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Abstract

We completely solve certain case of a “two delegation negotiation” version of the Oberwolfach problem, which can be
stated as follows. Let H(k, 3) be a bipartite graph with bipartition X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} and edges
x1 y1, x1 y2, xk yk−1, xk yk , and xi yi−1, xi yi , xi yi+1 for i = 2, 3, . . . , k − 1. We completely characterize all complete bipartite
graphs Kn,n that can be factorized into factors isomorphic to G = m H(k, 3), where k is odd and m H(k, 3) is the graph consisting
of m disjoint copies of H(k, 3).
c© 2008 Elsevier B.V. All rights reserved.
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There are many modifications of the well-known Oberwolfach problem (for an overview, see [1]). One of them is
a bipartite version which asks: For what values of k, n it is possible to decompose the complete bipartite graph Kn,n
into graphs isomorphic to mC2k , where m = n/k and mC2k is a vertex-disjoint union of m cycles of length 2k? This
problem was solved by Piotrowski [3], and can be also described as follows. Suppose we have two delegations with
n people each, and we want to find a seating arrangement over n nights such that every night the members of the
delegations sit alternately around m round tables, each table accommodating 2k people, and every person sits next to
each member of the other delegation exactly once. One could agree that while such an arrangement is good for social
occasions, it is not particularly suitable if we assume that the delegations are involved in negotiations. Then it would
be more natural to have rectangular tables with members of each delegation sitting along one of the long sides of the
table while the tables would not be too big. Even if we have tables with three people on each of the two long sides
of the table, it is reasonable to assume that the people sitting at the opposite corners cannot easily communicate with
each other. Therefore, we may translate this modification into terms of graph decompositions as follows.

We say that a graph B has a G-decomposition if there are subgraphs G0,G1,G2, . . . ,Gs of B, all isomorphic to
G, such that each edge of B belongs to exactly one Gi . If the graph G (more precisely, each Gi , i = 0, 1, . . . , s)
contains all vertices of B, then we say that B has a G-factorization.

Let H(k, 3) be a bipartite graph with bipartition X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} and edges
x1 y1, x1 y2, xk yk−1, xk yk , and xi yi−1, xi yi , xi yi+1 for i = 2, 3, . . . , k − 1. We always assume that k is odd and
k ≥ 3. We want to characterize all complete bipartite graphs Kn,n that can be factorized into factors isomorphic to
G = m H(k, 3), where m H(k, 3) is the graph consisting of m vertex-disjoint copies of H(k, 3). Since the number of
edges of G equals m(3k − 2) and the number of its vertices in each partite set equals mk, the necessary conditions
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are n = mk and n2
≡ 0 (mod m(3k − 2)). We will show that then m must be a multiple of 3k − 2 which yields

n ≡ 0 (mod k(3k − 2)). We will show that these necessary conditions are also sufficient for the existence of a G-
factorization of Kn,n .

Therefore, the smallest meaningful case is a decomposition of K21,21 into 7H(3, 3), where the graph 7H(3, 3)
consists of seven vertex-disjoint copies of the bipartite graph H(3, 3) with vertex bipartition X = {x1, x2, x3}, Y =
{y1, y2, y3} and edges x1 y1, x1 y2, x2 y1, x2 y2, x2 y3, and x3 y2, x3 y3.

In fact, this problem was originally stated in terms of a decomposition of the complete graph into the graph arising
from H(k, 3) by adding a path with k vertices into each partite set with the endvertices being the vertices x1, xk and
y1, yk , respectively—see [2]. The general version seems to be more difficult, and only very partial results are known.

Lemma 1. Let G be isomorphic to m H(k, 3), with k odd, k ≥ 3. If there exists a G-factorization of Kn,n , then
n = mk and m ≡ 0 (mod 3k − 2).

Proof. The equality n = mk is evident. To prove that m ≡ 0 (mod 3k − 2), we first observe that H(k, 3) has 3k − 2
edges and therefore m(3k − 2)|n2. This yields

n2
= m2k2

= m(3k − 2)q

for some integer q, which is the number of isomorphic factors in the G-factorization. Dividing both sides of the
equality by m, we get

mk2
= (3k − 2)q.

Obviously, mk2
≡ 0 (mod k2). On the other hand, 3k − 2 and k are coprime for k ≥ 3. Therefore, it follows that

q ≡ 0 (mod k2), say q = sk2. But then

mk2
= (3k − 2)sk2

and

m = (3k − 2)s,

which we wanted to prove. �

Now we show that K3k−2,3k−2 can be decomposed into 3k − 2 copies of H(k, 3). We use a bigraceful labeling
introduced by Ringel, Llado, and Serra [4] to do that.

Definition 2. Let G be a bipartite graph with k edges, V (G) = V0 ∪ V1, V0 ∩ V1 = ∅, and |V0| ≤ |V1| ≤ k. Let
λ be an injection, λ : Vi → {0i , 1i , 2i , . . . , (k − 1)i }, i = 0, 1. For any pair of vertices x0 ∈ V0 and y1 ∈ V1 with
λ(x0) = a0 and λ(y1) = b1 we define the length of an edge x0 y1 as `(x0 y1) = b − a(mod k). We say that G has a
bigraceful labeling if {`(x0 y1)|x0 y1 ∈ E(G)} = {0, 1, 2, . . . , k − 1}.

We will often identify a vertex with its label and say “a vertex ji ” rather than “a vertex xi with label λ(xi ) = ji ”.
It is an easy observation that if G with k edges has a bigraceful labeling, then G allows a decomposition of the

complete bipartite graph Kk,k into k isomorphic copies when the vertices in each of the partite sets V0, V1 rotate
concurrently.

Lemma 3. A complete bipartite graph K3k−2,3k−2 with k odd can be decomposed into 3k − 2 copies of the graph
H(k, 3).

Proof. Let H = H(k, 3) have vertices 00, 20, . . . , (2k − 2)0, (2k − 2)1, (2k − 1)1, . . . , (3k − 3)1 and edges
(2k − 2)0(2k − 2)1, (2k − 2)0(2k − 1)1 of lengths 0 and 1, (2k − 4)0(2k − 2)1, (2k − 4)0(2k − 1)1, (2k − 4)0(2k)1,
of lengths 2,3,4, (2k − 6)0(2k − 1)1, (2k − 6)0(2k)1, (2k − 6)0(2k + 1)1, of lengths 5,6,7, etc.,
. . .
(2k − 2i)0(2k + i − 4)1, (2k − 2i)0(2k + i − 3)1, (2k − 2i)0(2k + i − 2)1, of lengths 3i − 4, 3i − 3, 3i − 2 for each
1 < i ≤ k − 1,
. . .
and 00(3k − 4)1, 00(3k − 3)1, of lengths 3k − 4 and 3k − 3.
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Then H has a bigraceful labeling and therefore decomposes K3k−2,3k−2. We describe this decomposition formally
as H = {H0, H1, . . . , H3k−3}, where H j = φ j (H) and φ j (a0) = (a+ j)0, φ j (b1) = (b+ j)1 for j = 0, 1, . . . , 3k−3.

�

Next we show that Kk(3k−2),k(3k−2) can be factorized into k2 copies of the graph G that consists of 3k − 2 disjoint
copies of H .

Lemma 4. Let k be odd, k ≥ 3,m = 3k − 2, and n = k(3k − 2). Then there exists a factorization of Kn,n into k2

copies of the graph G = m H(k, 3).

Proof. First we observe that in the bi-cyclic H(k, 3)-decomposition of K3k−2,3k−2 every vertex appears in k copies
of H(k, 3) and each time is an image of a different vertex of H(k, 3).

We denote the vertices of Kk(3k−2),k(3k−2) by (a, b)i , where 0 ≤ a ≤ 3k − 3, 0 ≤ b ≤ k − 1, 0 ≤ i ≤ 1.
We are in a sense “blowing up” each vertex ai of K3k−2,3k−2 into the k-tuple (a, 0)i , (a, 1)i , . . . , (a, k − 1)i in
Kk(3k−2),k(3k−2) and placing copies of H j into Kk(3k−2),k(3k−2) in such a way that out of the k copies that were
incident with ai in the decomposition H of K3k−2,3k−2, each one will be incident with exactly one of the vertices
(a, 0)i , (a, 1)i , . . . , (a, k − 1)i in the factorization G of Kk(3k−2),k(3k−2).

More formally we describe the factorization G of Kk(3k−2),k(3k−2) as follows. We set G = {Gr,s |0 ≤ r ≤
k − 1, 0 ≤ s ≤ k − 1}, where Gr,s = ψr,s(G) for 0 ≤ r ≤ k − 1, 0 ≤ s ≤ k − 1. The graph G is
composed of 3k − 2 disjoint copies of H(k, 3), denoted by H ′0, H ′1, . . . , H ′3k−3. We first construct H ′ with vertices
(0, 0)0, (2, 1)0, . . . , (2k − 2, k − 1)0, (2k − 2, 0)1, (2k − 1, 1)1, . . . , (3k − 3, k − 1)1. Two vertices (2c, c)0 and
(2k − 2+ d, d)1 for c, d = 0, 1, . . . , k − 1 are joined by an edge in H ′ if the vertices (2c)0 and (2k − 2+ d)1 were
joined by an edge in H . In other words, H ′ is defined by a mapping θ : H → H ′, where θ((2c)0) = (2c, c)0 and
θ((2k − 2+ d)1) = (2k − 2+ d, d)1.

Then we define a mapping σt : H ′ → H ′t for t = 0, 1, . . . , 3k − 3 as σt (a, b)i = (a + t, b)i for i = 0, 1, where
the addition is taken modulo 3k − 2. The graphs H ′0, H ′1, . . . , H ′3k−3 essentially mimic the H(k, 3)-decomposition
of K3k−2,3k−2 in the sense that there is an edge (a, c)0(b, d)1 in H ′t for some values c, d (which we specify
below) if and only if there is the edge a0b1 in Ht . This correspondence can be described as follows. We define
mappings θt : Ht → H ′t as θt (a0) = (a, c)0, where c = (a − t)/2 (mod 3k − 2) and θt (b1) = (b, d)1, where
d = b − t − (2k − 2) (mod 3k − 2). Recall that Ht is a member of the decomposition H of K3k−2,3k−2.

We notice that for every pair of k-tuples (a, 0)0, (a, 1)0, . . . , (a, k − 1)0 and (b, 0)1, (b, 1)1, . . . , (b, k − 1)1 there
is exactly one edge (a, c)0(b, d)1 in the graph G. To prove this claim, it is enough to show that for every such a pair
of k-tuples there is at least one edge between them, because G has (3k− 2)2 edges and there are (3k− 2)2 such pairs.
However, every edge a0b1 of K3k−2,3k−2 appears in some graph Ht , as H is an H(k, 3)-decomposition of K3k−2,3k−2.
Therefore, some edge (a, c)0(b, d)1 appears in H ′t as (a, c)0(b, d)1 = θt (a0b1) for some choice of c, d as described
above.

By now we have constructed the basic copy of G. Now we need to define the isomorphisms ψr,s(G) for 0 ≤ r ≤
k− 1, 0 ≤ s ≤ k− 1 that yield the G-factorization. We set ψr,s((a, c)0) = (a, c+ r)0, ψr,s((b, d)1) = (b, d + s)1 for
r, s = 0, 1, . . . , k − 1. The addition here is always taken modulo k − 1. Then we observe that since there was exactly
one edge (a, c)0(b, d)1 between the k-tuples (a, 0)0, (a, 1)0, . . . , (a, k − 1)0 and (b, 0)1, (b, 1)1, . . . , (b, k − 1)1,
the k2 images ψr,s((a, c)0(b, d)1) for r, s = 0, 1, . . . , k − 1 will induce the complete bipartite graph Kk,k with the
bipartition Xa = {(a, 0)0, (a, 1)0, . . . , (a, k − 1)0}, Yb = {(b, 0)1, (b, 1)1, . . . , (b, k − 1)1}. Therefore, every edge of
Kk(3k−2),k(3k−2) appears in one of the factors Gr,s , which completes the proof. �

Now we observe that if there exists a decomposition of the complete bipartite graph Kn,n into q copies of a graph G,
then there exists a decomposition of the graph K pn,pn into pq copies of the graph pG. Of course, one can factorize
the graph K pn,pn into p copies of the graph pKn,n . But because we can decompose Kn,n into q copies of G, we
get this way q copies of pG in each pKn,n . The decomposition of K pn,pn is then obvious. We formally state these
observations as

Proposition 5. Let there exist a decomposition of the complete bipartite graph Kn,n into q copies of a graph G. Then
there exists a decomposition of the graph K pn,pn into pq copies of the graph pG for any p ≥ 1.

Combining Lemma 4 and Proposition 5, we immediately get our result.
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Theorem 6. Let H = H(k, 3) be the graph described above and k be an odd integer, k ≥ 3. Then there exists an
m H-factorization of the complete graph Kn,n for some positive integer m if and only if m ≡ 0 (mod 3k − 2) and
n ≡ 0 (mod k(3k − 2)).

Proof. The necessity is obvious. The sufficiency follows directly from Lemma 4 and Proposition 5. �

Naturally, one can ask the same question for a more general version of this problem. First of all, the same problem
for k even remains open. We can also require that the tables accommodate k people on each side, and that each person
can communicate upto 2` + 1 people on the other side of the table—the person right across the table, an ` persons
immediately on the left and right from that person across the table. A graph describing this arrangement can be denoted
by H(k, 2`+ 1) and we can ask for which values n, k, `,m there exists a factorization of Kn,n into m H(k, 2`+ 1).
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