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Abstract

Let K be a finite, connected, simplicial-complex (» > 3) and M a 1l-connected, smooth,
orientable 2-manifold without boundary. Iff:|K| — M is an arbitrary map, we define a first
obstructiony (f) € H2”(J*K; Z), whereJ*K is the reduced deleted product &f and show that
the vanishing of this obstruction is necessary and sufficienf ftar be homotopic to an embedding.
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1. Introduction

Let K be a finite, connected, simplicial-complex(n > 3) and M a 1-connected,
smooth, orientable/2manifold without boundary. Iff : |K| — M is an arbitrary map, we
shall define a first obstruction( f) € H¥*(J*K; Z), whereJ*K is the reduced deleted
product of K and show that the vanishing of this obstruction is necessary and sufficient
for f to be homotopic to an embedding. The heart of the paper is the construction of a
homotopy of f to another map in its conomology class via tubular neighborhoods and
coordinatizing maps. Therefore, arfywith 0 cohomology class can be homotoped to a
map f1 whose co-cycle is 0. The self-intersectionsfgfcan then be removed by using the
appropriate theorems established in the polyhedral category by Zeeman [4,13], Hudson [3,
4] and Weber [10].
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2. Theobstruction

Throughout this paper we I&t be a finite, connected, simpliciatcomplex(n > 3),
|K| the underlying topological space, aim a smooth, orientabler2manifold without
boundary. It is well known [8] that given any mgfx |K| — M and anye > 0, there exists
an e-homotopy betweerf and a general map fromk | to M. Therefore, we assume in
this paper that our given map is general.

Definition 1 [6]. A general mapf :|K| — M is one which satisfies:
(i) foreacho € K, f|o is a smooth embedding;
(ii) for each pair of simplices”, 17 € K with p +q < 2n, f(c?) N f(z9) = ¥;
(i) no pointof f(o™) N f(z") lies in the image of any other simplex;
(iv) for each pairo”, " € K, f(o™) N f(z") consists of a finite number of transverse
intersections.

Definition 2. Let f:|K| — M be a general map. L§U,, ¢,} be an atlas of coordinate
neighborhoods oM. Call f Euclidean with respect to intersections if for all n-simplices
o, t"of K, f(e")Nf(e") # V= f(c™")U f(z") C U, for somex.

Let f:|K| — M be a general map. Assunie is a fine enough subdivision so that
is Euclidean with respect to intersections. UK = {0 x t | 0,7 € K ando Nt = @}.
We wish to define a2cochain onJ K with integral coefficients. Sincg is general, it
is a proper map and the only simplices Kfwhose images undef intersect inM are
n-dimensional. Sincé/ is orientable, it has a coverind/,, ¢} of coherently oriented
coordinate neighborhoods ad. We may assume that for eaeh ¢, (U, ) is an open ball
in R?" containing the origin. Then, if (") N f(z") # ¥ and f(6") U f(z") C Uy, We
define the value of the cochaidtx (f) ono”™ x " by

ck(H)(0" x ") =da f(0") Ao f (")

for every such pair andg (f) = 0 for all other pairs of simplices iWK. (Here A

is the intersection number of the simplex imagesk#.) If f(o”) U f(t") C Ug for
another coordinate neighborhood, thef") U f(z") C U, N Ug . SinceM is orientable,

G [ (O"IN Qo f(T") = Pp f(6™)A ¢p f(z"). Therefore, the cochain is well-defined and
ck(f) e C*'(JK; Z).

We wish to show thatk (/) € C¥*(J*K; Z) whereJ*K = JK /(o x T ~ T x o). The
cellexchangemap : JK — J K defined byI'(6” x ) = t? x o induces a mafi* on
any cochair having the propertyl#c(o? x 19) = (—=1)P4¢(19 x o'?) where the product
o? x t? has an orientation induced by the orientationgéfand t4. In particular, for
n-simpliceso andt, andf :|K| — M a general map,

TPk (o x 1) = (=) ek (f)(T x 0)
= ()" uf (1) Ao f(0)
for f(o) N f(r) P andf(o) U f(1) C Uy
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= (D" (~1)"pu f () A bu f (1)
= ¢af(0) Auf(T)
= cx(f)(o x ).

Thereforec (f) is invariant undef*. DefineJ*K to be the decomposition complex
J*K = JK /(0 x T ~ T x o). The groupC? (J*K; Z) may be considered to be the
subgroup ofC%(JK: Z) consisting of T#-invariant cochains since the value of such
cochains is well-defined on the equivalence cléssx t] € J*K. Hence,ck(f) €
C?'(J*K; 7). Sinceck (f) is a top dimensional cochain, it is a cocycle, henceforth known
as the obstruction cocycle.

Definition 3. Letyk (f) € H¥'(J*K; Z) be the cohomology class of (f). Thisis called
the obstruction to homotoping a may : |K| — M to an embedding.

We see next that the obstruction is independent of the subdivisi&n Bbr if K’ is any
subdivision, then the isomorphist: H2'(J*K'; Z) — H?'(J*K; Z) is defined in the
following way. Letoc =01 Uo2U---Uo, andr =13 U U --- U 1, be subdivisions of
n-simpliceso, r € K. If i : K — K’ isinclusion, then

() ek (f))lo x 7]
=cx/(N)[(Ji)ulo x 7)]
=cg(fllorxti+o2 X2+ -+ 0p X 74]
=cx/(Hlor x ]+ cx (Hloz x 2] + - - + cx (Hlop X 4]

This last sum must equal (f)[o x 7] since all the double point pairs which lie in
o; x tj forall i, j is precisely the same set which liesanx t. Moreover,(Ji)¥ is clearly
an isomorphism at the cochain level and passing to cohomology, it induces the required
map ¥. As a result, for any mag :|K| — M, K may be assumed to be of sufficiently
fine mesh so thaf is Euclidean with respect to intersections. So we henceforth assume all
maps to possess this property and thus their obstructions will be defined. When there is no
confusion, we shall denote (f) by c(f) andyg (f) by y (f). As in most obstructions of
this type,y (f) is independent of the homotopy classfoBy the general position theorem
we may assume that all homotopies geaeral in the following sense.

Definition 4 [6]. {f;}:|K| — M is ageneral homotopy if:
(i) F is adifferentiable map frorkK | x I to M whereF(x, t) = fi(x).

(i) The set{r € I: f; is not general} is finite.

(ii) If f. is not general for some, 0 < r < 1, thenf, fails to be general by having a
double point pair; € o?, xp € 9, wherep + ¢ = 2n — 1. For any such double
point, there exist neighborhoods x U of (x1,7) ino? x I andV, x V of (x2,r)
in 79 x I, such thatF (U1 x U) intersectsF' (V2 x V) transversely il x 1.

The other double points gf. are contained in-dimensional simplices.

Theorem 1. If two general maps f and f1:|K| — M are homotopic, then y (f) = v (f1).



584 C.M. Johnson / Topology and its Applications 122 (2002) 581-591

Proof. We may assume a general homotdgy} : |K| — M with fo = f. For any double
point pair(xg, yo) € 0" x " of f, the self-intersectiong = f(xp) = f(yo) is the starting
point of a path of self-intersections W, call it z; = f;(x;) = f(y;) ast varies from 0
to 1. LetG ={r € I: f; is not general}. IfG is empty, it means that double point pair
(x¢, y+) corresponding te; never passes through the boundary bfx z”. In other words,
(x¢, yr) remains inc” x t” for all t. Similarly, all the double point pairs of reside in the
samen-simplex pairs as those gfi and soc(f) = c¢(f1). If G is not empty, it is sufficient
to consider the case where there is just one valaeG. This means thaf, fails to be
general by having a double point p&is., y,.) in a product of simplices of total dimension
2n — 1, call it, say,¥"~1 x t". Let (x;, y,), 0 <t < 1, be the double point path i x K
containing(x,, y,). To construct th&2n — 1)-coboundary which relates ) to c¢(f1), we
need only consider the-simplices in stafX’, K). Just one of these simplices, calbitwill
containxg. Condition (iii) of Definition 2.5 guarantees thate o for t < r andx; ¢ o for

t > r. Inother words,f (o) N f(t) contains one more pointthaf(o) N f1(t). Therefore,
c(fHlo x t] differs frome(f1)[o x ] by either+1 or —1 depending on the orientation of
the original intersection. Definee C?*~1(J*K; Z) by d[ ¥ x t] =1 and zero elsewhere.
Then

8dlo x 1] = d[d(o x 1)]
=d[do x T4+ 0 x 0T]
=d[YX xt+---+0 x07]
=d[XY x 1]
=1
= £(c(f) — c(f)lo x 71.

On the other hand, every othersimplex w € stafX, K) will not contain x,, but
the (general) homotopy must introduce one more self-intersection in the images of
and t under f; for t > r. So, in this casef(w) N f(tr) contains one less point than
f1(w) N f1(r). Therefore, as above( f)[w x t] differs fromc(f1)[w x 7] by either 1
or —1 depending on the orientation of the introduced self-intersection. Using the dbove

routine computation again gives 8@[w x 1] = +(c(f) — c¢(f1))[w x t]. Thus,c(f) and
¢(f1) are co-homologous.O

We have the following immediate corollary.

Corollary 1. If f ishomotopic to an embedding, then y (f) =0.

3. Double point pairsfrom adjacent simplices

The main objective of this paper is to prove the converse of Corollary 1. Our goal is to
eliminate all double point pairs from magsfor which y (f) = 0. We divide the double
point pairs of a general map into two types: those residing in adjacent simpliceskof
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and those that reside in remote (non-adjacent) simplices. Beddausas a complex not
containing pairs of simplicelgr x t] whereo Nt #£ @, it is a fact that oury (f) does not
detect double points contained in adjacent pairs. However, Whé&nl-connected, this is
not a problem.

Theorem 2. Let f:|K| — M be a general map, where K is a finite n-dimensional
simplicial complex, n > 3, and M is a 1-connected, smooth, 2rn-manifold. If o1 and o2 are
adjacent n-simplices of f containing a single double point (x1, x2), then f is homotopic
to a general map g:|K| — M where g(o1) N g(o2) =@ and g = f outside a regular
neighborhood of o1 U 07 .

Proof. Let xo be in the simplexo; N o2 and leté: 1 — K be an arc fromx; to x»
such thatg[0, 3] = x1 * xo and &[3, 1] = xo * x2, wherex indicates the join. Since
m1M =0, the loopf (£) bounds a 2-celD in M. Since 2 > 6, D may be chosen so that
DN f[K — (01 Uo2)] = 0. Next, subdivideX by starring atvg, x1, andxz. Then& will be

a subcomplex oK . There exists a triangulatiaiT’, ) of M (T a 2z-simplicial complex
andw:|T| — M a homeomorphism), and a further subdivisiorkouch thatf’ = =1 f

is simplicial andu—1(D) is a subcomplex of . Take second deriveds &f and7 such that
£ is still simplicial. LetNg = [N (¢, K”)| and N1 = |N(u~(D), T”| be second derived
neighborhoods of andi~1(D). ThenNg andN are regular neighborhoods of collapsible
polyhedrons and therefore are balls [3,9]. Als@dNo) C dN1 and f/(No) C N1. If we
identify No = I" andN1 = 1%, then every in Np can be represented by for0< 1 <1
wherel =1 <= x € dNp. Defineg’:|K| — |T| by g'(Axg) = Af'(x0) andg’ = f/ on
cl(K — Np). Theng’(o1) N g'(02) =@, ¢’ = f/ ondNp, and f’ is homotopic tog” by the
standard straight-line homotopy, namejywhereh, (x) =tf'(x) +(1—1)g’(x) forx € No
andh; (x) = f’(x) on cl(K — Np). The desire¢: |[K| — M istheng =pug’. O

SinceK is a finite simplex and the double point satf) must be finite for a general
map f, we may apply the above theorem a finite number of times to obtain the following
result.

Corollary 2. Let f:|K| — M be a general map with K and M as above. If the only
double point pairs of f occur in adjacent simplices of K, then f is homotopic to an
embedding.

4. Remote double points

We now consideremote double point pairs, i.e., those which exist in non-adjaeent
simplices ofK . We wish to be able to homotope a mapo an embedding in the event that
c(f) =0. Recall thate(f) vanishes precisely when, fernt =@, f(o) N f(z) is either
empty or consists of pairs of intersection points of opposite orientation. The following
theorem by Weber [10] gives us our desired result.
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Theorem 3. Let M™ be a semi-linear manifold without boundary. Let m = p + ¢. Let
fi0P — M and g: 19 — M betwo semi-linear embeddings such that f(o”) and g(t?)
intersect in general position in exactly two points A and B. e suppose that:
() p=3.9=>3
(i) Thereexistsa path o intheinterior of f(o?) connecting A to B and a path &’ in
theinterior of g(r4) connecting A to B such that « 1o’ ishomotopicto zeroin M;

(iif) Theintersection number f(o?) A g(t9) =0.

Then there exists an ambient isotopy %, in M, whose support isa combinatorial ball of
dimension m, leaving f(do?) and g(dt?) fixed, such that #1(g(t?)) N f(oP) =0.

If ¢(f) =0 forageneralmag :|K|— M, itis straightforward to subdivid& so that
wheneverf (o) intersectsf(z), (for o Nt = @), then f(o) N f(r) consists of exactly
two points whose coordinate frames are of opposite orientation. Since the cokhplect
the manifoldM of this paper satisfy the conditions of the above theorem, we can apply
the result repeatedly to eliminate all intersections occurring in the images of pairs of non-
adjacent:-simplices. In other wordsf can be homotoped to a maf having no remote
double point pairs. We then apply Corollary 2 to find a homotopy fyério an embedding.
Therefore, we have the following theorem.

Theorem 4. Let f:|K| — M be a general map, where K is a finite n-dimensional
simplicial complex, n > 3, and M is a 1-connected, smooth, 2n-manifold. If ¢(f) = 0,
then f is homotopic to an embedding.

5. Coordinatizing maps

Next, given a general map: | K| — M, we wish to conclude that if (f) =0, then f
is homotopic to an embedding. (/) = 0, butc(f) # 0, then there exists ayy whose
cochainis 0 and which is in the same cohomology class Ax If we can find a homotopy
from f to f1, we will be done because we know from Theorem 4 thais homotopic to
an embedding. In order to construct the required homotopy (ffaim f1), we will need
the following tools.

Definition 5 [9]. For S a submanifold ofM, atubular neighborhood W (S, ¢) of radius

¢ > 0 is defined as follows. For a tangent vectoto M, let exgv) be the point ofM

(if it exists) at a distance equal to the lengthwoélong a geodesic in the direction of
Let N(M | S) be those tangent vectors 8d at points ofS which are orthogonal te,
i.e., the normal bundle alon§} If cl(S) is compact, the implicit function theorem asserts
that, for a suitably smak, the exponential map, when restricted to vectorveM | S)

of length< ¢, is a homeomorphism. We shall denote its imagéis, ) and denote by
he the inverse of the exponential map so that W(S, ) — N(M | S) is a differentiable
homeomorphism. Ifr is the natural projection a¥V (M | S) on S, thenzh,: W(S,&) - S

is a fiber map, where each fiber is a cell.
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Definition 6. A normalizing map for a vector bundle is a map of the bundle into a vector
spaceL, which induces a linear isomorphism of each fiber ohtdt is well known that
there exists a normalizing map for a vector bundle if and only if it is a product bundle.

We wish to consider the normal bundigM | @) for @ = p((—38, 1+ §8)), a smooth arc
in M. ThenN(M | «) is a trivial bundle of (fiber) dimensionn2— 1. So there exists a
normalizing map? : N(M | @) — L, whereL is a vector space of dimension 2 1.

Definition 7 [9]. If ¥ :N(M | @) — L is a normalizing mapgy is an open subset af
(i.e.,a1 = p((—81,1+ 81)) for 81 < 8) andU a neighborhood of the origin if, then a
mapb a1 x U — M is called acoordinatizing map for «1 with respect to/ if:
(i) 6 isregularC®> homeomorphism
(i) mheb(g xv)=qforgeal, veU;
(i) YhO(g xv)y=vforgea, vel.

The proof for the following lemma can be found in [9].

Lemma 1. If @1 isan open subset of ¢ and if ¥ isa C* normalizing map for N(M | «)
in L, then there exists a coordinatizing map 6 for «; with respect to .

The image of the coordinatizing magies in the tubular neighborhodd#f (a2, ¢) where
ap is an open subset of containing cla1). We have the following diagram:

a1 X U—0>W(oz2,e)$N(M lao) —Y>L
g

o2

6. Main result

Given a general mag and (2 — 1)-cochaind we desire to find a homotopyf;},
0<r <1, wheref = fp anddd = ¢(f) — ¢(f1). This homotopy is constructed usiag
as a guide. For example,df 2”1 x ") = 1, this means that our homotopy will pugh
through a tube connecting to r and the end magi will have more intersection points
than f, onein f1(o”) N f1(z") for everyo™ having X as part of its boundary. This means
that for somer, 0 < r < 1, f, will have a double point contained 8”1 x ¢". This f,
corresponds to the cochairand, because it is always possible to use a general homotopy,
dd andc(f) — c(f1) will have the proper values.

Theorem 5. Let f:|K| — M be a general map. Let d € C¥*~1(J*K; Z) be such that
d[¥ x1]=1, ¥ an (n — 1)-simplex, T an n-simplex, and O, elsewhere. Then there exists
a general homotopy {f;}:1K| — M, 0<t <1, suchthat fo = f and f1(x) = f(x) for
x ¢ staX, K)Ut, and 8d = +(c(f) — c(f1)).
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Proof. Letx €int(X), y € int(t). Choose a smooth age: I — M such thatz = p(0) =
f(x) andb = p(1) = f(y). Since p is smooth, we can extend the domain pfto
(—=8,1+ 8) for somes, 0 <6 < % Let « = p((—8,1 + 8)). Since dimK = n, dim
M = 2n,n > 3, there is no difficulty in assuming that N f(K) = {a, b}. For the same
reason, we may assume that the unit tangeit & a is not tangent to the image of any
simplex havingy as a face and, similarly, the unit tangenttat b is not tangent tof ().

Now, if N(M | @) is the normal bundle along, let ¥ : N(M | «) — L, whereL is a
(2n — 1)-dimensional vector space, be a normalizing map. By Lemma 1 we know there
exists a coordinatizing map: a1 x U — M with respect tor for g = p((—681, 1+ 81))
an open subset af andU a neighborhood of the origin ih. We may choose small
enough so that:

(i) The proof of the lemma is satisfied.

(i) The tubular neighborhood¥ (a2, £) will meet the images undef of only r and

sta( X, K).

(i) W(a2, &) contains no points of () N f(staK X, K)).

Recall thatf(a1 x U) C W(az,&) for ap an open set ofx containing cla1) =
p([—61, 1+ 81]). We repeat the following diagram:

a1 X U—0>W(oz2,e)$N(M lao) —Y>L
g

o2

Now, let Dy = f~1(@(a1 x U)) Nsta X, K) andD, = f~1(0(e1 x U)) N 7. By (i)
above,D, N D, = §. The idea is to exchange the portions ffstar X, K)) and f(r)
which are inside the tube(xy x U). For everyz € D,, f(z) has a pair of coordinates
given by f(z) = 0(p(t;), v;) for a uniquer, € (=81, 1+ 81), v, € U. Similarly for every
z€ Dy, f(z) =0(p'(t;), v;) wherep'(t) = p(1 —1) is the reverse path of.

Since every vector space is hormal the Urysohn Lemma guarantees that existence of a
smooth, real-valued functionon L such that

O<Av) <1 Vvel,
A(v) =0 vé¢U,
Av)=1 v € some closed’ C U containing the origin.

In order to be able to define a homotopy foralt D, U D,, we assumd/ has small
enough diameter so that for everysimplexo having X' as a boundary, any sequence of
points{z;} in Dy or in D, such that iff (z;) is approaching the boundary éfay x U)
then lim(v;,) = 0. This condition ensures the continuity of the homot¢gy : |K| — M
for 0 <t <1 as defined by:

O(p(t; +tr(vy)),v;) if z € Dy,

fiz) = O(p'(t; +1r(v,)), v;) if z € Dy,
f(@) if z¢ Dy U D,.



C.M. Johnson / Topology and its Applications 122 (2002) 581-591 589

We now show that the end map of this homotopy has a double point introduced
in each simplex havingy as a boundary. In other words, for evetysimplex o €
sta(X, K), fi(o) N fa(r) # 0.

First note thatf; will have an intersection ifi(x1 x U) if the equation

9(p(tz + )\(Uz))» Uz) = 9(}7/([2/ + )‘(Uz’))» Uz’)

has a solution paifz, z’) with z € 0,7’ € 7. Applying wh, and¥h, separately to both
sides of this equation implies that any such solution must satisfy

p(tz + )\(Uz)) = p/(tz’ + )\(Uz’)) and v, =vy.

Since p is an arc andp’ is the reverse path g, the coordinates of the image of a
solution pair(z, z') must satisfy the equation+ #, + A(v;) + A(v,/) = 1. To show we can
find such a pair we define a continuous real-valued funetiem (D, No) x Dy, by

a)(z, Z/) =t;+ 1ty +A(v;) + A(vy).

Itis clear that the set of points, z’) in (D, No) x D, that satisfyv, = v, is connected.
Denote this set by. Sincet,, t, € (—81,1+ 1) for 0 <81 < 1/2, supw | A) > 1. By
condition (iii) for W (a2, €), p(t;) # p'(t) for v, = v, and sor, + 1, < 1 for (z,7') € A.
Thus, inf@ | A) < 1. By the intermediate value theorem for real-valued functions, there
must exist a paifz*, z’*) such thatw (z*, z/*) = 1. So this pair is the desired solution for
the above equation.

We can now complete the proof of the theorem. Sinfges a general homotopy,
f1 is a general map and therefore for evergimplexo € sta(X, K), fi(o) N f1(r)
consists of transverse intersections and therefore is a discrete set. We may assume that
f1(o) N f1(r) N W(az, €) consists of a single point for if it does not we simply choose
a smallere for the tubeW (a2, ¢) in which the homotopy takes place. Then the following
routine computation yields our result. For amgimplexo € star( X, K),

8dlo x ] = d[d(o x 1)]
=d[do x T+ 0 x 0T]
=d[YX xt+---+0 x07]
=1
= *£(c(f) — c(f)lo x 7l.
Observe that/ = 0 for pairs of simplices that are both outside €&rK) U r and
soc(f) = c(f1). If star(¥, K) contains nor-simplices, there are no new intersections
introduced since the homotopy is general. In this ea$® = ¢(f1) everywhere sincer

does not appear as the boundary ofiasimplex and sé@d would never be non-zero. Our
f1 therefore meets the desired conditiorm

Theorem 6. Let f:|K| — M be a general map, where K is a finite n-dimensional
simplicial complex, n > 3, and M is a 1-connected, smooth 2xz-manifold. If y(f) =0,
then f ishomotopicto a general map g: |K| — M suchthat c(g) =0.
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Proof. If y(f) =0, butc(f) # 0, it is straightforward to subdivid& so that for every
n-simplicial pairfo x t] € J*K, c¢(f)[o x t] =0, 1, or —1. Everyn-simplicial pairoc x t
wherec(f)[o x t] = +1 must then fall into one of three categories which are handled in
the following ways:

(i) Eitherdo or a7 contains nan — 1)-simplex which bounds anothersimplex.

Suppose this is true obo. Let ¥ € do be an (n — 1)-simplex such thatd e
c?-1(J*K; 7Z) defined byd[o x t] = 1 induces a homotopy via Theorem 5. This
introduces one new double point for the end m@apwhose corresponding intersection
in fi1(o) N f1(t) is of opposite orientation from the existing one. Suclk’ anust exist
or elsey(f) # 0. Thenc(f1)[o x t] = 0. Because stgs’, K) consists of just the one
n-simplexo, no new double points are introduced arigi) = c(f) elsewhere.

(i) The intersection il corresponding to the double point péir, y) in o x T which
makesc(f)[o x 7] non-zero is movable to adjacemnsimplices.

Sincey (f) =0, an arcé in K x K from (x,y) € o x T t0 (y,x) € T X o exists that
provides a sequence of desired homotopies. Singer does not fall into category (i), we
may assume thdtintersect9 (o x t) in X x 1, for ¥ an(n — 1)-simplex which bounds
anothem-simplex. As in category (i), since(f) = 0, there existsi € CZ'~Y(J*K; Z)
defined byd[ ¥ x t] =1 that provides a homotopy to a mgp wherec(f1)[o x 1] =0
and a new double point pair has been introduced it t for everyo; € sta( X, K).

If o1 is adjacent tor, c(f1)[o1 x t] = 0. For everyo; such thate( f1)[o1 x t] # 0 and
&N (o1 x T) # 0, the process is repeated using the intersectioh with d(c1 x 1) to
provide the next homotopy. #( f1)[o1 x 7] # 0 andé N (o1 x ) = @, theno x t fallsinto
one of these three categories (becausg) = 0) and is dealt with accordingly. Theorem 5
ensures that( f1) = c(f) elsewhere. Since the afanust intersect the diagonal ki x K,
proceeding in this manner yields a finite sequence diomotopies resulting in a mag,
wherec(f,,)[0’ x T']1 = 0 for everyo’ x t/ such thag N (o’ x ') # ¥ and where the double
point of f,,, now exists in a pair of adjacentsimplices. It is removable by Theorem 2.

(i) The intersection inM corresponding to the remote double point gairy) ino x t
has a matching intersection of opposite orientation corresponding to another remote double
point pair(x*, yT) in, say,ct x .

Sincey (f) =0, an arct exists inK x K from (x, y) to (x*, yT) whose path provides
a sequence of homotopies in the same manner as (ii). Whefeinersectsd(o x 1),
Theorem 5 implies the existence of(an — 1) cochain which induces a homotopy to
a map f1 wherec(f1)[o x t] = 0 and a new double point pair has been introduced in
a neighboringoy x 7. This is repeated: times until the mapf,, is attained in which
c(fm)lo™ x ] = 0. In this case, howeverf,, does not have a double point in a pair
of adjacent simplices. Rather each of the introduced double points has a matching double
point of opposite orientation and is removable by Theorem 3.

Sincef is general, the set af-simplicial pairsoc x T wherec(f)[o x ] = £1is afinite
set. Applying the appropriate sequence of homotopies described abgv¥erteacho x t
in this set therefore produces a finite sequence of homotopies resulting in the required
mapg. 0O
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Combining Corollary 1, Theorems 4 and 6 yields the main result.

Theorem 7. Let f:|K| — M be a map, where K is a finite n-dimensional simplicial
complex, n > 3, and M is a 1-connected, smooth, orientable 2n-manifold. Then f is
homotopic to an embedding if and only if y (f) = 0.
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