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Abstract

Let K be a finite, connected, simplicialn-complex (n � 3) and M a 1-connected, smooth,
orientable 2n-manifold without boundary. Iff : |K| → M is an arbitrary map, we define a first
obstructionγ (f ) ∈ H2n(J ∗K;Z), whereJ ∗K is the reduced deleted product ofK and show that
the vanishing of this obstruction is necessary and sufficient forf to be homotopic to an embedding.
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1. Introduction

Let K be a finite, connected, simplicialn-complex (n � 3) and M a 1-connected,
smooth, orientable 2n-manifold without boundary. Iff : |K| → M is an arbitrary map, we
shall define a first obstructionγ (f ) ∈ H 2n(J ∗K;Z), whereJ ∗K is the reduced deleted
product ofK and show that the vanishing of this obstruction is necessary and sufficient
for f to be homotopic to an embedding. The heart of the paper is the construction of a
homotopy off to another map in its cohomology class via tubular neighborhoods and
coordinatizing maps. Therefore, anyf with 0 cohomology class can be homotoped to a
mapf1 whose co-cycle is 0. The self-intersections off1 can then be removed by using the
appropriate theorems established in the polyhedral category by Zeeman [4,13], Hudson [3,
4] and Weber [10].
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2. The obstruction

Throughout this paper we letK be a finite, connected, simplicialn-complex(n � 3),
|K| the underlying topological space, andM a smooth, orientable 2n-manifold without
boundary. It is well known [8] that given any mapf : |K| → M and anyε > 0, there exists
an ε-homotopy betweenf and a general map from| K | to M. Therefore, we assume in
this paper that our given map is general.

Definition 1 [6]. A general mapf : |K| → M is one which satisfies:
(i) for eachσ ∈ K,f |σ is a smooth embedding;
(ii) for each pair of simplicesσp, τ q ∈ K with p + q < 2n,f (σp) ∩ f (τq) = ∅;
(iii) no point of f (σn) ∩ f (τn) lies in the image of any other simplex;
(iv) for each pairσn, τn ∈ K,f (σn) ∩ f (τn) consists of a finite number of transverse

intersections.

Definition 2. Let f : |K| → M be a general map. Let{Uα,φa} be an atlas of coordinate
neighborhoods onM. Call f Euclidean with respect to intersections if for all n-simplices
σn, τn of K,f (σn) ∩ f (τn) �= ∅ ⇒ f (σn) ∪ f (τn) ⊂ Uα for someα.

Let f : |K| → M be a general map. AssumeK is a fine enough subdivision so thatf

is Euclidean with respect to intersections. LetJK = {σ × τ | σ, τ ∈ K andσ ∩ τ = ∅}.
We wish to define a 2n-cochain onJK with integral coefficients. Sincef is general, it
is a proper map and the only simplices ofK whose images underf intersect inM are
n-dimensional. SinceM is orientable, it has a covering{Uα,φα} of coherently oriented
coordinate neighborhoods onM. We may assume that for eachα, φα(Uα) is an open ball
in R2n containing the origin. Then, iff (σn) ∩ f (τn) �= ∅ andf (σn) ∪ f (τn) ⊂ Uα, we
define the value of the cochaincK(f ) onσn × τn by

cK(f )
(
σn × τn

) = φαf
(
σn

) ∧ φαf
(
τn

)

for every such pair andcK(f ) = 0 for all other pairs of simplices inJK. (Here ∧
is the intersection number of the simplex images inR2n.) If f (σn) ∪ f (τn) ⊂ Uβ for
another coordinate neighborhood, thenf (σn)∪ f (τn) ⊂ Uα ∩Uβ . SinceM is orientable,
φαf (σn)∧ φαf (τn) = φβf (σn)∧ φβf (τn). Therefore, the cochain is well-defined and
cK(f ) ∈ C2n(JK;Z).

We wish to show thatcK(f ) ∈ C2n(J ∗K;Z) whereJ ∗K = JK/(σ × τ ∼ τ × σ). The
cell exchange mapT :JK → JK defined byT (σp × τp) = τp ×σp induces a mapT # on
any cochainc having the property:T #c(σp × τq) = (−1)pqc(τ q × σp) where the product
σp × τq has an orientation induced by the orientations ofσp and τq . In particular, for
n-simplicesσ andτ , andf : |K| → M a general map,

T #cK(f )(σ × τ ) = (−1)n
2
cK(f )(τ × σ)

= (−1)n
2
φαf (τ) ∧ φαf (σ)

for f (σ) ∩ f (τ) �= ∅ andf (σ) ∪ f (τ) ⊂ Uα
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= (−1)n
2
(−1)n

2
φαf (σ) ∧ φαf (τ)

= φαf (σ) ∧ φαf (τ)

= cK(f )(σ × τ ).

Therefore,cK (f ) is invariant underT #. DefineJ ∗K to be the decomposition complex
J ∗K = JK/(σ × τ ∼ τ × σ). The groupC2n(J ∗K;Z) may be considered to be the
subgroup ofC2n(JK;Z) consisting ofT #-invariant cochains since the value of such
cochains is well-defined on the equivalence class[σ × τ ] ∈ J ∗K. Hence, cK(f ) ∈
C2n(J ∗K;Z). SincecK(f ) is a top dimensional cochain, it is a cocycle, henceforth known
as the obstruction cocycle.

Definition 3. LetγK(f ) ∈ H 2n(J ∗K;Z) be the cohomology class ofcK(f ). This is called
theobstruction to homotoping a mapf : |K| → M to an embedding.

We see next that the obstruction is independent of the subdivision ofK. For if K ′ is any
subdivision, then the isomorphismΨ :H 2n(J ∗K ′;Z) → H 2n(J ∗K;Z) is defined in the
following way. Letσ = σ1 ∪ σ2 ∪ · · · ∪ σp andτ = τ1 ∪ τ2 ∪ · · · ∪ τq be subdivisions of
n-simplicesσ, τ ∈ K. If i :K → K ′ is inclusion, then

(J i)#(cK ′(f )
)[σ × τ ]

= cK ′(f )
[
(J i)#(σ × τ )

]

= cK ′(f )[σ1 × τ1 + σ2 × τ2 + · · · + σp × τq ]
= cK ′(f )[σ1 × τ1] + cK ′(f )[σ2 × τ2] + · · · + cK ′(f )[σp × τq ].

This last sum must equalcK(f )[σ × τ ] since all the double point pairs which lie in
σi × τj for all i, j is precisely the same set which lies inσ × τ. Moreover,(J i)# is clearly
an isomorphism at the cochain level and passing to cohomology, it induces the required
mapΨ. As a result, for any mapf : |K| → M,K may be assumed to be of sufficiently
fine mesh so thatf is Euclidean with respect to intersections. So we henceforth assume all
maps to possess this property and thus their obstructions will be defined. When there is no
confusion, we shall denotecK(f ) by c(f ) andγK(f ) by γ (f ). As in most obstructions of
this type,γ (f ) is independent of the homotopy class off. By the general position theorem
we may assume that all homotopies aregeneral in the following sense.

Definition 4 [6]. {ft } : |K| → M is ageneral homotopy if:
(i) F is a differentiable map from|K| × I to M whereF(x, t) = ft (x).

(ii) The set{t ∈ I : ft is not general} is finite.
(iii) If fr is not general for somer, 0< r < 1, thenfr fails to be general by having a

double point pairx1 ∈ σp, x2 ∈ τq, wherep + q = 2n − 1. For any such double
point, there exist neighborhoodsU1 ×U of (x1, r) in σp × I andV2 ×V of (x2, r)

in τq × I , such thatF(U1 × U) intersectsF(V2 × V ) transversely inM × I .
The other double points offr are contained inn-dimensional simplices.

Theorem 1. If two general maps f and f1 : |K| → M are homotopic, then γ (f ) = γ (f1).
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Proof. We may assume a general homotopy{ft } : |K| → M with f0 = f. For any double
point pair(x0, y0) ∈ σn × τn of f, the self-intersectionz0 = f (x0) = f (y0) is the starting
point of a path of self-intersections inM, call it zt = ft (xt ) = f (yt) as t varies from 0
to 1. LetG = {t ∈ I : ft is not general}. IfG is empty, it means that double point pair
(xt , yt ) corresponding tozt never passes through the boundary ofσn × τn. In other words,
(xt , yt ) remains inσn × τn for all t . Similarly, all the double point pairs off reside in the
samen-simplex pairs as those off1 and soc(f ) = c(f1). If G is not empty, it is sufficient
to consider the case where there is just one valuer ∈ G. This means thatfr fails to be
general by having a double point pair(xr , yr) in a product of simplices of total dimension
2n− 1, call it, say,Σn−1 × τn. Let (xt , yt ), 0 � t � 1, be the double point path inK ×K

containing(xr, yr). To construct the(2n− 1)-coboundary which relatesc(f ) to c(f1), we
need only consider then-simplices in star(Σ,K). Just one of these simplices, call itσ, will
containx0. Condition (iii) of Definition 2.5 guarantees thatxt ∈ σ for t � r andxt /∈ σ for
t > r. In other words,f (σ)∩f (τ) contains one more point thanf1(σ )∩f1(τ ). Therefore,
c(f )[σ × τ ] differs fromc(f1)[σ × τ ] by either+1 or−1 depending on the orientation of
the original intersection. Defined ∈ C2n−1(J ∗K;Z) by d[Σ × τ ] = 1 and zero elsewhere.
Then

δd[σ × τ ] = d
[
∂(σ × τ )

]

= d[∂σ × τ + σ × ∂τ ]
= d[Σ × τ + · · · + σ × ∂τ ]
= d[Σ × τ ]
= 1

= ±(
c(f ) − c(f1)

)[σ × τ ].
On the other hand, every othern-simplex ω ∈ star(Σ,K) will not contain xo, but

the (general) homotopy must introduce one more self-intersection in the images ofω

and τ underft for t > r. So, in this case,f (ω) ∩ f (τ) contains one less point than
f1(ω) ∩ f1(τ ). Therefore, as above,c(f )[ω × τ ] differs from c(f1)[ω × τ ] by either 1
or −1 depending on the orientation of the introduced self-intersection. Using the aboved,

routine computation again gives usδd[ω × τ ] = ±(c(f )− c(f1))[ω × τ ]. Thus,c(f ) and
c(f1) are co-homologous.✷

We have the following immediate corollary.

Corollary 1. If f is homotopic to an embedding, then γ (f ) = 0.

3. Double point pairs from adjacent simplices

The main objective of this paper is to prove the converse of Corollary 1. Our goal is to
eliminate all double point pairs from mapsf for which γ (f ) = 0. We divide the double
point pairs of a general mapf into two types: those residing in adjacent simplices ofK
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and those that reside in remote (non-adjacent) simplices. BecauseJ ∗K is a complex not
containing pairs of simplices[σ × τ ] whereσ ∩ τ �= ∅, it is a fact that ourγ (f ) does not
detect double points contained in adjacent pairs. However, whenM is 1-connected, this is
not a problem.

Theorem 2. Let f : |K| → M be a general map, where K is a finite n-dimensional
simplicial complex, n � 3, and M is a 1-connected, smooth, 2n-manifold. If σ1 and σ2 are
adjacent n-simplices of f containing a single double point (x1, x2), then f is homotopic
to a general map g : |K| → M where g(σ1) ∩ g(σ2) = ∅ and g = f outside a regular
neighborhood of σ1 ∪ σ2 .

Proof. Let x0 be in the simplexσ1 ∩ σ2 and let ξ : I → K be an arc fromx1 to x2

such thatξ [0, 1
2] = x1 ∗ x0 and ξ [1

2,1] = x0 ∗ x2, where∗ indicates the join. Since
π1M = 0, the loopf (ξ) bounds a 2-cellD in M. Since 2n � 6, D may be chosen so that
D∩f [K − (σ1 ∪σ2)] = ∅. Next, subdivideK by starring atx0, x1, andx2. Thenξ will be
a subcomplex ofK. There exists a triangulation(T ,µ) of M (T a 2n-simplicial complex
andµ : |T | → M a homeomorphism), and a further subdivision ofK such thatf ′ = µ−1f

is simplicial andµ−1(D) is a subcomplex ofT . Take second deriveds ofK andT such that
f ′ is still simplicial. LetN0 = |N(ξ,K ′′)| andN1 = |N(µ−1(D),T ′′| be second derived
neighborhoods ofξ andµ−1(D). ThenN0 andN1 are regular neighborhoods of collapsible
polyhedrons and therefore are balls [3,9]. Alsof ′(∂N0) ⊂ ∂N1 andf ′(N0) ⊂ N1. If we
identifyN0 ∼= In andN1 ∼= I2n, then everyx in N0 can be represented byλx0 for 0� λ � 1
whereλ = 1 ⇐⇒ x ∈ ∂N0. Defineg′ : |K| → |T | by g′(λx0) = λf ′(x0) andg′ = f ′ on
cl(K − N0). Theng′(σ1) ∩ g′(σ2) = ∅, g′ = f ′ on ∂N0, andf ′ is homotopic tog′ by the
standard straight-line homotopy, namelyht whereht (x) = tf ′(x)+(1− t)g′(x) for x ∈ N0

andht (x) = f ′(x) on cl(K − N0). The desiredg : |K| → M is theng = µg′. ✷
SinceK is a finite simplex and the double point setS(f ) must be finite for a general

mapf, we may apply the above theorem a finite number of times to obtain the following
result.

Corollary 2. Let f : |K| → M be a general map with K and M as above. If the only
double point pairs of f occur in adjacent simplices of K, then f is homotopic to an
embedding.

4. Remote double points

We now considerremote double point pairs, i.e., those which exist in non-adjacentn-
simplices ofK. We wish to be able to homotope a mapf to an embedding in the event that
c(f ) = 0. Recall thatc(f ) vanishes precisely when, forσ ∩ τ = ∅, f (σ ) ∩ f (τ) is either
empty or consists of pairs of intersection points of opposite orientation. The following
theorem by Weber [10] gives us our desired result.
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Theorem 3. Let Mm be a semi-linear manifold without boundary. Let m = p + q. Let
f :σp → M and g : τq → M be two semi-linear embeddings such that f (σp) and g(τq)

intersect in general position in exactly two points A and B. We suppose that:
(i) p � 3, q � 3;
(ii) There exists a path α in the interior of f (σp) connecting A to B and a path α′ in

the interior of g(τq) connecting A to B such that α−1α′ is homotopic to zero in M;
(iii) The intersection number f (σp) ∧ g(τq) = 0.
Then there exists an ambient isotopy ht in M, whose support is a combinatorial ball of

dimension m, leaving f (∂σp) and g(∂τq) fixed, such that h1(g(τ
q)) ∩ f (σp) = ∅.

If c(f ) = 0 for a general mapf : |K| → M, it is straightforward to subdivideK so that
wheneverf (σ) intersectsf (τ), (for σ ∩ τ = ∅), thenf (σ) ∩ f (τ) consists of exactly
two points whose coordinate frames are of opposite orientation. Since the complexK and
the manifoldM of this paper satisfy the conditions of the above theorem, we can apply
the result repeatedly to eliminate all intersections occurring in the images of pairs of non-
adjacentn-simplices. In other words,f can be homotoped to a mapf ′ having no remote
double point pairs. We then apply Corollary 2 to find a homotopy fromf ′ to an embedding.
Therefore, we have the following theorem.

Theorem 4. Let f : |K| → M be a general map, where K is a finite n-dimensional
simplicial complex, n � 3, and M is a 1-connected, smooth, 2n-manifold. If c(f ) = 0,
then f is homotopic to an embedding.

5. Coordinatizing maps

Next, given a general mapf : |K| → M, we wish to conclude that ifγ (f ) = 0, thenf

is homotopic to an embedding. Ifγ (f ) = 0, but c(f ) �= 0, then there exists anf1 whose
cochain is 0 and which is in the same cohomology class asc(f ). If we can find a homotopy
from f to f1, we will be done because we know from Theorem 4 thatf1 is homotopic to
an embedding. In order to construct the required homotopy (fromf to f1), we will need
the following tools.

Definition 5 [9]. For S a submanifold ofM, a tubular neighborhood W(S, ε) of radius
ε > 0 is defined as follows. For a tangent vectorv to M, let exp(v) be the point ofM
(if it exists) at a distance equal to the length ofv along a geodesic in the direction ofv.
Let N(M | S) be those tangent vectors toM at points ofS which are orthogonal toS,
i.e., the normal bundle alongS. If cl(S) is compact, the implicit function theorem asserts
that, for a suitably smallε, the exponential map, when restricted to vectors ofN(M | S)
of length< ε, is a homeomorphism. We shall denote its image byW(S, ε) and denote by
hε the inverse of the exponential map so thathε :W(S, ε) → N(M | S) is a differentiable
homeomorphism. Ifπ is the natural projection ofN(M | S) onS, thenπhε :W(S, ε) → S

is a fiber map, where each fiber is a cell.
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Definition 6. A normalizing map for a vector bundle is a map of the bundle into a vector
spaceL, which induces a linear isomorphism of each fiber ontoL. It is well known that
there exists a normalizing map for a vector bundle if and only if it is a product bundle.

We wish to consider the normal bundleN(M | α) for α = p((−δ,1 + δ)), a smooth arc
in M. ThenN(M | α) is a trivial bundle of (fiber) dimension 2n − 1. So there exists a
normalizing mapΨ :N(M | α) → L, whereL is a vector space of dimension 2n− 1.

Definition 7 [9]. If Ψ :N(M | α) → L is a normalizing map,α1 is an open subset ofα
(i.e.,α1 = p((−δ1,1 + δ1)) for δ1 < δ) andU a neighborhood of the origin inL, then a
mapθ :α1 × U → M is called acoordinatizing map for α1 with respect toΨ if:

(i) θ is regularC∞ homeomorphism;
(ii) πhεθ(q × v) = q for q ∈ α1, v ∈ U ;
(iii) Ψhεθ(q × v) = v for q ∈ α1, v ∈ U.

The proof for the following lemma can be found in [9].

Lemma 1. If α1 is an open subset of α and if Ψ is a C∞ normalizing map for N(M | α)
in L, then there exists a coordinatizing map θ for α1 with respect to Ψ.

The image of the coordinatizing mapθ lies in the tubular neighborhoodW(α2, ε) where
α2 is an open subset ofα containing cl(α1). We have the following diagram:

α1 × U
θ

W(α2, ε)
hε

N(M | α2)
Ψ

π

L

α2

6. Main result

Given a general mapf and (2n − 1)-cochaind we desire to find a homotopy{ft },
0 � t � 1, wheref = f0 andδd = c(f ) − c(f1). This homotopy is constructed usingd
as a guide. For example, ifd(Σn−1 × τn) = 1, this means that our homotopy will pushf
through a tube connectingΣ to τ and the end mapf1 will have more intersection points
thanf, one inf1(σ

n) ∩ f1(τ
n) for everyσn havingΣ as part of its boundary. This means

that for somer,0 < r < 1, fr will have a double point contained inΣn−1 × τn. This fr

corresponds to the cochaind and, because it is always possible to use a general homotopy,
δd andc(f ) − c(f1) will have the proper values.

Theorem 5. Let f : |K| → M be a general map. Let d ∈ C2n−1(J ∗K;Z) be such that
d[Σ × τ ] = 1, Σ an (n − 1)-simplex, τ an n-simplex, and 0, elsewhere. Then there exists
a general homotopy {ft } : |K| → M, 0 � t � 1, such that f0 = f and f1(x) = f (x) for
x /∈ star(Σ,K) ∪ τ, and δd = ±(c(f ) − c(f1)).
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Proof. Let x ∈ int(Σ), y ∈ int(τ ). Choose a smooth arcp : I → M such thata = p(0) =
f (x) and b = p(1) = f (y). Since p is smooth, we can extend the domain ofp to
(−δ,1 + δ) for someδ, 0 < δ < 1

2. Let α = p((−δ,1 + δ)). Since dimK = n, dim
M = 2n,n � 3, there is no difficulty in assuming thatα ∩f (K) = {a, b}. For the same
reason, we may assume that the unit tangent toα at a is not tangent to the image of any
simplex havingΣ as a face and, similarly, the unit tangent toα atb is not tangent tof (τ).

Now, if N(M | α) is the normal bundle alongα, let Ψ :N(M | α) → L, whereL is a
(2n − 1)-dimensional vector space, be a normalizing map. By Lemma 1 we know there
exists a coordinatizing mapθ :α1 × U → M with respect toΨ for α1 = p((−δ1,1+ δ1))

an open subset ofα andU a neighborhood of the origin inL. We may chooseε small
enough so that:

(i) The proof of the lemma is satisfied.
(ii) The tubular neighborhoodW(α2, ε) will meet the images underf of only τ and

star(Σ,K).

(iii) W(α2, ε) contains no points off (τ) ∩ f (star(Σ,K)).

Recall thatθ(α1 × U) ⊂ W(α2, ε) for α2 an open set ofα containing cl(α1) =
p([−δ1,1+ δ1]). We repeat the following diagram:

α1 × U
θ

W(α2, ε)
hε

N(M | α2)
Ψ

π

L

α2

Now, letDx = f −1(θ(α1 × U)) ∩ star(Σ,K) andDy = f−1(θ(α1 × U)) ∩ τ. By (iii)
above,Dx ∩ Dy = ∅. The idea is to exchange the portions off (star(Σ,K)) andf (τ)

which are inside the tubeθ(α1 × U). For everyz ∈ Dx , f (z) has a pair of coordinates
given byf (z) = θ(p(tz), vz) for a uniquetz ∈ (−δ1,1 + δ1), vz ∈ U. Similarly for every
z ∈ Dy , f (z) = θ(p′(tz), vz) wherep′(t) = p(1 − t) is the reverse path ofp.

Since every vector space is normal the Urysohn Lemma guarantees that existence of a
smooth, real-valued functionλ onL such that

0 � λ(v) � 1 ∀v ∈ L,

λ(v) = 0 v /∈ U,

λ(v) = 1 v ∈ some closedV ⊂ U containing the origin.

In order to be able to define a homotopy for allz ∈ Dx ∪ Dy, we assumeU has small
enough diameter so that for everyn-simplexσ havingΣ as a boundary, any sequence of
points{zi} in Dx or in Dy such that iff (zi) is approaching the boundary ofθ(α1 × U)

then limλ(vzi ) = 0. This condition ensures the continuity of the homotopy{ft } : |K| → M

for 0 � t � 1 as defined by:

ft (z) =



θ(p(tz + tλ(vz)), vz) if z ∈ Dx ,
θ(p′(tz + tλ(vz)), vz) if z ∈ Dy ,
f (z) if z /∈ Dx ∪ Dy .
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We now show that the end map of this homotopy has a double point introduced
in each simplex havingΣ as a boundary. In other words, for everyn-simplex σ ∈
star(Σ,K),f1(σ ) ∩ f1(τ ) �= ∅.

First note thatf1 will have an intersection inθ(α1 × U) if the equation

θ
(
p
(
tz + λ(vz)

)
, vz

) = θ
(
p′(tz′ + λ(vz′)

)
, vz′

)

has a solution pair(z, z′) with z ∈ σ, z′ ∈ τ. Applying πhε andΨhε separately to both
sides of this equation implies that any such solution must satisfy

p
(
tz + λ(vz)

) = p′(tz′ + λ(vz′ )
)

and vz = vz′ .

Sincep is an arc andp′ is the reverse path ofp, the coordinates of the image of a
solution pair(z, z′) must satisfy the equationtz + tz′ +λ(vz)+λ(vz′) = 1. To show we can
find such a pair we define a continuous real-valued functionω on (Dx ∩ σ) × Dy by

ω
(
z, z′) = tz + tz′ + λ(vz) + λ(vz′).

It is clear that the set of points(z, z′) in (Dx ∩σ)×Dy that satisfyvz = vz′ is connected.
Denote this set byA. Sincetz, tz′ ∈ (−δ1,1 + δ1) for 0 < δ1 < 1/2, sup(ω | A) > 1. By
condition (iii) for W(α2, ε), p(tz) �= p′(tz′) for vz = vz′ and sotz + tz′ < 1 for (z, z′) ∈ A.

Thus, inf(ω | A) < 1. By the intermediate value theorem for real-valued functions, there
must exist a pair(z∗, z′∗) such thatω(z∗, z′∗) = 1. So this pair is the desired solution for
the above equation.

We can now complete the proof of the theorem. Sinceft is a general homotopy,
f1 is a general map and therefore for everyn-simplex σ ∈ star(Σ,K), f1(σ ) ∩ f1(τ )

consists of transverse intersections and therefore is a discrete set. We may assume that
f1(σ ) ∩ f1(τ ) ∩ W(α2, ε) consists of a single point for if it does not we simply choose
a smallerε for the tubeW(α2, ε) in which the homotopy takes place. Then the following
routine computation yields our result. For anyn-simplexσ ∈ star(Σ,K),

δd[σ × τ ] = d
[
∂(σ × τ )

]

= d[∂σ × τ + σ × ∂τ ]
= d[Σ × τ + · · · + σ × ∂τ ]
= 1

= ±(
c(f ) − c(f1)

)[σ × τ ].
Observe thatd = 0 for pairs of simplices that are both outside star(Σ,K) ∪ τ and

so c(f ) = c(f1). If star(Σ,K) contains non-simplices, there are no new intersections
introduced since the homotopy is general. In this casec(f ) = c(f1) everywhere sinceΣ
does not appear as the boundary of ann-simplex and soδd would never be non-zero. Our
f1 therefore meets the desired condition.✷
Theorem 6. Let f : |K| → M be a general map, where K is a finite n-dimensional
simplicial complex, n � 3, and M is a 1-connected, smooth 2n-manifold. If γ (f ) = 0,
then f is homotopic to a general map g : |K| → M such that c(g) = 0.
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Proof. If γ (f ) = 0, but c(f ) �= 0, it is straightforward to subdivideK so that for every
n-simplicial pair[σ × τ ] ∈ J ∗K, c(f )[σ × τ ] = 0,1, or −1. Everyn-simplicial pairσ × τ

wherec(f )[σ × τ ] = ±1 must then fall into one of three categories which are handled in
the following ways:

(i) Either∂σ or ∂τ contains no(n− 1)-simplex which bounds anothern-simplex.
Suppose this is true of∂σ. Let Σ ∈ ∂σ be an (n − 1)-simplex such thatd ∈

C2n−1(J ∗K;Z) defined byd[σ × τ ] = 1 induces a homotopy via Theorem 5. This
introduces one new double point for the end mapf1 whose corresponding intersection
in f1(σ ) ∩ f1(τ ) is of opposite orientation from the existing one. Such aΣ must exist
or elseγ (f ) �= 0. Thenc(f1)[σ × τ ] = 0. Because star(Σ,K) consists of just the one
n-simplexσ, no new double points are introduced andc(f1) = c(f ) elsewhere.

(ii) The intersection inM corresponding to the double point pair(x, y) in σ × τ which
makesc(f )[σ × τ ] non-zero is movable to adjacentn-simplices.

Sinceγ (f ) = 0, an arcξ in K × K from (x, y) ∈ σ × τ to (y, x) ∈ τ × σ exists that
provides a sequence of desired homotopies. Sinceσ × τ does not fall into category (i), we
may assume thatξ intersects∂(σ × τ ) in Σ × τ, for Σ an(n − 1)-simplex which bounds
anothern-simplex. As in category (i), sinceγ (f ) = 0, there existsd ∈ C2n−1(J ∗K;Z)

defined byd[Σ × τ ] = 1 that provides a homotopy to a mapf1 wherec(f1)[σ × τ ] = 0
and a new double point pair has been introduced intoσ1 × τ for everyσ1 ∈ star(Σ,K).

If σ1 is adjacent toτ , c(f1)[σ1 × τ ] = 0. For everyσ1 such thatc(f1)[σ1 × τ ] �= 0 and
ξ ∩ (σ1 × τ ) �= ∅, the process is repeated using the intersection ofξ with ∂(σ1 × τ ) to
provide the next homotopy. Ifc(f1)[σ1×τ ] �= 0 andξ ∩(σ1×τ ) = ∅, thenσ1×τ falls into
one of these three categories (becauseγ (f ) = 0) and is dealt with accordingly. Theorem 5
ensures thatc(f1) = c(f ) elsewhere. Since the arcξ must intersect the diagonal inK ×K,

proceeding in this manner yields a finite sequence ofm homotopies resulting in a mapfm

wherec(fm)[σ ′×τ ′] = 0 for everyσ ′×τ ′ such thatξ ∩(σ ′ ×τ ′) �= ∅ and where the double
point offm now exists in a pair of adjacentn-simplices. It is removable by Theorem 2.

(iii) The intersection inM corresponding to the remote double point pair(x, y) in σ × τ

has a matching intersection of opposite orientation corresponding to another remote double
point pair(x+, y+) in, say,σ+ × τ+.

Sinceγ (f ) = 0, an arcξ exists inK × K from (x, y) to (x+, y+) whose path provides
a sequence of homotopies in the same manner as (ii). Whereverξ intersects∂(σ × τ ),

Theorem 5 implies the existence of a(2n − 1) cochain which induces a homotopy to
a mapf1 wherec(f1)[σ × τ ] = 0 and a new double point pair has been introduced in
a neighboringσ1 × τ . This is repeatedm times until the mapfm is attained in which
c(fm)[σ+ × τ+] = 0. In this case, however,fm does not have a double point in a pair
of adjacent simplices. Rather each of the introduced double points has a matching double
point of opposite orientation and is removable by Theorem 3.

Sincef is general, the set ofn-simplicial pairsσ × τ wherec(f )[σ × τ ] = ±1 is a finite
set. Applying the appropriate sequence of homotopies described above tof for eachσ × τ

in this set therefore produces a finite sequence of homotopies resulting in the required
mapg. ✷
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Combining Corollary 1, Theorems 4 and 6 yields the main result.

Theorem 7. Let f : |K| → M be a map, where K is a finite n-dimensional simplicial
complex, n � 3, and M is a 1-connected, smooth, orientable 2n-manifold. Then f is
homotopic to an embedding if and only if γ (f ) = 0.
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