M E T H O D  

Let us consider the system of ordinary differential equations 

Dy(x )  := ~xY(X ) + A_y(x) = _f(x), with - r < x < r  and y ( - r ) = a ,  (1) 

where D := ((D#)), i, j = 1 (1) m is a matrix differential operator of order mxm; its elements Dij 
are linear differential operators with constant coefficients: 

f aij, f o r i e j  
D~j 

a i j + [ d ] ,  for i = j .  

A := ((aij)), i, j = 1 (1) m, is a nonsingular coefficient matrix and _y, _f and a are vectors of R m. 
We associate with (1) the Tau  P r o b l e m :  

d 
D y_,(x) :-- -~-~xyn(x) + A y , (x)  = _.f(x) + H , ( x ) ;  - - r  < x < r = a ,  ( 2 )  

where H , ( x )  is a vector polynomial perturbation term which forces the exact solution of (2) to 
become a vector polynomial (see [5]). We assume that  a norm of H n(x) satisfies given minimal 
conditions. Let H__.,(x) be defined by r,,vvn(x), where 

V := V.  (1,x, x2 , . . . )T  = {vn(x)}, n E N 

is a polynomial basis, defined by a nonsingular matrix V, with elements v,(x) ,  which are poly- 
nomials of degree n and 

f~(I) 7-(s) 1 T 
Tn, V : :  t ° n , V  ' ' ' ' '  n , V J  " 

With the matrix operator D, we associate a sequence of vector canonical polynomials (see [1,5,6]) 

such that  

Q:={Q_(i)(x)}, i = l ( 1 ) m ,  n e N \ S ,  

D Q_~(J)(x):= x" E_(j), j - 1 (1) m, 

possibly, plus residual terms; _E(j) : -  (eu,e2j ,e3 j,  . . .  ,emj) T and eij := 1 for i = j ,  and zero 
otherwise. 

3. T H E  MAIN RESULTS:  P E R T U R B A T I O N  T E R M S  IN T H E  TAU M E T H O D  

As far back as 1956, Lanczos [7] produced examples showing that  the error of Tau Method ap- 
proximations could be reduced considerably at the end point of the interval in which the solution 
is sought by expressing the perturbation term as a linear combination of Legendre polynomials 
instead of the traditional choice of Chebyshev polynomials. Later, the same author gave further 
examples and an heuristic explanation of this remarkable phenomenon [8]. 

Ortiz [9] used Legendre polynomials as perturbation terms to formulate a step-by-step Tau 
Method with a minimized error vector at matching points and applied it to initial value prob- 
lems; Onumanyi and Ortiz [10] used this technique to treat singularly perturbed and nonlinear 
boundary value problems in the presence of stiffness in cases where the solution is not unique. 
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El Misiery and Ortiz have considered types of perturbation terms of this form in the context 
of their hybrid Tau-Lines Method [11], which they used for the numerical approximation of sin- 
gular boundary value problems for partial differential equations related to problems in fracture 
mechanics; Hosseini All Abadi and Ortiz have used them in the numerical solution of systems of 
nonlinear partial differential equations related to the numerical simulation of soliton interactions 
(see [12] and the earlier references given therein). 

In this paper, we discuss, from an analytic point of view, the question of the dependence of 
the error on the basis chosen for the representation of the vector perturbation term in the Tau 
Method. We assume that our problem is defined on -r _< x < r, and consider four possible 
choices for the representation of H,(x): 

(i) Chebyshev polynomials T~ (x) := cos [n arccos(x/r)]; 
(ii) Legendre polynomials P,(z); 
(iii) Powers of x; and 
(iv) the polynomials defined by (z 2 - r2) n, -r < z < r; 

other choices can be treated with techniques similar to that developed in this paper. 
The first two are the most commonly used perturbation terms for the Tau Method. If H___n(x ) 

is given as a linear combination of powers of x, the Tau Method can be made to generate the 
approximate solution corresponding to classical power series expansion techniques. Finally, the 
choice (z2 _ r2),, -r < z < r, is relevant to simulation through the Tau Method of approximate 
solutions obtained by using weighted residuals principles in which the last expression appears in 
the formulation of the trial functions. 

In the proof of Theorems I, 3 and 6, our main analytic tool is the recursive formulation of the 
Tau Method as given in [1], which we use to give sharp estimates of the tau-parameter vector for 
each of the four choices for the representation of H_H_n (x) mentioned before. On the basis of these 
estimates in Theorems 2, 4 and 7, we give individual estimates of the truncation error vector 
corresponding to each of our choices. 

Our proofs are constructed for the special case of (1), that is for, a system of linear ordi- 
nary differential equations with constant coefficients. In Theorems 2-4, we consider the case of 
m -- 2, giving upper and lower error bounds for some cases of particular interest. Using the 
same technique as for m = 2, we extend these result to the case of an m x m system with m > 2 
in Theorems 6 and 7. In Theorems 5 and 8, we show tha t  for m x m systems, m ~ 2 and for 
sufficiently large n, the Tau Method vector approximation errors corresponding to per turbat ion  
terms H a ( z  ) defined in terms of a linear combination of either z" ,  T~(x) or P .  (x) can be arranged 
into a hierarchical scale, as follows, for the end point x = r of the interval [ - r ,  r] : 

e_~,Powers(r ) ---- O (n -{- 1)!)  ' where ]c is a constant vector; 

e-,n,Chebyshev(r) ---- O (e_~,Powers(r) ~ n  ) ", 

e-~,Legendre(r) -- O (e-~,Chebyshev(r) n((2n)'')3rn An) ) 
((2n)!)2 

Our results show that the weighted residuals choice leads to the worst error vector per step. At 
the other end of the scale is a Tan Method based on the choice of Legendre polynomials for the 
representation of Ha(x ). The Chebyshev choice follows in accuracy and the power series one 
comes after it, but  with an error increased by a large factor: n 2". 

In Corollary 1, we show tha t  linear combinations of Legendre polynomials lead to a considerable 
improvement  in accuracy at the end point of the interval - r  < z < r, as conjectured by Lanczos 
in [7]. Such conjecture has equivalent forms for other polynomial  methods for the numerical 
solution of differential equations (see [13] and the references to earlier related work by the same 
authors given therein). In Corollary 2, we make a remark on the behaviour of a Tau Method 
approximat ion for a singularly per turbed problem. In Corollary 3, we show tha t  the weighted 
residuals choice is not even acceptable in terms of accuracy for the center point x = 0. 

We give, in this paper,  a number  of numerical examples which show tha t  the est imates used 
in our lemmas and theorems are very sharp. They  are used as one-step error est imates for the 
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step-by-step formulation of the Tau Method of Ortiz [9], showing the accuracy of both our error 
estimates and the step-by-step Tau Method. 

Estimates of the uniform norm IIH,[I of the perturbation term, which is the error introduced 
in the equation by the Tau Method, follow from Theorems 1, 3 and 6. Such estimates are useful 
in the design of adaptive software for the Tau Method (see [10]). 

Our estimates have also a theoretical interest: they suggest that the extraordinary accuracy 
at the end point of the interval which is obtained by using a Tau Method based on a Legendre 
perturbation term is not due to a significantly smaller uniform norm of the perturbation term, 
but to a geometric feature related to the orthogonality properties of these polynomials. The 
relevant results are contained in Lemmas 3 and 4. 

The estimates given in this paper, valid for systems of m x m, m > 2 ordinary differential 
equations with constant coefficients, combined with the results on differential equations with 
approximate coefficients given by El Daou, Namasivayam and Ortiz in [14] make it possible to 
reformulate the estimates given here in the context of non-constant coefficients. Such analysis is 
carried out in a separate paper. 

4. AN E R R O R  ANALYSIS OF T H E  TAU M E T H O D  
F O R  A 2 x 2 SYSTEM OF D I F F E R E N T I A L  E Q U A T I O N S  

Let us consider initially the second order differential equation defined by 

D_y(x) := y"(a:) + B y'(a:) + C y(x) = f(a:), 

y ( - r )  = al,  y ' ( - r )  = a2, 

- r < x < r ,  

(3) 

where B and C are constant coefficients given by 

1 
B := gl +g2 and C := 

gl .g2 gl .g2 

with gl, g2 # 0. Let us introduce the matrix differential operator D to express (3) in the form of 
2 x 2 system of first order differential equations: 

BY(Z) :: (d-~ --1 ) ( y ( Z ) ~ C  B--[- ~z(x)/ ( 0 ),)e(Z) ~z(--r)/(Y(--r)~ (al) (4)a2 • = = • _ v ( - r )  = = _ .  = , 

and associate with it the T a u  P r o b l e m :  

Dv_,~(x)-[.(x)+H___n(x), f o r - r < x < r ,  V n ( - r ) = a .  (5) 

In the case of (3) the vector height h_ is zero, the set $ is empty, since the coefficient C cannot 
be equal to zero, and so is the subspace of residuals Rs  (for details see [1]). Therefore, vector 
canonical polynomials are defined for all indices n E N]. The vector perturbation term is defined 
by 

L-o) to )  1T 
:= := t, . ,  v, . ,v j  

where v.(~) is a polynomial of degree < n in z and the subindex 17 identifies the polynomial 
basis which has be chosen. The two components of the free parameter vector rn,v are fixed to 
satisfy exactly the initial conditions of problem (3). 

We shall choose for V the following four polynomial bases: 

Tn := {Tn(x)}; Pn := {Pn(z)}; Xn : :  {z'~}, and W 2 ,  := {(x 2 -  r2)"}. 

Since canonical polynomials associated with (3) are defined for all n E N, we can assume without 
loss of generality that  f (x)  is a constant. Otherwise, we only have to consider additive terms in our 
arguments, induced by the representation of a non-constant L in terms of canonical polynomials. 
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To construct the vector canonical polynomial sequence q := {Q?)(x)}, k := 1,2; n e N, 
associated with D of (5), we begin by introducing the auxiliary polynomial: 

S,(z)  := (-1)'* g~ n' ~ (g' ~' (-1)txt 
~=0 \ ~ /  g~t! ' 

which is such that 

~ s . ( = )  = (n - k)------5, s . - k ( = ) .  (6) 

The last identity shows that, but for a numerical factor, the polynomials Sn(z) are closed under 
differentiation. In this sense, they resemble the behaviour of x n in the one dimensional case 
(see [1]), when an ordinary linear differential operator D with polynomial coefficients is applied 
to x n to form a generating polynomial D x n. Since differentiation is the only functional oper- 
ation in the expression of (4), this convenient property of Sr is used to generate the canonical 
polynomials associated with the matrix operator D. It can be verified that 

. ° ,  _, 
-s.(~) j c \  s-(~) j 

Let 

we shall use the notation 

..(=) := ~ c~")= i , 
j=e 

j=0 

to indicate a linear combination of the functions u/, j = 0 (1) n, with the coefficients c~ ") of vn(x). 
Taking into account the remark made above on the behaviour of the functions Sr under differ- 

entiation (5) and the expression of H_n(x), we shall choose ui (x  ) := S i (x). Therefore, 

~(z)- (/'~c) = r(').,v (\B ""(s(=))c+~'(s(=)) '~-v.(S(=)) J + rO)"'v (' c ~"(=)-B ¢(cS(*))-*" (s(=))'~v,.(S(=)) J ' 

Let Gn,v(x) be defined by 

1 (Bv,,(S(x)) + v'.(S(x)) 
G.,v(=) := ~ \ -C. . (S(=))  

c ~.(=)-8 ~'(s(=))-.'(s(=)) \ 
C ) 

v.(S(=)) 

Then, on putting x = - r  in ~ - ( f /C ,O)  T and making use of the initial condition y_n(-r) = a, 
we obtain 

G.,v (-~) ~.,v = ~_- 1'/C. 

Let An,v  stand for the determinant of G n , v ( - r ) ,  then 

An,v = v ~ ( S ( - r ) )  2 - v , , ( S ( - r ) )  v g ( S ( - r ) )  + ( - 1 )  n C v n ( S ( - r ) )  
C 2 (7) 

5. ESTIMATES OF THE TAU PARAMETERS 

We shall now take for V the four different choices indicated before, starting with perturbation 
terms given in terms of Chebyshev or Legendre polynomials. Let 

{ l-i{-10 (n - 2s)(n + 2s), if n is even, 

W(j ,  n) := n I'I{=l (n - 2s + 1)(n + 2s - 1), if n is odd, 
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and 
{ l-I~=o (n - 2s + 2)(n + 2s - 1), Z( j ,  n) 

(n + 1) l'I~ 0 (n - 2s + 1)(n + 2s), 
Chebyshev polynomials defined on [-r ,  r] are such that (see [15]): 

if n is even, 

if n is odd. 

~#)(0) = j! ~"), for j _< n, 

while for j = 0 (1)[(n - 1)/21, c~ ) = 0 for odd n and .'(") ~2j+I -- 0 for even n. 
In terms of the functions W(j, n) and Z(j, n), we define: 

and 

T~J)(0) := { ( -1)  ["/~]+['//2] w(b/7l'"), if n + j  is even, 
O, otherwise, 

{ (_1)[,/2]+[i/2] ,! z([i/2],,) 
P $ ) ( 0 )  := ~, 2-[./2],[(,+1)/2],, for n + j  even, 

O, otherwise, (8) 

where [k] stands for the integer part of k. We also recall the notation n!! := n(n - 2) . . .  1, if n is 
odd and nit := n ( n -  2) . . . 2  if n is even. 

It will simplify the statement of our proofs to introduce the following notation 

(r + z) k 
pkj (z ) := (2gj)kk[, j = 1 , 2 ;  k = 0 , 1 , . . . ;  

J~=O (glUt J-v-t 
k - 0  

and 

#(")(z) := 0~ {[e~") (0]= - el") (z) e~0") (.)}; - , -  < ~ < , - .  (9) 

The following lemma gives asymptotic estimates of the derivatives of T, (S(z)) and P,  (S(z)) at 
z = - r ,  which will be required later to fix the initial conditions for y_.a(z). 

LEMMA 1. For sufficiently large n and 0 < v < n, v 6 N: 

T ( v ) ( S ( - r ) )  = (-1) "-v(2n)ttg~-~ O(")(r) [1+O ( 1 ) ]  
2 7" n 

P(v)(S(-r) )  = ( -1)"-v  ( 2 n - i ) " g ~ - V  O(,)(r ) [ 1 + O  ( 1 ) ]  
7,n 

PROOF. From (6) and (9), it follows that 

n 

~=~ (j - k)! s~_~ ( -r )  = ( -1)  k ~ ( - 1 7  .j-k ~, c(")~(~) ~2 J . ~  "~k (r) 
j - - k  

taking into account that c~ ") j! = T(~ j) (0), j < n, and that the latter is the first of the identi- 
ties (8), we find that 

. -v  [./2] 
T (v) (S(-r) )  = (-1)v+lCa+')D] g2 E ( -1) '  W(i, n) e (2') (r) 

7,n 
i = 0  
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if n is even, and 

._~ [.12] 

T.  (~) ( S ( - ~ ) )  = ( -11  ~+(("+l)nl g2 ~ ( - 1 ) '  W(i,.)0() '+~) (~) 
rn  

i=0 

if n is odd. Hence, 

T (~) ( S ( - r ) )  = ( -1 )  "-~ r" e(n)(r) 1 + 0 . 

The proof of the statement for Legendre polynomials follows similarly using the second identity 
in (8). I 

Let n be the degree of v , (x )  in the perturbation term H__.,(z) of (5). Without loss of generality, 
we shall confine the proofs explicitly developed in this paper to the cases 

g 2 < g l < 0 ;  r_<[gl[ ,  f o r n o d d ,  or 

gl <0 ;  g 2 > 0 ;  [gl [<1g2]; r ~ [ g l  [, fo rneven .  (10) 

The remaining cases follow using the same arguments. 
Let us consider (7) again, taking for V either the Chebyshev or the Legendre polynomials, and 

making use of the functions 0 and ~ introduced in (9). 

LEMMA 2. For sufficiently large n, 

A.,v=Jv ~(")(r) I+0 , 

w h  ere  

((2")!!)2 an~ J~o .dro  := ( ( 2 . - -  1)!!) 2 Jchebyshev :-" 4 

i f  any of the conditions (10) are satisfied. 

PgOOF. We wish to show first that q~(")(z) > 0 if the first of conditions (10) is satisfied and 
• (")(z) < 0 if the second one holds. From (9), 

e(~") (z) = gl W,l (z) + ~+~ (~1. 
k=O 

Therefore, 

° 

\ g 2 /  k=0 \ g21  

k=O k=O 

o_1 ] 
p~,l (z) 

k=O 

and 

- = p~,~ (z) ~ p~,l (z) 

k=O 
t, N 4 ~  25,1°G 
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which gives the required signs for ~(n)(z) and shows that it is different from zero if any of the 
conditions (10) is satisfied. The last identity enables us to estimate ~(n)(z): 

for l gl I--_1 g2 I .  

We return to the proof of Lemma 2; from (7), assuming (10) and taking for V Chebyshev 
polynomials, we find that: 

1 
hn,Chebyahev --~ ~-~ { IT:  (S ( - r ) ) ]  2 - T n ( S ( - r ) )  Ttn t ( S ( - r ) )  -}- ( - 1 ) "  C T , , ( S ( - r ) ) } .  

For the the Chebyshev polynomials choice, Lemma 2 follows replacing T~n v) (S ( - r ) )  by the 
estimate given in Lemma 1. The same argument proves the statement for the Legendre polyno- 
mials choice, m 

The Tau vectors r . ,y  are implicitly defined by the system of linear algebraic equations 
a -  (l/C)f_. = G.,v ( - r ) r n , v ,  which is constructed setting the initial conditions of (4) into 
the expression of the Tau approximation _yn(x). 

Let R := [hi C + a2 B - f] /C,  then 

1 ( R  v~ (S ( - r ) )  + a2 v~ ( S ( - r ) ) l C  - vn(-r)]~ 
",.v . -  C ~ . y  \ nCv . (S ( - , ) )  + ~ v ' (S(- , ) )  ; "  

(li) 

The results of Lemmas 1 and 2 shall now be used to estimate the tau-parameters in (11) with 
the choices of the Chebyshev and the Legendre polynomials for V. Let 

L_.(z) := [L O) (z), _L(~)(z)] T, 

where 

L(n j) (z):---- I--Re'n__ ) (z) -b a2gl e(n_.)j(z)] g12-j ¢{-) (z) 

THEOREM 1. For sufficiently large n, and assuming conditions (10) are satisfied, 

(1)] 
v.,v := ( -  1)" g. ,v  L__. ( r )  1 + 0 , 

where 

and 

2 
Jn,Chebyshev "-- (2n)!! 

1 
Jn,Legendre 

( 2 n -  1)!!" 

PROOF. Let us consider first the Chebyshev choice. Using the estimates given in Lemma 1 and 
the first component of rn,v in (11), we find that 

a T '  (S(- , ) )  + .= tC - T . ( - , ) ]  
= (-11 n - '  (2nl! !g2 n - I  

2 r n 
[RO~n)(r)-a2glO~n)(r)] [ 1 + 0 ( 1 ) ] .  

Using the estimate for A n y  given by Lemma 2, with either the Chebyshev or the Legendre 
choices, we conclude the proof of Theorem 1. 1 
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6. E R R O R  E S T I M A T E S  F O R  C H E B Y S H E V  AND 
L E G E N D R E  P E R T U R B A T I O N  T E R M S  

Having estimated the tan-parameters,  we are in a position to give estimates of the error in the 
solution. We need some auxiliary results before proceeding to discuss these error estimates. 

LEMMA 3. Let F(z )  E C (6) [-r,  r], and let 

b0 := r [ ( - 1 )  n+l F ( - r )  - F(r)] ;  bl := 3 r  2 [ ( - 1 )  n F ' ( - r )  - F'( r ) ] .  

Then for sufficiently large n, n > 6: 

/ F(x)  Tn(x)dx  - - -  
r 

,0 ,, 
n 2 - 1  + (n 2 - 1 ) ( n  2 - 4 )  + O  

PROOF. Recalling that  f T .  (z) dz "- (r/2)[T.+lCx)/(n + 1) - T.-ll(n- 1)] plus a constant and 
integrating by parts it follows that  

/ F(z )  Tn(x) := dx I 
I" 

/ j bo r r r F'(x)  Tn-  l(X) dz. 
- .2  _ 1 2(n-+ 1) F ' ( ~ ) T . + I ( ~ ) d ~  + 2 ( . :  1) 

r r 

Repeating the same argument with the last two integrals, 

I -- - - b °  + bl ~- 15r3 ( - 1 )  "+1 f " ( - r )  - F"(r)  + remainder. 
n 2 -  1 (n 2 - 1)(n 2 - 4) (n 2 - 1)(n 2 - 4)(n 2 - 9) 

The  order of the remainder is at most 1In 6, which proves the Lemma. II 

LEMMA 4. Let F(x)  e C (n) [-r,r] and let [dn/dx n] F(x)  be a monotonic function with one sign 
in [ - r ,  r]. 

Then, 

~ F(-t,.)_< 2,...1 F(~)P.(~)e~___ ~ F(t,-), (12) 
I" 

where t = +1 or - 1  according to [d~/dxn]F(x) being an increasing or a decreasing function 
in [ - r ,  r]. 

PROOF. From l~dr igues '  formula 

J; { [ ]  } 
r 1 F(x)  dn 

F(x)  Pn(x) dx := J - (2n)!! r - - - - ' - f f  ~ [(x2 - r2)n] dx, 
r r 

integrating by parts n times, 

J _  - -  

taking into account that  

1 [(r 2 - x2) "1 F(x)  dx, 
(2n)![ r n r 

f /  (2.)!! r (r2 - x2)'~ dx = 2 r 2n+I (2n + 1)![' 

we complete the proof of (12). II 

Let us return to the estimation of the error vector per step e_n,v(X ) := _y.(x) -_y(z)  in a given 
basis V of a Tau Method approximation of the solution of (4). Since D is a linear operator,  
e_n,v(z ) is implicitly defined by a system of differential equations similar to (5), namely 

De , .v (X ) := H_~(z), - r  < x < r, 
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but with homogeneous supplementary conditions: e_, ,v(-r  ) := 0. Assuming the first of the 
conditions (10) we have, that  

1 /[gl I~ r..(z) . .0) ,  
- -  . i n , V j .  ~ ' v ( r )  = 191 0zl \ I ] t , .y lg ,  I -  

f + rn,v exp 
1" 

(13) 

Let us assume that  in addition to the first of conditions (10), either 

(i) 
(as B - I) 

R = a l +  C > 0 ,  a ~ > 0 ,  

which implies that  

L(1)(z) >__ O, L(2)(z) < 0 and - I g 2 l L  (2) (z) - L (1) (z) >_ 0; 

or (ii) 

R = a l +  

which in turn implies that  

(a2 B - I )  
C 

< 0 ,  a s < 0 ,  

L(1)(z) _< 0, L(2)(z) > 0 and - la21L(~2)(z) - L(~Z)(z)  <_ o. (14) 

We shall introduce specific notation for functions which will appear frequently in our discussion; 
for i = 1, 2: 

, 
G(j, i, n) := ~ exp 

2 Igll ~ 
Ui(n) := 2 L(i) (r) [G(2, 2, 0) - 1] Igl ---~21 [Ig21L(2)(r) + LO)(r)] [G (2,1, 0) - G(2, 2, 0)]; 

for i = 1, 2 and j _> 0; 

w~,(.) := 2 IZ~.O(.)lG(j, 2, . )  - 2 Igx I' [Ig21L~S)(r) + L~l)(r)]  G(j, 1, n) - G( j ,  2, n) 
Igl - g21 

for i = 1, 2 and j >_ 0; 

r 2 n + l  r n +  1 

A(n) := g~ (2n - 1)!!(2n + 1)!!; and --(n) := n~g~ (2n)!l 

and with them the vector functions 

U_in ) := (U1(n), U~(n)) x and Wj(n):= (Wit(n), Wj2(n)) T. 

We can now formulate: 

THEOREM 2. Assuming (10) and (14), for sutticiently large n 



Error sn~ysls 99 

and 

PROOF. 

W2(n) A(n)[1 + 0  ( 1 ) ]  _< ~,i~gt.d~(r)_< j tEa(n)A(n ) [ 1 + 0  (-In) ] . 

(i) Assume that  the first two of conditions (10) and (14) are satisfied, then for i = 1, 2 and 
j>_O: 

((g2)n) • Wji-o((g~l) n) (15) v~(n), wj,(n)  >_ o; v,(~) = 0 ~ , 

From Lemma 3, it follows that for any sufficiently differentiable function F(z): 

/_ ,o 
F ( ~ )  T . ( ~ )  d~ = . ~  _ 1 

r 

Let us replace this estimate in (13) and let us take Vn(Z) := Tn(z). If we now use the first 
of the estimates of Theorem 1, we obtain the first of the estimates of Theorem 2. The 
second follows with a similar argument, taking for V the Legendre polynomials choice. 

(ii) Let us now assume that the second two of conditions (10) and (14) are satisfied. For i = 1, 
2; j >_ 0 let us introduce the starred functions U* and W*: 

g2 - g---~ I t [  + (-gx - g2) 2-' (r) 1, - 

1 iP-O(r)lCI tG(2, 1, 1) + G(-2 ,  2, 1)] + ] ~  + 

and 

w;,(.) := 8 {(-1)i+XL(2-i)(r)[G(j,l,n+l)+G(j, 2, n+l)] + 

[(_l)2-i(gl+g2)2-iL(1)(r)_ (2 -/)L(2)(r).] } 
ICI ] [G(j ,  1, n) - G ( j , 2 ,  n)] . 

In analogy with (15), for { = I, 2 and j > 0, 

The proof of the second case of (10) and (14) follows immediately by using the same arguments, 
but considering the corresponding starred functions instead of U and W. I 

From Theorem 2, we can immediately deduce an interesting comparison of the effect of using 
Chebyshev or Legendre perturbation terms on the error per step at the end point of the interval 
in a Tau Method approximation. Such comparison explains Lanczos' conjecture concerning the 
remarkable accuracy of Tau approximations based on Legendre polynomial perturbations terms 
at the end point of the interval of approximation. The following proof, which holds true for vector 
Tau approximations and hence also for the case of simultaneous approximation of function and 
derivatives is immediately applicable to collocation, since for the constant coefficients case both 
methods can be made equivalent (see [2]). 

COROLLARY 1. For sufficiently large n, 

( n((2nl')ar") 
e.e_n,Legendrc(r ) = O e--n,Cheby,hev ((2n)l)2 g~ • l 
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Table 1. Estimates of the components of the tau vector ~rn, v :~- ~ n,v" n,vJ 

obtained using the results of Theorem 1. 

Exact 

E s t i m a t e d  r ( s )  V 

V : =  C h e b y s h e v  b a s i s  V : =  L e g e n d r e  b a s i s  

E x a m p l e  i - -  1 i - -  2 i - - 1  i = 2  

4 . 9 7 6  D - 3 3  4 . 9 7 6  D - 3 1  1 .935  D - 3 2  1 . 9 3 5  D - 3 0  
1 

4 . 9 7 0  D - 3 3  4 . 9 7 0  D - 3 1  1 .932  D - 3 2  1 . 9 3 2  D - 3 0  

1 . 4 7 7  D - 0 8  1 . 4 7 7  D - 0 6  3 .001  D - 0 8  3 . 0 0 1  D=08  
2 

1 . 4 7 6  D - 0 6  2 . 9 9 9  D - 0 8  2 . 9 9 9  D - 0 8  

6 . 2 5 5  D - 1 2  3 . 1 3 2  D - 1 2  1 . 4 9 3  D - 1 1  7 . 4 7 6  D - 1 2  
3 

6 . 2 5 0  D - 1 2  3 . 1 3 0  D - 1 2  1 .492  D-11  7 . 4 7 0  D - 1 2  

• E x a m p l e  1: a l  = 2 .0;  a2  : 1 .0;  f : 0; n = 5; g l  - -  - 0 . 0 1 ;  g2 --- - 1 . 0 ;  r = 0 . 0 0 3 .  

• E x a m p l e  2: a l  = 2.0;  a2  - -  1.0;  f - -  0;  n - -  5; g l  = - 0 . 0 1 ;  92 = - 1 . 0 ;  r = 0 . 0 0 1 2 .  

• E x a m p l e  3: a l  = 10.0;  a2  : 1.0; f : 0;  n - -  7; g l  --- - 2 . 0 ;  g2 = - 5 . 0 ;  r - -  0 . 2 8 .  

T a b l e  2a .  E s t i m a t e s  o f  t h e  c o m p o n e n t s  o f  t h e  e r r o r  v e c t o r  e_n,Chebyshev o b t a i n e d  
u s i n g  t h e  r e s u l t s  o f  T h e o r e m  2. 

E x a m p l e  

1 

E x a c t  E s t i m a t e  

1 . 3 5 7 8  D - 2 7  1 . 3 2 5 0  D - 2 7  

1 . 3 5 7 8  D - 2 5  1 . 3 2 5 0  D - 2 5  

2 5 . 7 0 9 9  D - 1 2  5 . 3 5 4 2  D - 1 2  

2 . 8 5 5 5  D - 1 2  2 .6771  D - 1 2  

3 2 . 5 1 8 0  D - 1 3  2 . 3 9 3 7  D - 1 3  

2 . 5 8 7 6  D - 1 4  2 . 4 6 0 2  D - 1 4  

a E x a m p l e  1: a 1 ---- 2 .0 ;  a 2 - -  1.0;  f = 0; n = 19;  g l  = - 0 . 0 1 ;  g2 = - 1 . 0 ;  r = 0 . 0 0 9 ;  

• E x a m p l e  2: a l  - -  10 .0 ;  a2  - -  1.0; f = 0;  n = 11; g l  - -  - 2 . 0 ;  g2 = - 5 . 0 ;  r --- 1 .9 ;  

• E x a m p l e  3:  a l  - -  176 ,0 ;  a2  - -  1.0;  f ~- 1.4;  n ~- 13; 91 = - 1 0 . 0 ;  g2 - -  - 1 1 . 0 ;  r - -  9 .8 .  

T a b l e  2b .  U p p e r  a n d  l o w e r  e s t i m a t e s  o f  t h e  c o m p o n e n t s  o f  t h e  e r r o r  v e c t o r  l i n e b r e a k  

e n ,Legendr  e o b t a i n e d  u s i n g  t h e  r e s u l t s  o f  T h e o r e m  2. 

E x a m p l e  L o w e r  e s t i m a t e  E x a c t  U p p e r  e s t i m a t e  

1 - 7 . 7 6 7 7  D - 6 8  - 5 . 7 0 1  D - 6 8  - 4 . 2 1 3 4  D - 6 8  

- 7 . 7 6 7 7  D - 6 6  - 5 . 7 0 1  D - 6 6  - 4 . 2 1 3 4  D - 6 6  

2 - 5 . 7 6 2 4  D - 2 4  - 5 . 0 5 2 1  D - 2 4  - 4 . 3 5 5 1  D - 2 4  

- 2 . 8 8 1 2  D - 2 4  - 2 . 4 8 7 4  D - 2 4  - 2 . 1 7 7 6  D - 2 4  

3 - 7 . 3 3 3 5  D - 2 2  - 4 . 9 1 7 0  D - 2 2  - 3 . 2 4 2 1  D - 2 2  

- 7 . 4 7 5 8  D - 2 3  - 5 . 0 1 9 7  D - 2 3  - 3 . 3 3 0 9  D - 2 3  

• E x a m p l e  1: a l  ----- 2.0;  a 2 -~- 1.0; f = 0; n ---- 19;  g l  ---- - 1 0 . 0 ;  g2 ---- - 1 . 0 ;  r ---- 0 . 0 0 3 ;  

• E x a m p l e  2: a l  ---- 10 .0 ;  a2  ---- 1.0;  f ---- 0; n ---- 7; g l  ---- - 2 . 0 ;  g2 ---- - 5 . 0 ;  r -~ 0 .28 ;  

• E x a m p l e  3:  a l  - -  176 .0 ;  a2  --- 1.0; f = 1.4;  n = 9;  g l  = - 1 0 . 0 ;  g2 = - 1 1 . 0 ;  r --- 4 .0 .  

7. SOME NUMERICAL ESTIMATES FOR CHEBYSHEV 
AND LEGENDRE PERTURBATION TERMS 

In Tables 1 and 2, respectively, we report numerical results which illustrate the sharpness of 
Lemmas 1-4, on which Theorems 1 and 2 depend. In these and other tables, D - k  stands for 
10 -k. 
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8. ERROR ESTIMATES FOR POWER SERIES 
AND WEIGHTED RESIDUALS PERTURBATION TERMS 

Using the same arguments as in the proof of Theorem 2, we deduce: 

THEOREM 3. For sufficiently large n, 

rn,power (-1)n L'~(r) [ ( 1 ) 1  L__.2n (r , [1 + ( 1 ) 1  = g~ n[ 1 -I- and 'r2n,Weighted -- #2n(2n)~. , 

i f  the first or second of conditions (10), respectively, are satisfied. 

We introduce some auxiliary functions to simplify the formulation of our results. Let: 

M~j l) (2n) := 

where 

and 

~ (2 . ) := (M,(/)(2.), U,(7) (2.)) T , 

(92 - gl) j [ G ( j , I , 0 ) - G ( - j , 2 , 0 ) ]  - -  

+ i "-'2. r(1) (r) G(j,  1, 1) +lciG(-j, 2, 1) } , 

Lil) (,)) 
ICl 

I01 

(16) 

N..~(,) ~en,Power(, ) ~N_N.2(,), 

wh ere 

and 

where 

N~0 (2.) < ~-=.,w,~sht~ (r) < N ~  (2.), 

2 1 + 0  , i =  1,2; j = 0,2, 

&("):= g ~ ( . + 1 ) !  1 + o  , j - 0,2, 

if the second conditions of (10) and (14) are satisfied. 

The same analysis applies when the alternative conditions in (10) and (14) are chosen. 

lower error estimates for e_,,power(r): 

THEOREM 4. For su~ciently large n, 

ga  - g~ I C l  " 

We shall assume that R = al + (a2B - f ) / C  <__ O, a2 <_ 0 and n > 1 and remark that 

M~  )(2n)>_0 and M~ ) ( 2 n ) = O \ \ ~ - I /  J '  f o r i , j , k = l , 2 .  

The same arguments as those used in the proof of Theorem 2 lead to the following upper and 
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9. AN ANALYSIS O F  T H E  R E L A T I V E  A C C U R A C Y  TO BE O B T A I N E D  USING 
D I F F E R E N T  P E R T U R B A T I O N  T E R M S  IN T H E  TAU M E T H O D  

If we take take 2n instead of n in the first of the estimates (16) given by Theorem 3 for the 
tau-parameters and compare it with the second, we find that  they are of the same order in n. A 
comparison of the corresponding error bounds for x = r shows, instead, that  

e2n,Power ( r )  = e_2n,Weighted ( r )  O ((2--nn : 1)![ ~.  \ (2,,)!!) ' 

this indicates that  the choice (z 2 - r2) n asymptotically is at disadvantage at the end point of 
the interval if compared with the vector error corresponding to power series. In the following 
theorem, we compare the latter with those resulting from the choice of Chebyshev or Legendre 
polynomials for the perturbation term. 

THEOREM 5. For suff iciently  large n, 

• ~,Powor (~) = O(r"Ug~ (n + 1)!), where k is a const~.t vector; 
• ~,Choby.hev (~) = O(~,power (~) 1/2" n) ~ .d  
• e n,Legendr e (r) = O( e_~,Chebyshev (r) n ((2.)!!) 3 rn/((~.)!) 2 g~). I 

COROLLARY 2. The asymptotic behaviour of the functions Uk (n), Rjk (n), M ~  ) (n) shows that  
the size of gt plays an important role in the rate of convergence of Tan Method approximations 
when Legendre polynomials are chosen for the basis V. Clearly the case when Igll --* 0 corresponds 
to the singularly perturbed problem 

with e = gig2 = 1 / C  and gi + g2 = B / C .  

The following result shows that  the choice (x 2 - r2) n is not even attractive at z = 0. 
estimation of e_2n,Weighted (0) gives the following upper and lower error estimates: 

COROLLARY 3. For suff iciently  large n, 

| 

An 

N;o (2.) g; __< e2n,Weighted (0) < "/Vll ( 2 " )  
- g ~  ' 

while  

where  

and 

r2n+l [ I l l ]  
e2n,Chebyshev (0) ---- _EE2n g2n n ~ (4n)[! 1 + O , 

1 ( -.~/ICl-~, ) 
E~ := 2(g 2 __ gl) ~k°tl -F (~2 -F ~)/ICl 

(17) 

_ ,  [ ( i  
ai . -  L_~ (r) G ( - 1 ,  2, 0) - G(1, 1,0) + ( -1)  l+n/2 r I~l 

fli := ~ (r) [G(1, 1, 2i - 3) + G( -1 ,  2, 2i - 3)]; 

-),-= _(_ l ) l 'Fn/2r  ig112 Ig212 • 

1)] 
i ~ l  ' 

II 
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10. THE CASE OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

Let us now return to the system of ordinary differential equations defined by (1) and to the 
associated Tau Problem defined by (2). The results discussed in the previous sections can now 
be formulated in the context of systems of linear ordinary differential equations with constant 
coefficients of order m x m, with m _> 2. 

We begin, as we did before in the case m = 2, with the estimation of the tau-parameters. Let 

:= [exp(-r A)] ( ~ -  A - I D ;  

let I be a unit matrix and let O ( .  k) stand for a matrix of order m x rn with no entry larger than 
O ( . k ) .  Then, 

THEOREM 6. For sufficiently l a r g e . ,  

rn+l An+l  ( -1 ' 0  { I + O  ) } A  n+l 

2rn An+I I + - -  + O  G; 
r . , C h e b y s h e v  - -  (2.)!!  4 ( .  -- 1) 

rn'Legendre -- (2.  - 1)!! An+l I + 2(2. - 1) + O G. 

The previous results enable us to estimate the error per step for each of these three choices of 
perturbation term in a step-by-step formulation of the Tau Method. 

THEOREM 7. For sufficiently large . :  

e_.,power. (z) = ( .  + 1)! exp(-(x  + r) A) + ( -1)  n - r /  I I + O G; 

- 2 r n + l  A"+I [ r2A2 (~-~2) ] 
e_n,Chebyshev(r) = ~ - ~ :  i~)(--~n)l.![I+ (--1)n e x p ( - 2 r A ) ]  I +  4 ( . _  1- - - - -~  + O  G; 

2~2-+lA~-+lB. ( ~A 2 (~)} 
e_n,Legendr e (r) = ( ~ :  ~ ) ~ ~ ) ! !  I + 2(2n -- 1) + 0 G, 

wh ere 

~ ( - 2 r A ) J  J . + i  
H B .  

j! ~ 2 n + i + l "  
I 

j=0 i=1 

With this last Theorem it is possible to compare the relative effect of the choice of power 
series, Chebyshev or Legendre polynomials for the representation of the vector perturbation term 
H__n(x ) on the one step error of a Tau Method approximate solution of an m x m , m  > 2 system 
of ordinary differential equations with constant coefficients defined by problem (1): 

THEOREM 8. For sufficiently large n, the one step error at the end point z = r of  a step-by-step 
formulation of  the Tau Method with a perturbation term defined by a linear combination of  terms 
of  one o f  the three choices: x n, Tn(z)  or Pn(z) ,  is given by the following scale of estimates: 

• ~ ,Powe.  (r) = o ( r -  A" ~ ( .  + 1)! ), where k is a const~t  vector; 
• e n,Chebyshev (r) = O( e_rt,Powers (r) l / n 2  '~ ); 
• e__n,Legendr e (r) = O(e_.,Cheby.hev ( r ) .  ((2.)!!) 3 r n An/((2.)!)2), 

respectively. | 

Further details of the proofs of theorems 6-8 are given in [16]. 
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