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1. Introduction

Since the early 1960s, the topological solitons have been in-
tensively studied in many different frameworks. These localized
regular field configuration are rather a common presence in non-
linear theories, they arise as solutions of the corresponding field
equations in various space-time dimensions. Examples in 3 + 1 di-
mensions include well-known solutions of the Skyrme model [1],
monopoles in Yang-Mills-Higgs theory [2] and the solitons in the
Faddeev-Skyrme model [3,4].

Though the structure of the Lagrangian of the Faddeev-Skyrme
model is exactly the same as Skyrme theory, the topological prop-
erties of these models are very different, while in the former
model the O(4) scalar field is the map S3 — S3, the triplet of
the Faddeev-Skyrme fields is the first Hopf map S3 — S2. It was
shown that solutions of the latter model should be not just closed
flux-tubes of the fields but knotted field configurations [5]. Con-
sequent analysis revealed a very rich structure of the Hopfion
spectrum [6,7]. A number of different models which describe topo-
logically stable knots associated with the first Hopf map S — §2
are known in different contexts. It was argued, for example, that a
system of two coupled Bose condensates may support Hopfion-like
solutions [8], or that glueball configurations in QCD may be treated
as Hopfions [9].

One of the reasons for the interest in Skyrme model is re-
lated with the suggestion that, in the limit of large number of
quark colors there is a relation between this model and the low-
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energy QCD with an identification between topological charge of
the Skyrmion and baryon number [10,11]. This approach involves
a study of spinning Skyrmions and semiclassical quantization of
the rotational collective coordinates as a rigid body.

The classical Skyrmion is usually quantized within the Bohr-
Sommerfeld framework by requiring the angular momentum to
be quantized, i.e., the quantum excitations correspond to a spin-
ning Skyrmion with a particular rotation frequency. In the recent
paper [12] an axially-symmetric ansatz was used to allow the spin-
ning Skyrmion to deform. Furthermore, it was suggested to treat
the Skyrme model quantum mechanically, i.e., apply the canonical
quantization of the collective coordinates of the soliton solution to
take into account quantum mass corrections [13-16]. It turns out
the correction decreases the mass of the spinning Skyrmion, so one
can expect similar effect in the Faddeev-Skyrme model.

Similarity between the Lagrangians of the Faddeev-Skyrme and
Skyrme models suggests to take into account (iso)rotational col-
lective degrees of freedom of the Hopfions whose excitation may
contribute to the kinetic energy of the configuration and strongly
affect other properties of the spinning Hopfions [17]. An obviously
relevant generalization then is related with canonical quantization
of the rotational excitations.

Though the spinning Hopfions were considered in early pa-
per [4], a systematic study of their properties was not performed
yet. One of the reason of that is that consistent consideration
of the soliton solution of the Faddeev-Skyrme model is related
with rather complicated task of full 3d numerical simulations [6,7].
However this task becomes much simpler if we restrict our consid-
eration to the case of the axially-symmetric Hopfions of charge 1
and charge 2. In this Letter we are mainly concerned with canon-
ical quantization of the rotational collective coordinates of these
Hopfions.
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Fig. 1. The energy isosurfaces for the charge 1 (a) and the charge 2 (b) static Hopfions at ;2 =2 and w = 0.

2. The model

Let us begin with a brief review of the Faddeev-Skyrme model
in 3 4+ 1 dimensions which is the O (3)-sigma model modified by
including a quartic term:

~ 3272
- 1= )]). M

Here ¢ = (¢!, ¢2, ¢>) denotes a triplet of scalar real fields which
satisfy the constraint |¢%|2 = 1. For finite energy solutions the field
¢® must tend to a constant value at spatial infinity, which we
select to be ¢?(c0) = (0,0, 1). This allows a one-point compact-
ification R3 ~ S3, thus topologically the field is the map ¢(r) :
R3 — S2 characterized by the Hopf invariant Q = 73(52) =Z and
w21 — (¢3)?] is the “pion” mass term which is included to sta-
bilize the spinning soliton. Note that our choice for this term is a
bit different from the usual mass term in the conventional Skyrme
model (i.e., u?(1 — ¢3)) since for the fields on the unit sphere it
seems to be more convenient to perform numerical calculations.
The energy of the Faddeev-Skyrme model is bound from below

by the Vakulenko-Kapitansky inequality [18] E > const|Q|%. In the
classical case one can rescale the Lagrangian (1) to absorb the
coupling « into the rescaled mass constant, however consequent
canonical quantization of the spinning Hopfion does not allow us
to scale this constant away.

For the lowest two values of the Hopf charges Q = 1,2 the
Hopfion solutions can be constructed on the axially-symmetric
ansatz [4] parametrized by two functions f = f(r,6) and g =
g(r,0) of r,0 as a triplet of the scalar fields in circular coordinate
system
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where n,m € Z. An axially-symmetric configuration of this type
Am.n has topological charge Q =mn, where the first subscript la-
bels the number of twists along the loop and the second is the
usual O(3) sigma model winding number associated with the map
$2 - S2, thus the ansatz (2) corresponds to the configurations
.A1,1 and .Az,1.

Furthermore, one readily verifies that the parametrization (2)
is consistent, i.e. the complete set of the field equations, which
follows from the variation of the original action of the model
(1), is compatible with two equations which follow from variation
of the reduced action on ansatz (2). However this trigonometric

parametrization is not very convenient from the point of view of
numerical calculations because of the numerical errors which orig-
inate from the disagreement between the boundary conditions on
the angular-type function g(r,0) on the p-axis and the bound-
ary points r = 0, oo, respectively.! Indeed, the reduced classical
rescaled two-dimensional energy density functional, resulting from
the imposition of axial symmetry stated in ansatz (2), is given by
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The resulting system of the Euler-Lagrange equations can be
solved when we impose the boundary conditions such that the
resulting field configuration will be regular on the symmetry axis,
at the origin and on the spatial asymptotic.

The charge Q =1 .A;; configuration possesses the maximum
of the energy density at the origin, the energy density isosurfaces
are squashed spheres as seen in Fig. 1(a). The charge Q =2 Ay
solutions have toroidal structure (see Fig. 1(b)). Inclusion of the
mass term increases the attraction in the system, the total energy
of the massive Hopfion increases monotonically as mass parameter
M increases [20].

The residual O(2) global symmetry of the ansatz (2) with re-
spect to the rotations around the third axis in the internal space
allows us to consider the stationary spinning classical Hopfions

¢+_>¢+eia)t; ¢__>¢_e—iwt' (4)

Here, to secure stability of the configuration with respect to ra-
diation, the rotation frequency w is a parameter restricted to the
interval

0<w< . (5)
Substituting this ansatz into the Lagrangian (1) gives

w?A
L=—M+ ——— (6)
2
where M is the static energy of the Hopfion and A is the moment
of inertia

T Note that numerical difficulties of the same type are common in the Skyrme
model [19].
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Fig. 2. The static energy of the axially-symmetric A1 1, .A21 Hopfions as function
of the mass parameter p at w =0.
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and the conserved quantity is the classical spin of the rotating con-
figuration | =wA.

Note that the structure of the expression for the density of the
moment of inertia (7) in the rigid body approximation does not
depend on the phase function g(r, ). However the function f(r, 6)
is angle dependent.

The mass of the static Hopfion as a function of the parame-
ter u is presented in Fig. 2, as u = 0 the corresponding values
of the Hopfion mass and the moment of inertia are Mg—1 = 1.23,
AQ:1 =0.63 and MQ:Z =1.97, AQ:2 =0.41.

As the angular velocity w increases, the total energy of the
spinning configuration as well as the moment of inertia and the
angular momentum are increasing monotonically [17]. Investiga-
tion of the energy density distribution reveal very interesting pic-
ture, as w increases a hollow circular tube is formed inside the
Hopfion energy shell, both for the charge 1 and charge 2 as shown
in Fig. 3. The moment of inertia of the configuration diverges as
w— .

The classical spinning Hopfion can be quantized within the
Bohr-Sommerfield scheme by requiring the spin to be quantized
as J2=j(j+1), where j is the rotational quantum number taking
half-integer values [4,21]. The difference between our approach,
where rotation occurs only around z axis and therefore is charac-
terized by of U(1) representations (i.e. takes only integer values),
and the discussion presented in the paper [21] in that in the lat-
ter case the charge Q =1 A;,; configuration was considered by
an analogy with the case of the spinning Skyrmion where the
usual hedgehog ansatz U = exp(iF () (A% - 1;)) with a single radially
dependent profile function f(r) was implemented instead of the
parametrization (2). The relation between these two parametriza-
tions can be explicitly written as

¢+ =~/2sin F(r)sinfe ¥ (sin F(r) cos§ —icos F(r)),
$o = c0s(26) sin® F(r) + cos® F(r),
= —+/2sin F(r) sinfel¥ (sin F(r) cos6 +icos F(r)). (8)

The functions f(r,0) and g(r,6) which parametrize the axially-
symmetric ansatz (2) are related to the approximation by radial
function F(r) of [21] as

cos f(r, 0) = cos(20) sin® F(r) + cos® F(r), (9)
tang(r,6) = _CosF) (10)
g(r.0)= sin F(r)cos®’

Surprisingly, the hedgehog parametrization works extremely well
for the minimal energy .41 1 configuration. It was pointed out also
by Ward [22] who used the stereographic parametrization of the
Ai11 and A1 Hopfions in terms of the single radial-dependent
function F(r). For the former case this parametrization is:
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The relation to the ansatz (2) is given by the expression
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thus, we can represent the profile functions f(r,6) and g(r, ) as
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Finally, note that these two radial functions F(r) and F(r) which
are used in the parametrizations (8) and (11), respectively, are re-
lated as

F =-—2ctgF(r). (15)

Thus we will revisit the problem of the canonical quantization
of the Hopfion using approach previously discussed in [14-16]. For
the sake of simplicity here we restrict our analyse to the case of
the axially-symmetric configurations A 1, Az 1.

Similarity of the Lagrangian (1) with the conventional Skyrme
model suggests that in order to apply the standard canonical quan-
tization procedure it is convenient to re-express the expression (1)
in terms of the Hermitian matrix fields

_ cos f(r,0) sin f(r, 9)e~i(9—me(r.6)) 6)
~ \sin f(r, 6)el(rp—mgr.0)) —cos f(r,0)

which parametrizes the Hopfion configuration. This matrix can be
written compactly as

H=2) (-1)'t¢p o H-H=1 (17)

where the usual algebra of the Pauli matrices (74, tg, T—) yields

1
ﬁ[; ; l}q. (18)

Here the symbol in the square brackets is the SU(2) Clebsh-Gordan
coefficient.

In this notations the Lagrangian (1) can be rewritten as (the
metric diag(1, —1, —1, —1) is explicitly assumed).

1 a
Talh = Z(_l) 8a,—p1 —

1 2 2
L= | TrouHd H+—Tr[8MH dyH1[0"H, 9 H]

2
— 7Tr(1—4‘[0H‘[0H)>. (19)
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Fig. 3. The energy isosurfaces of the .4; 1 (a) and the A, 1 (b) spinning Hopfions at w? ~ u? =2.

3. Quantization. Momenta of inertia

Similarity of the form of the Lagrangian (19) with that of the
Skyrme model suggests that we can quantize the rotational de-
grees of freedom of the axially-symmetric Hopfion by wrapping
the ansatz (16) with time-dependent unitary matrices A(q(t)) [11]
which rotates the configuration about the third axis:

U(q, f,g) =A(q(t))HAT(q(t)). (20)

Thereafter the collective rotational degrees of freedom q(t) are
treated as quantum-mechanical variables, i.e. the generalized ro-
tational coordinate q(t) and velocity ¢(t) satisfy the commutation
relations

(4, 9] =i foo. (21)

The explicit form of the constant foy will be completely deter-
mined by canonical commutation relations between quantum co-
ordinates and momenta. As usual, to calculate the effective La-
grangian of the rotational zero mode we have to evaluate the time
derivative of the matrix

U=AHAT — AHATAAT, (22)
ViU = AV, HAT. (23)

Taking into account the commutation relation (21) we obtain

. . i
A(q) = exp(iqo); ATA=1foq+§fool. (24)

Then, keeping only terms proportional to the square of the angular
velocity the effective kinetic Lagrangian density can be written as

s 2 2 2
sin“ f 5/, af 2(0f 1,
Lg~ 2 — - =_ )
17~ gan2r21 < r +(ae T Gr 21 800

Utilizing the definition of the moment of inertia (7) we can write

(25)

1, 1.
Lg= —¢? / d*r goo = =% A. (26)
2 2
Thought the expression (26) coincides with its classical counter-
part in (6), the corresponding quantum momentum is conjugated
to the rotational collective coordinate q and it is defined as

. oL .
q
Thus, the canonical commutation relation [p,q] = —i allows us

to define foo = % We can also define the U(1) group generator
which is the angular momentum operator

J=-b=-4¢ (28)

for eigenstates |k) = e~4|0) with integer eigenvalues k = 0, 1,
+2,....

We are now in position to evaluate the explicit form of the
quantum-mechanical Lagrangian of the Faddeev-Skyrme model.
Using expression (24) we obtain:

1 1 .
1= 543 (TrUU - g(—1)‘1TrA[[ATA, H], VoH]

XHNAH}VﬂHMO

Csin?f (., 1 1/(0f\> [8f\>
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The total effective Hamiltonian corresponds to the complete La-
grangian L = Lq + Lg which includes both classical and quantum
mechanical parts:

H ! {p,q}—1L j2
Here the quantum mass correction AM appears when the canoni-
cal commutation relation is taken into account:

1 af\?
AM = —mfsine drde [sin2 f<2r2 + <£>

(i) )]s

where we used the definition (7). Note that an interesting pecu-
liarity of the integrand in (31) is that it exactly reproduces the
structure of the density of the moment of inertia (7), thus in the
rigid body approximation we can immediately evaluate the quan-
tum corrections to the axially-symmetric configurations .41 1, A2 1
as

—Lq+ AM. (30)

(31)

1
AM] 1=— = —0.20;
’ SAQ:1
1
AMa 1 =— =030 (32)
’ 8Aqg=2

thus, for the configurations with topological charges Q =1, 2 the
quantum correction to the Hopfion mass is negative and it is about
16% and 25% of the classical masses, respectively.

A more consistent treatment of the quantum correction to the
Hopfion mass needs minimization of the total energy functional

sin? f [ P U\ (p2 o (M 2
3272r2\ 242 8A2 30
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(33)
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Varying it we obtain rather cumbersome set of two coupled
integro-differential equations for functions f(r,0) and g(r,0)
which then should be solved numerically. The results will be re-
ported elsewhere.

4. Conclusion

The main purpose of this Letter was to present the scheme of
the canonical quantization of the rotational mode of the charge
Q =1 and Q =2 spinning Hopfions and evaluate the quantum
corrections to the mass of these axially-symmetric configurations.
To this end we have used the technique described in [14-16] in
the context of the Skyrme model and Baby Skyrme model [23].
The model is stabilized by additional coupling to a potential
(mass) term by analogy with the Baby Skyrme model, this leads
to appearance of the Yukawa-type exponential tail of the Hop-
fion fields. The analysis of the quantum corrections to the mass of
the axially-symmetric charge Q =1, 2 solitons showed that, like
in the Skyrme model, the corrections are negative and relatively
large.

It remains to systematically analyze the effect of quantization of
the rotating Hopfions beyond the usual Bohr—Sommerfeld frame-
work and the rigid body approximation we implemented in the
present Letter. As a direction for future work, it would be interest-
ing to study the effect of canonical quantizations of the spinning
knotted Hopfions, e.g. to consider how the shape of the celebrated
Q =7 trefoil knot configuration K3 > will be affected by the quan-
tum corrections or if the axial symmetry of the spinning charge
Q =3 buckled configuration will be restored. Other buckling and
twisting transmutations of the Hopfions which are related with
a change of the symmetry of various spinning configurations of
higher Hopf degree are also possible, one can expect an axially-
symmetric state may be the lowest energy state in this case. This
work is now in progress [17].

Acknowledgements

Ya.S. is very grateful to D. Foster, D. Harland, ].M. Speight and
P. Sutcliffe for many enlightening discussions. This work is sup-
ported by the A. von Humboldt Foundation (Ya.S.).

References

[1] TH.R. Skyrme, Proc. R. Soc. Lond. A 260 (1961) 127.
[2] G. 't Hooft, Nucl. Phys. B 79 (1974) 276;
A.M. Polyakov, Pis'ma JETP 20 (1974) 430.
[3] L.D. Faddeev, Quantization of Solitons, preprint-75-0570, IAS, Princeton, 1975;
L.D. Faddeev, A. Niemi, Nature 387 (1997) 58;
L.D. Faddeev, A. Niemi, Phys. Rev. Lett. 82 (1999) 1624.
[4] J. Gladikowski, M. Hellmund, Phys. Rev. D 56 (1997) 5194, arXiv:hep-
th/9609035.
[5] R. Battye, P. Sutcliffe, Phys. Rev. Lett. 81 (1998) 4798.
[6] J. Hietarinta, P. Salo, Phys. Rev. D 62 (2000) 081701.
[7] P. Sutcliffe, Proc. R. Soc. Lond. A 463 (2007) 3001, arXiv:0705.1468 [hep-th].
[8] E. Babaev, L.D. Faddeev, AJ. Niemi, Phys. Rev. B 65 (2002) 100512(R);
J. Jykka, J. Hietarinta, Phys. Rev. B 77 (2008) 094509.
[9] W.S. Bae, Y.M. Cho, S.W. Kim, Phys. Rev. D 65 (2002) 025005;
K.-I. Kondo, A. Ono, A. Shibata, T. Shinohara, T. Murakami, J. Phys. A 39 (2006)
13767, hep-th/0604006.
[10] G.S. Adkins, C.R. Nappi, Nucl. Phys. B 233 (1984) 109.
[11] G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228 (1983) 552.
[12] RA. Battye, S. Krusch, P.M. Sutcliffe, Phys. Lett. B 626 (2005) 120, arXiv:hep-
th/0507279.
[13] K. Fujii, K.I. Sato, N. Toyota, A.P. Kobushkin, Phys. Rev. Lett. 58 (1987) 651.
[14] K. Fujii, A. Kobushkin, K.I. Sato, N. Toyota, Phys. Rev. D 35 (1987) 1896.
[15] A. Acus, E. Norvaisas, D.O. Riska, Nucl. Phys. A 614 (1997) 361, arXiv:hep-
ph/9605435.
[16] D. Jurciukonis, E. Norvaisas, D.O. Riska, ]. Math. Phys. 46 (2005) 072103,
arXiv:nucl-th/0505003.
[17] J. Jaykkd, D. Harland, J.M. Speight, Ya. Shnir, work in progress.
[18] A.E. Vakulenko, L.V. Kapitansky, Sov. Phys. Dokl. 24 (1979) 432.
[19] Ya. Shnir, D.H. Tchrakian, J. Phys. A 43 (2010) 025401, arXiv:0906.5583 [hep-
th].
[20] D. Foster, Phys. Rev. D 83 (2011) 085026, arXiv:1012.2595 [hep-th].
[21] W.C. Su, Phys. Lett. B 525 (2002) 201, arXiv:hep-th/0108047.
[22] R.S. Ward, Phys. Lett. B 473 (2000) 291, arXiv:hep-th/0001017.
[23] A. Acus, E. Norvaisas, Ya.M. Shnir, Phys. Lett. B 682 (2009) 155.



	Hopﬁon canonical quantization
	1 Introduction
	2 The model
	3 Quantization. Momenta of inertia
	4 Conclusion
	Acknowledgements
	References


