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ABSTRACT 

A multi-variable theta product is examined. It is shown that, under very general choices of the 
parameters, the quotient of two such general theta products is a root of unity. Special cases are ex- 
plicitly determined. The second main theorem yields an explicit evaluation of a sum of series of 
cosines, which greatly generalizes one of Ramanujan’s theorems on certain sums of hyperbolic co- 
sines. 

1. INTRODUCTION 

Motivated by a fascinating identity involving a quasi-theta product in Rama- 
nujan’s lost notebook [8], [4], we examine in this paper a certain, very general 
multi-variable theta product. For k + 1 complex variables ~1 i . . , uk, w, k 2 1, 
define 

(1.1) &(ttl,...,ttk;t’“) := fi 
1 +(-l)j~+.~.+jkWU:ji+l...U~+l 

2jl+ 1 j,,..., jk=O 1 - (-l)jl +...+jkwUt 2jkfl . uk 

Throughout the paper, we assume that 0 < lut 1, , /I& < 1. The product 
on the right side of (1.1) converges for any w not of the form 
(-l)jl+.-+jkU-2jl-l.. .u-2jk-1 

1 k withjr, . , j, E N, and so, as a function of w, 
h(fQ,..., uk; w) is meromorphie. 

Whenk= 1,ut =q,andw=q,then 
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30 1 + (-l)jq2j+2 
m3vd = n j=. 1 - (-l)j++z = jJ : t ;:;::jDl &$ 

= ; 1 - qsj-4 (1 - q4j)2 _ g2cq2) 
j=l 1 - q8’ (1 - q4j-2)2 - $(q4) ’ 

where we have used the well-known product representation [3, p. 36, Chap. 16, 
Entry 22(ii)] for the theta function $(q) (in Ramanujan’s notation), 

$(q) := n$O qn(“+ 1)/f 141 < 1. 

Thus, in this instance, (1.1) reduces to a quotient of classical theta functions. 
Section 2 is devoted to proving our two main results. Our first theorem shows 

that for very general choices of the parameters 0 < Iui 1, . . . ,l~kl < 1, the quo- 
tient of two functions (1.1) is a root of unity when we take the two choices of w 
to be reciprocals of each other. Our second theorem gives an evaluation of a 
sum of k + 1 infinite series involving cosines. 

In Section 3, we provide applications. First, we show that Theorem 2.2 yields 
a vast generalization of the following identity of Ramanujan found in Entry 15 
of Chapter 14 of his second notebook [7], [2, p. 2621. Let cr, /3 > 0 with 
a@ = ~~14. Then 

(1.2) nE* (2n + 1) 
(-1)” (-1)” 

cash{ (2n + l)o} + n!o (2n + 1) cosh((2n + l)p} = :’ 

We next examine special instances of Theorem 2.1. In particular, we give new 
explicit evaluations of certain infinite products. 

2. MULTI-VARIABLE PRODUCTS 

Our first objective is to prove the following transformation formula. 

Theorem 2.1. Let Al,. ,Ak+l and A be complex numbers such that 
Al,...,&+1 are nonzero and the quotient of any two of them is nonreal. For each 
distinct pair (Z,j), 1 5 I, j 5 k + 1, denote ql,j = exp(+riAl/(2Aj)), where the 
sign & is chosen SO that [ql,jI < 1. We also set qj = iexp(nA/(2Aj)) for 
1 <j<k+l.Then 

k+l Fk(ql,j,.. . ,qj-lj,qj+l,j,.. 
(2.1) rI 

I qk+l,ji 4j) 
j=l Fk(ql,j:...,qj-l,jlqj+l,j,...,qk+l,j;~) 

The form of (2.1) is not surprising, for in the ‘inversion’ formulas for classical 
theta functions, roots of unity arise. We will derive Theorem 2.1 from the fol- 
lowing result. 

Theorem 2.2. Let Al,. . . , Ak+ 1 be nonzero complex numbers with the quotient oj 
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any two of them nonreal. Then for any complex number A, with IAl small enough in 
terms of Al, . . . , Ak+ 1, 

k+l 03 

Proof of Theorem 2.1. We first derive a convenient expression for 
logFk(ur, . . . , uk; w). Taking logarithms on both sides of (1.1) we find that 

(2.3) 

log~k(~‘,...,~k;W) = 5 log(l + (-l)ji+~-+jkWU:jl+*. . .Up+l) 
j,,...,j,=O 

__ 5 log(l - (-l)jl+-.+jkWUfjl+l.. .Uptl) =: s1 - s2, 
jl;...;jk=O 

Here and in the next step, we have ignored branches of the logarithm. The jus- 
tification lies in our eventual proof of Theorem 2.2. Using the Taylor series of 
log( 1 + z) about z = 0, we find that 

(2.4) 

By replacing w by --win (2.4) we find that 

(2.5) s, = (WU’ . . U/y 

-,Zl m(1 - (-z.$)“) . . (1 _ (-g)“) 

Thus, substituting (2.4) and (2.5) into (2.3) we deduce that 

bgl”k(u’, . , uk; w) = E 
(WU’-.Uk)m(l - (-1)“) 

m=l m(1 - (-z$)“)...(l- (-u,$)“) 
(2.6) cc (WU’ zqy 

=2mG1 m(l+u~m)...(l+u~“). 
m odd 

Since u1 j . . i ulC are nonzero, we may write (2.6) in the form 

log h(Ul, . , WC; w) 

(2.71 =a5 
W2n+l 

n=~ (2n + l)(uy+’ + ~;~~-l). (24~” + ~4;~~~‘) ’ 
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If we apply (2.7) with w replaced by l/w and use the symmetry of the denomi- 
nator on the right side of (2.7) with respect to the transformation 
2n + 1 + -(2n + I), we find that 

(2.8) 
log+,....d) 

W2n + 1 
= -2ng1 pn + l)(q+’ fU,9.. . ($” +U;2n-1) . 

Note that the series on the right side of (2.7) converges absolutely for any w 
with [WI < l/lui . . .u,J, while the series on the right side of (2.8) converges for 
any w with 1~1 > Iui . . . ukl. It follows that 

logFk(q,...,uk;w) -1ogFk q 

(2.9) 

( dk;;) 

w2rz + 1 

=$Cm (2n+l)(u:“+1+U,2”-1)...(U~+1+Uk2n-1)’ 

for any w in the annulus 

(2.10) IUi . . . z&l < jwl < 
1 

Iu1 . . . z&l. 

Now recall that Ai,. . . ,&+I are nonzero complex numbers with the quotient 
of any two of them nonreal. Also, recall that A is a complex number with IAl 
small enough in terms of At, . . . , Ak+ 1, such that (2.2) is valid and such that for 
any 1 <j 5 k + 1, (2.10) holds with ~1, . . . , uk and w replaced by qi,i, . . . , qj- i,j, 
qj+ l;jl . . 7 qk+ I,j, and qj, respectively. Then, taking into account that 

2 cos (2n + lh% 
2Aj 

= $+I+ ,;?,-1, 

from (2.2) and (2.9), we deduce that 

Y( lOgEi,(4l,j,. . . > qj- I,j, qj+l,j, . . . > qkf l,j; qj) 

(2.11) j=’ 

-lOgFk q~,j,...,qj-l;i;qj+1,j,...,~k+I,j;~ 
( J >> 

=$. 

By exponentiating both sides of (2.11) we obtain (2.1) for any A with IAl small 
enough in terms of Al, . . . , Ak+ 1. Then the general form of (2.1) follows by 
analytic continuation, and this completes the proof of Theorem 2.1. 0 

Proof of Theorem 2.2. Let Al,. . . , Ak+ 1 and A be as in the statement of Theo- 
rem 2.2 and define the function 
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f(z) = 
eAz 

ZCOSAlZ~~ .cos&+1Z 

The function f (z) is meromorphic in the entire complex plane with a simple 
pole at z = 0 and simple poles at z = (2~2 + 1)7r/(2Aj) for each integer IZ and 
each integerj, 1 < j 5 k + 1. Let y&,, be a sequence of positively oriented circles 
centered at the origin and with radii R, tending to 00 as m + 00, where the 
radii R, are chosen so that the circles remain at a bounded distance from all the 
poles off(z). From the definition off, it is easy to see that f(z) decays ex- 
ponentially as IzI + 00 provided z remains at a bounded distance from the 
poles off and IAl is small enough in terms of A 1, . . , Ak + 1. It follows that 

as R, -+ 00. 
Let R(a) denote the residue off(z) at a pole a. Then, brief calculations show 

that 

(2.13) R(0) = 1; 

for each integer n and each j E { 1, . . , k + l}. Hence, using (2.13), (2.14), and 
the residue theorem, we deduce that 

&J' f(zW 
W,, 

(2.15) 
kfl 

=l+js ,2 +l,gR A, n V!JT 

Letting Rm tend to cc in (2.15) and employing (2.12) we conclude that 

k+l 30 
(2.16) 0=1+ c c 

2(-ljtt+le9 

j=l n=--co T(2?2+ l)fl,<~<k+l,rfjCOS~. - - 

This gives (2.2) and the theorem is proved. 0 

3. APPLICATIONS 

In this section we derive some applications of Theorems 2.1 and 2.2. We begin 
with Theorem 2.2. 

If we set k = 1 in Theorem 2.2, then, subject to the prescribed conditions on 
A, Ai, and AZ, (2.2) takes the shape 
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Set 

A = 0, =42 . 

2A1= za 
(a > (9, and ~AI 

- = -i,0 
2A2 

(,B > 0). 

Thus, @ = 7?/4, and (3.1) reduces to the identity 

(3.2) .z, (2n + 1) 
(-1)” c-v 

cash{ (2n + 1)~) +,scm (2n+l)cosh{(2n+1)/3}=5’ 

which is obviously equivalent to (1.2). As mentioned in the Introduction, this 
identity can be found in Ramanujan’s second notebook [7, Chap. 14, Entry 151, 
[2, p. 2621. The first proof was given in 1925 by S. L. Malurkar [5], but because 
the notebooks were not made available to the general public until 1957, he did 
not realize that he had proven a result from Ramanujan’s notebooks. In 1951, 
T. S. Nanjundiah [6] gave another proof. Finally, Berndt [l, pp. 176-177, 
Proposition 4.51 offered a further proof in 1977. We emphasize that all the au- 
thors cited above, in fact, found generalizations of (3.2). The generalizations 
proved in this paper are different and seem to be new. 

For a second example, let k = 2 and A = 0. For w := exp(27ri/3), set 

A2 Al 
-=aw, -=pw, 
Al A3 

and A3 
- = yw, 
A2 

where a, /3 and y are positive real numbers. Thus, by Theorem 2.2, if a, ,8, and y 
are positive real numbers such that a& = 1, then 

E 
(-1)” 

n=-cc (2n + lqcos((2”+;~-) ,,,(~) 

(3.3) + 5 
(-1)” 

?I=--co pn + 1) Cos((2n+:)@q ..,(~) 

(-1)” 

+ .E, (Zn + 1) COs((2n+;)Tq cos((2n;p”) = 4. 

In particular, if a = p = y = 1, then (3.3) reduces to 

E (-1)” 
n=o (2n+ 1)cos ~ ((2Mpd) cos((2”+;~““) = 6. 

The latter two equalities and all such multi-sum identities arising from Theo- 
rem 2.2 are apparently new. 

We now consider applications of Theorem 2.1. 
We see from the definition of Fk that 
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(3.4) Fk(ul i . . .;@-,‘“) = 
1 

&(UI,...,uk;w). 

If we set A = 0 in (2.1) then qj = i for 1 2 j 5 k + 1. Using also (3.4) we find 
that 

(3.5) n ~k(ql,j,...,q~-l,j,qj+l,j~...,~k+l,j;i) 

Taking square roots on both sides of (3.5) we obtain 

k+l 

(3.6) n Fk(ql.j,...,qj-I;j,qj+l,jl...,qkil;j;i) =fexP & 
j=l ( ‘1 

In order to determine the sign * on the right side of (3.6), we use (3.4) with 
w = i to deduce that 

(3.7) klg&(UI,. . . , uk; l/i) = log&(ul,. . . , Uk; -i) = -log&(&, . . . , uk; i). 

Then, combining (2.9) and (3.7), we obtain 

logIt;k(ul, . . , uk; i) 

(3.8) O” (-1)” 
=zncco (2n+l)(u:n+l+Uy2n-l)...(U~+1+U~2n~1)’ 

In particular, for anyj E { 1, , k + l}, the equality (3.8) gives 

(3.9) 

logFk(qlj, . , qj-lj, qj+l.j, ) qk+lj; j) 

(WY 
(h+ l)&r[-;k+l.[#jCOs~ 

If we add the equalities (3.9) for j = 1, . . . , k + 1, then exponentiate both sides 
and use (2.2), we obtain 

k+l 
(3.10) n lik(ql,j,...,qj-l,j,qj+l,j,...,qk+l,j;i) =exP 

j=l 

An interesting particular case arises when Aj = exp (2rij/(k + l)), 1 I j I 
k + 1. We need the quotient of any two of them to be nonreal, and for this 
reason we choose k to be even, say k = 2~. Note that for any j E { 1, . ,2r + 1) 
the numbers Al/Aj, AZ/A,, . . . , Aj-l/‘Aj, Aj+l/Aj,. . . ,Azr+l/‘Aj coincide 
in a certain order with the numbers AI,. . . , AZ+ Therefore, the set 
{ql,j, . 7 qj- l,j> 4j+ l,j, ’ . , qzr+ i,j} is the same for any j and coincides with the 
set {exp(f+A1/2), . . , exp(fniA2,/2)}, w h ere the signs are chosen such that 
j exp(iriAj/2) / < 1, 1 < j < 2r. Since Im Aj = sin(27rj/(2r + 1)) is positive for 
1 5 j < r and is negative for r + 1 < j 5 2r, the choice of the signs above will be 
‘plus’ for 1 < j 5 r and ‘minus’ for r + 1 < j < 2r. From the definition (1.1) we 
see that Fk(Ui, . . , Uk; w) is symmetric in Ui, . , Uk. In our particular case, it 
follows that all the factors on the left side of (3.10) are equal, and coincide with 
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aiA[ 12 , . . . ,e aiA,/Z 
,e 

-xiA,+,/2 
,“‘> 

Thus (3.10) gives 

(3.11) p2r(eviAl!2,. . . ,e”iAr/2,e-~iA~+l/2,. . ,e-riA2rP; i))2r+1= exp(&). 

Then from (3.11) it follows that there is an integer h, 0 I h < 2r, such that 

~~~ (,siA,/2, . . . , ed%/2, e-~4+1/2, . . . , e-~i&/2; i) 

In order to determine the value of h in (3.12), we again rely on Theorem 2.2. 
Since-in our case the left side of (3.9) is the same for anyj E { 1, . . . ,2r + 1) and 
coincides with 

by combining (3.9) and (2.2) we find that 

(3.13) logF~~(e”iA1/2,...,esiAr/2,e-~iAr+1~2,...,e-~iA2r~2;i) = c2r+G22r+I. 

Exponentiating both sides of (3.13), we find that 

(3.14) F2,. ( eTiA112, . . . , eTiAr12, ePiAr+ 1i2, . . . , e-viAzrJ2; i (2r + G22r+ ,) 

Note that the left side of (3.14) has the form 

Fzv (pIei”, p2eiQ2, . . , pveier , preHiBr, . . , p@, pIePie ; i) , 

where pj = exp(- qsin&) and 0, = $COS&, for 1 5 j < r. From the defini- 
tion (1.1) we see that for any real numbers pi,. . . , pr, 01,. . . , Oy with 0 < pj < 1 
for 1 Fj<v, 

F2, (pIei”, p2eieZ, . . . , p,.eiO’, p,eeisr, . . . , p2e-ie2, pIePi”; i) 

fi 
j~,h,...,jJ~=O 

1 + i(-l)j,+...+j,+I,+...+j, IX= 1 (pm@, 
)2im+l(p,e-i4,1)2h+1 

(3.15) ’ 1 - i(-l)j~+~~~+j~+~~+~~~+I,~~=,(pme~~m)2j~+l(p,e-is,)~~,+~ 

X 
1 +i(-l)ji+...+j,+1,+...+1, 2(A+h+l) . . 

Pl 
.p~(j~+‘~+‘)e2i8,(jl-I,). . .,zie,(i,-11) 

1 - i(-l)jl+~~~+j,+l,+...+j~p~(il+~l+l!, . pFGr +& + ‘)&Bl(jl -II) . . . e2iOr(jr -I,) . 

In our case we may write 
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and 

(3.17) e2i@i 0’1 ~ II) . . ,2&Cjr - 1,) 2rrm = exp ri 6 (jm - In,) cosp . 
m=l 2u+ 1 

Combining (3.14)-(3.17), we obtain the following result. 

Theorem 3.1. For each integer r 2 1, 

fi 
jl,4,..&~,=0 

(3.18) x 
1 + j(-l)j~+...+j~~l~+--.~C.,-aC~=,(i~ +~m+I)sin~+~~C~,,=,(i,-~,)~o~~ 

1 - j(-l)ii+~..+j~+l~+.~.+l~e --7iC:n=,G.“1+Im+1)sin~+?iiC:~=i(i,,,-I,,)c0s~ 

= exp 
( (2r-;;22'+' . 1 

Let us write down explicitly the left side of (3.18) for the first two values of Y. 
If Y = 1, then (3.18) reduces to 

Tr l++l) 
j+‘exp(-7r(j + 1+ 1) sin(27r/3) + ri(j - I) cos(2~/3)) 

(3.19) j,l=O 1 - i(-l)j+‘exp(-+r(j + I + 1) sin(27r/3) + ri(j - I) cos(2~/3)) 
= eTi/24 

On the left side of (3.19), make the substitution n = j + I+ 1 and note that 

exP 
( 
+(j - I) COST 2,> =eXprq) = jl-j, in-1-2j= in-l(-l)j, 

Then (3.19) becomes 

In the inner product on the left side of (3.20), the contributions of any two 
consecutive values ofj cancel each other. Sincej takes exactly yz values, we de- 
duce that, if n is even, then the inner product above equals 1, while if IZ is odd, 
say y1= 2k + 1, then the inner product equals 

1 + p-qp’e-“m = 1 + +])ke-w+lW2 

1 - p-q-‘e-md/2 1 _ +qke-“(2k+1)dq2 

Thus (3.20) reduces to 

w 

(3’21) 

1 + j( _ l)ke-Gk+ l)d3/2 

k!!o 1 _ j(-q+r(x+l),h/2 = eni’24’ 

The evaluation (3.21) can be formulated in terms of Dedekind eta-functions. 
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Recall that, for 4 = exp(27&), Im r > 0, the Dedekind eta-function ~(7) is de- 
fined by 

q(7) := p2”/24nfJ (1 - py. 

A brief calculation shows that 

(3.22) afjo (1 - gn+“2) = 4 l/48+) 

v(r) 

Observe that if we set r = f i + i iv’!? in (3.22) we obtain, respectively, the de- 
nominator and numerator in the product (3.21). 

This last part of the reasoning works in more generality. To be precise, for 
any complex number u with 1~1 < 1 and any w for which Fz(iu, U; W) is defined, 
we can use the same reasoning as above to show that 

m 1 + iWU4k+2 
Fz(iu, u; w) = n 

k=O 1 - iwu4k+2’ 

Returning to (3.19, in the case Y = 2, we obtain 

i?i 
.il,j2,h,h=O 

(3.23) x 1 + i(-l)jl+j2+ll+L2e -nC~=,0.,+l,$-l)sin(27im/5)+~iC~=l (j,,-lm)cos(2m/5) 

1 - i(-l)ji +j2+4 +lze -rCi=, (im+I,+1)sin(2~m/5)+aiC~=, (jm -I,)cos(27rm/5) 

We now use the equalities 

sin?= &5z, sinc= m 
5 4 5 4 ’ 

and 

and make the substitutions ~11 =ji + It + 1, n2 = j2 + 12 + 1, n = ji - j2, and 
j = jr. Then the numerator on the left side of (3.23) equals 

1 + q-1) nl+n2,-a(~,~~tn2Jlo-2\/3)+~((n*~ ~~t2/'~-2/2)\/5+nitnz~Zj~-2jz-Z) 

(3.24) = 1 + i-j1 -j2(-l)m +Qe-@l ~~+nz~~)+$((n*-nlt2j, m2jZ)J5tni+n*) 

= 1 + iti(-l) nl+n2+ie-t(nl~~+nz~~)+$((n2-n,+2n)JS+n,+n2) 

If we denote 

(3.25) A= {(m,m,n,j) :jl,.hh,b EN}, 

then, by (3.24) (3.23) becomes 
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rI (nl,nz,n,j)EA 
(3.26) x 1 + P(-1) n1tnz+j~-$(n~~~+n~~~)+~((~~-,~,+2~)JS+~,+~~) 

1 - P(-1) 1z1+n2+je-$(n1~~+n2~~)+$((n2-n, +24JS+ft, +n2) 

= griJ160 

A brief calculation shows that 

(3.27) 
A ={ (nl, n2, n, j) E Z4 : nl,n2 2 1,l - n2 < n 5 n1 - 1, 

max{n,O} CJ 5 min{n+nz - 1,121 - 1)). 

Let us remark that for fixed nl, n2, n the contributions of any two consecutive 
values ofj on the left side of (3.26) cancel each other. If we denote 

(3.28) n* =min{n+nz- 1,nt -l} -max{n,O}, 

then j takes exactly n* + 1 values. We deduce that for any fixed nl, n2, and n as 
above, the product over j on the left side of (3.26) equals 1 if n* is odd. If n* is 
even, then the value of this product can be obtained by lettingj equal any one of 
its two extreme values, that is, j = max{n, 0} or j = min{n + n2 - 1, n1 - 1). 
Thus, choosing the first of these values forj and denoting for convenience 

(3.29) I3 = {( ~11 n2,n)EZ3:ni,n2>_l,1-nz<n<ni-l,n*even}, > 

we finally obtain 

n 
(n,.nz,n)EB 

(3.30) x 1 + P-1) n1 +a2 +max{n,0}e-~(n,~~+n2~ 

1 - P(-l) n1 +nz+~~x~~,0~e-f(n,~~+n~~10-2J5)+$((nz-*r i2rz)\/5+n, fn*) 

4. CONCLUDING REMARKS 

The product on the left side of (3.21) involves one variable k, while the product 
on the left side of (3.30) involves three variables ni, n2 and n. For a general r, if 
one uses the definition (1.1) on the left side of (3.14), this will involve products of 
the form 

(4,1) (eriA,/2)2’1tI.. . (piA,/2)2jr’1 (,-riA,+,j2)Z’,i’t’, . 

(piAxr/2) 2h’1 := piy/2 

say, where y belongs to the ring of integers of the cyclotomic field 
Q(27ri/(2v + 1)). The degree of Q(27ri/(2r + 1)) over Q equals ‘p(2u + l), and 
each y as above can be written uniquely in the form 

y = a0 + ale* + ‘. + c&+@+l)-le 
27442r+ 1) 1) 

*r+j 
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with ao, al, . . . ) avp(2r+ t1-t E Z. Thus one may write the left side of (3.14) as a 
product over the independent integral variables ao,al, . . , aP(2r+1)-1, and aji- 
nite inner product, over those 0’1,. . . ,j2?) E N2’ which correspond to a given 
(ao,al,. . . , a,(2,+1)-1) E Z p(2rf1). Moreover a0 can be eliminated in the sense 
that its contribution to the right side of (4.1) can be easily described reasoning 
mod 4. So we are left with al,. . . , a+.+ t)-t. This explains why in our most 
simplified concrete equalities (3.21) and (3.30) we had products over one and 
respectively three variables. 

The authors are grateful to the referee for two very helpful suggestions. 
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