An obstruction to embedding a simplicial n-complex into a $2 n$-manifold

Craig M. Johnson
Department of Mathematics, Marywood University, Scranton, PA 18509, USA

Received 26 October 2000; received in revised form 9 February 2001

Abstract

Let K be a finite, connected, simplicial n-complex $(n \geqslant 3)$ and M a 1 -connected, smooth, orientable $2 n$-manifold without boundary. If $f:|K| \rightarrow M$ is an arbitrary map, we define a first obstruction $\gamma(f) \in H^{2 n}\left(J^{*} K ; Z\right)$, where $J^{*} K$ is the reduced deleted product of K and show that the vanishing of this obstruction is necessary and sufficient for f to be homotopic to an embedding. © 2002 Elsevier Science B.V. All rights reserved.

AMS classification: Primary 55S35, Secondary 57Q35
Keywords: Obstruction; Embedding; Manifold; Simplicial complex

1. Introduction

Let K be a finite, connected, simplicial n-complex ($n \geqslant 3$) and M a 1 -connected, smooth, orientable $2 n$-manifold without boundary. If $f:|K| \rightarrow M$ is an arbitrary map, we shall define a first obstruction $\gamma(f) \in H^{2 n}\left(J^{*} K ; Z\right)$, where $J^{*} K$ is the reduced deleted product of K and show that the vanishing of this obstruction is necessary and sufficient for f to be homotopic to an embedding. The heart of the paper is the construction of a homotopy of f to another map in its cohomology class via tubular neighborhoods and coordinatizing maps. Therefore, any f with 0 cohomology class can be homotoped to a map f_{1} whose co-cycle is 0 . The self-intersections of f_{1} can then be removed by using the appropriate theorems established in the polyhedral category by Zeeman [4,13], Hudson [3, 4] and Weber [10].

E-mail address: johnsonc@ac.marywood.edu (C.M. Johnson).
0166-8641/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(01)00193-6

2. The obstruction

Throughout this paper we let K be a finite, connected, simplicial n-complex ($n \geqslant 3$), $|K|$ the underlying topological space, and M a smooth, orientable $2 n$-manifold without boundary. It is well known [8] that given any map $f:|K| \rightarrow M$ and any $\varepsilon>0$, there exists an ε-homotopy between f and a general map from $|K|$ to M. Therefore, we assume in this paper that our given map is general.

Definition 1 [6]. A general map $f:|K| \rightarrow M$ is one which satisfies:
(i) for each $\sigma \in K, f \mid \sigma$ is a smooth embedding;
(ii) for each pair of simplices $\sigma^{p}, \tau^{q} \in K$ with $p+q<2 n, f\left(\sigma^{p}\right) \cap f\left(\tau^{q}\right)=\emptyset$;
(iii) no point of $f\left(\sigma^{n}\right) \cap f\left(\tau^{n}\right)$ lies in the image of any other simplex;
(iv) for each pair $\sigma^{n}, \tau^{n} \in K, f\left(\sigma^{n}\right) \cap f\left(\tau^{n}\right)$ consists of a finite number of transverse intersections.

Definition 2. Let $f:|K| \rightarrow M$ be a general map. Let $\left\{U_{\alpha}, \phi_{a}\right\}$ be an atlas of coordinate neighborhoods on M. Call f Euclidean with respect to intersections if for all n-simplices σ^{n}, τ^{n} of $K, f\left(\sigma^{n}\right) \cap f\left(\tau^{n}\right) \neq \emptyset \Longrightarrow f\left(\sigma^{n}\right) \cup f\left(\tau^{n}\right) \subset U_{\alpha}$ for some α.

Let $f:|K| \rightarrow M$ be a general map. Assume K is a fine enough subdivision so that f is Euclidean with respect to intersections. Let $J K=\{\sigma \times \tau \mid \sigma, \tau \in K$ and $\sigma \cap \tau=\emptyset\}$. We wish to define a $2 n$-cochain on $J K$ with integral coefficients. Since f is general, it is a proper map and the only simplices of K whose images under f intersect in M are n-dimensional. Since M is orientable, it has a covering $\left\{U_{\alpha}, \phi_{\alpha}\right\}$ of coherently oriented coordinate neighborhoods on M. We may assume that for each $\alpha, \phi_{\alpha}\left(U_{\alpha}\right)$ is an open ball in $R^{2 n}$ containing the origin. Then, if $f\left(\sigma^{n}\right) \cap f\left(\tau^{n}\right) \neq \emptyset$ and $f\left(\sigma^{n}\right) \cup f\left(\tau^{n}\right) \subset U_{\alpha}$, we define the value of the cochain $c_{K}(f)$ on $\sigma^{n} \times \tau^{n}$ by

$$
c_{K}(f)\left(\sigma^{n} \times \tau^{n}\right)=\phi_{\alpha} f\left(\sigma^{n}\right) \wedge \phi_{\alpha} f\left(\tau^{n}\right)
$$

for every such pair and $c_{K}(f)=0$ for all other pairs of simplices in $J K$. (Here \wedge is the intersection number of the simplex images in $R^{2 n}$.) If $f\left(\sigma^{n}\right) \cup f\left(\tau^{n}\right) \subset U_{\beta}$ for another coordinate neighborhood, then $f\left(\sigma^{n}\right) \cup f\left(\tau^{n}\right) \subset U_{\alpha} \cap U_{\beta}$. Since M is orientable, $\phi_{\alpha} f\left(\sigma^{n}\right) \wedge \phi_{\alpha} f\left(\tau^{n}\right)=\phi_{\beta} f\left(\sigma^{n}\right) \wedge \phi_{\beta} f\left(\tau^{n}\right)$. Therefore, the cochain is well-defined and $c_{K}(f) \in C^{2 n}(J K ; Z)$.

We wish to show that $c_{K}(f) \in C^{2 n}\left(J^{*} K ; Z\right)$ where $J^{*} K=J K /(\sigma \times \tau \sim \tau \times \sigma)$. The cell exchange map $T: J K \rightarrow J K$ defined by $T\left(\sigma^{p} \times \tau^{p}\right)=\tau^{p} \times \sigma^{p}$ induces a map $T^{\#}$ on any cochain c having the property: $T^{\#} c\left(\sigma^{p} \times \tau^{q}\right)=(-1)^{p q} c\left(\tau^{q} \times \sigma^{p}\right)$ where the product $\sigma^{p} \times \tau^{q}$ has an orientation induced by the orientations of σ^{p} and τ^{q}. In particular, for n-simplices σ and τ, and $f:|K| \rightarrow M$ a general map,

$$
\begin{aligned}
T^{\#} c_{K}(f)(\sigma \times \tau)= & (-1)^{n^{2}} c_{K}(f)(\tau \times \sigma) \\
= & (-1)^{n^{2}} \phi_{\alpha} f(\tau) \wedge \phi_{\alpha} f(\sigma) \\
& \text { for } f(\sigma) \cap f(\tau) \neq \emptyset \text { and } f(\sigma) \cup f(\tau) \subset U_{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n^{2}}(-1)^{n^{2}} \phi_{\alpha} f(\sigma) \wedge \phi_{\alpha} f(\tau) \\
& =\phi_{\alpha} f(\sigma) \wedge \phi_{\alpha} f(\tau) \\
& =c_{K}(f)(\sigma \times \tau)
\end{aligned}
$$

Therefore, $c_{K}(f)$ is invariant under $T^{\#}$. Define $J^{*} K$ to be the decomposition complex $J^{*} K=J K /(\sigma \times \tau \sim \tau \times \sigma)$. The group $C^{2 n}\left(J^{*} K ; Z\right)$ may be considered to be the subgroup of $C^{2 n}(J K ; Z)$ consisting of $T^{\#}$-invariant cochains since the value of such cochains is well-defined on the equivalence class $[\sigma \times \tau] \in J^{*} K$. Hence, $c_{K}(f) \in$ $C^{2 n}\left(J^{*} K ; Z\right)$. Since $c_{K}(f)$ is a top dimensional cochain, it is a cocycle, henceforth known as the obstruction cocycle.

Definition 3. Let $\gamma_{K}(f) \in H^{2 n}\left(J^{*} K ; Z\right)$ be the cohomology class of $c_{K}(f)$. This is called the obstruction to homotoping a map $f:|K| \rightarrow M$ to an embedding.

We see next that the obstruction is independent of the subdivision of K. For if K^{\prime} is any subdivision, then the isomorphism $\Psi: H^{2 n}\left(J^{*} K^{\prime} ; Z\right) \rightarrow H^{2 n}\left(J^{*} K ; Z\right)$ is defined in the following way. Let $\sigma=\sigma_{1} \cup \sigma_{2} \cup \cdots \cup \sigma_{p}$ and $\tau=\tau_{1} \cup \tau_{2} \cup \cdots \cup \tau_{q}$ be subdivisions of n-simplices $\sigma, \tau \in K$. If $i: K \rightarrow K^{\prime}$ is inclusion, then

$$
\begin{aligned}
& (J i)^{\#}\left(c_{K^{\prime}}(f)\right)[\sigma \times \tau] \\
& \quad=c_{K^{\prime}}(f)\left[(J i)_{\#}(\sigma \times \tau)\right] \\
& \quad=c_{K^{\prime}}(f)\left[\sigma_{1} \times \tau_{1}+\sigma_{2} \times \tau_{2}+\cdots+\sigma_{p} \times \tau_{q}\right] \\
& \quad=c_{K^{\prime}}(f)\left[\sigma_{1} \times \tau_{1}\right]+c_{K^{\prime}}(f)\left[\sigma_{2} \times \tau_{2}\right]+\cdots+c_{K^{\prime}}(f)\left[\sigma_{p} \times \tau_{q}\right]
\end{aligned}
$$

This last sum must equal $c_{K}(f)[\sigma \times \tau]$ since all the double point pairs which lie in $\sigma_{i} \times \tau_{j}$ for all i, j is precisely the same set which lies in $\sigma \times \tau$. Moreover, $(J i)^{\#}$ is clearly an isomorphism at the cochain level and passing to cohomology, it induces the required map Ψ. As a result, for any map $f:|K| \rightarrow M, K$ may be assumed to be of sufficiently fine mesh so that f is Euclidean with respect to intersections. So we henceforth assume all maps to possess this property and thus their obstructions will be defined. When there is no confusion, we shall denote $c_{K}(f)$ by $c(f)$ and $\gamma_{K}(f)$ by $\gamma(f)$. As in most obstructions of this type, $\gamma(f)$ is independent of the homotopy class of f. By the general position theorem we may assume that all homotopies are general in the following sense.

Definition 4 [6]. $\left\{f_{t}\right\}:|K| \rightarrow M$ is a general homotopy if:
(i) F is a differentiable map from $|K| \times I$ to M where $F(x, t)=f_{t}(x)$.
(ii) The set $\left\{t \in I: f_{t}\right.$ is not general $\}$ is finite.
(iii) If f_{r} is not general for some $r, 0<r<1$, then f_{r} fails to be general by having a double point pair $x_{1} \in \sigma^{p}, x_{2} \in \tau^{q}$, where $p+q=2 n-1$. For any such double point, there exist neighborhoods $U_{1} \times U$ of $\left(x_{1}, r\right)$ in $\sigma^{p} \times I$ and $V_{2} \times V$ of $\left(x_{2}, r\right)$ in $\tau^{q} \times I$, such that $F\left(U_{1} \times U\right)$ intersects $F\left(V_{2} \times V\right)$ transversely in $M \times I$.
The other double points of f_{r} are contained in n-dimensional simplices.

Theorem 1. If two general maps f and $f_{1}:|K| \rightarrow M$ are homotopic, then $\gamma(f)=\gamma\left(f_{1}\right)$.

Proof. We may assume a general homotopy $\left\{f_{t}\right\}:|K| \rightarrow M$ with $f_{0}=f$. For any double point pair $\left(x_{0}, y_{0}\right) \in \sigma^{n} \times \tau^{n}$ of f, the self-intersection $z_{0}=f\left(x_{0}\right)=f\left(y_{0}\right)$ is the starting point of a path of self-intersections in M, call it $z_{t}=f_{t}\left(x_{t}\right)=f\left(y_{t}\right)$ as t varies from 0 to 1 . Let $G=\left\{t \in I: f_{t}\right.$ is not general $\}$. If G is empty, it means that double point pair $\left(x_{t}, y_{t}\right)$ corresponding to z_{t} never passes through the boundary of $\sigma^{n} \times \tau^{n}$. In other words, $\left(x_{t}, y_{t}\right)$ remains in $\sigma^{n} \times \tau^{n}$ for all t. Similarly, all the double point pairs of f reside in the same n-simplex pairs as those of f_{1} and so $c(f)=c\left(f_{1}\right)$. If G is not empty, it is sufficient to consider the case where there is just one value $r \in G$. This means that f_{r} fails to be general by having a double point pair $\left(x_{r}, y_{r}\right)$ in a product of simplices of total dimension $2 n-1$, call it, say, $\Sigma^{n-1} \times \tau^{n}$. Let $\left(x_{t}, y_{t}\right), 0 \leqslant t \leqslant 1$, be the double point path in $K \times K$ containing $\left(x_{r}, y_{r}\right)$. To construct the $(2 n-1)$-coboundary which relates $c(f)$ to $c\left(f_{1}\right)$, we need only consider the n-simplices in $\operatorname{star}(\Sigma, K)$. Just one of these simplices, call it σ, will contain x_{0}. Condition (iii) of Definition 2.5 guarantees that $x_{t} \in \sigma$ for $t \leqslant r$ and $x_{t} \notin \sigma$ for $t>r$. In other words, $f(\sigma) \cap f(\tau)$ contains one more point than $f_{1}(\sigma) \cap f_{1}(\tau)$. Therefore, $c(f)[\sigma \times \tau]$ differs from $c\left(f_{1}\right)[\sigma \times \tau]$ by either +1 or -1 depending on the orientation of the original intersection. Define $d \in C^{2 n-1}\left(J^{*} K ; Z\right)$ by $d[\Sigma \times \tau]=1$ and zero elsewhere. Then

$$
\begin{aligned}
\delta d[\sigma \times \tau] & =d[\partial(\sigma \times \tau)] \\
& =d[\partial \sigma \times \tau+\sigma \times \partial \tau] \\
& =d[\Sigma \times \tau+\cdots+\sigma \times \partial \tau] \\
& =d[\Sigma \times \tau] \\
& =1 \\
& = \pm\left(c(f)-c\left(f_{1}\right)\right)[\sigma \times \tau] .
\end{aligned}
$$

On the other hand, every other n-simplex $\omega \in \operatorname{star}(\Sigma, K)$ will not contain x_{o}, but the (general) homotopy must introduce one more self-intersection in the images of ω and τ under f_{t} for $t>r$. So, in this case, $f(\omega) \cap f(\tau)$ contains one less point than $f_{1}(\omega) \cap f_{1}(\tau)$. Therefore, as above, $c(f)[\omega \times \tau]$ differs from $c\left(f_{1}\right)[\omega \times \tau]$ by either 1 or -1 depending on the orientation of the introduced self-intersection. Using the above d, routine computation again gives us $\delta d[\omega \times \tau]= \pm\left(c(f)-c\left(f_{1}\right)\right)[\omega \times \tau]$. Thus, $c(f)$ and $c\left(f_{1}\right)$ are co-homologous.

We have the following immediate corollary.
Corollary 1. If f is homotopic to an embedding, then $\gamma(f)=0$.

3. Double point pairs from adjacent simplices

The main objective of this paper is to prove the converse of Corollary 1 . Our goal is to eliminate all double point pairs from maps f for which $\gamma(f)=0$. We divide the double point pairs of a general map f into two types: those residing in adjacent simplices of K
and those that reside in remote (non-adjacent) simplices. Because $J^{*} K$ is a complex not containing pairs of simplices $[\sigma \times \tau]$ where $\sigma \cap \tau \neq \emptyset$, it is a fact that our $\gamma(f)$ does not detect double points contained in adjacent pairs. However, when M is 1 -connected, this is not a problem.

Theorem 2. Let $f:|K| \rightarrow M$ be a general map, where K is a finite n-dimensional simplicial complex, $n \geqslant 3$, and M is a 1 -connected, smooth, $2 n$-manifold. If σ_{1} and σ_{2} are adjacent n-simplices of f containing a single double point $\left(x_{1}, x_{2}\right)$, then f is homotopic to a general map $g:|K| \rightarrow M$ where $g\left(\sigma_{1}\right) \cap g\left(\sigma_{2}\right)=\emptyset$ and $g=f$ outside a regular neighborhood of $\sigma_{1} \cup \sigma_{2}$.

Proof. Let x_{0} be in the simplex $\sigma_{1} \cap \sigma_{2}$ and let $\xi: I \rightarrow K$ be an arc from x_{1} to x_{2} such that $\xi\left[0, \frac{1}{2}\right]=x_{1} * x_{0}$ and $\xi\left[\frac{1}{2}, 1\right]=x_{0} * x_{2}$, where $*$ indicates the join. Since $\pi_{1} M=0$, the loop $f(\xi)$ bounds a 2 -cell D in M. Since $2 n \geqslant 6, D$ may be chosen so that $D \cap f\left[K-\left(\sigma_{1} \cup \sigma_{2}\right)\right]=\emptyset$. Next, subdivide K by starring at x_{0}, x_{1}, and x_{2}. Then ξ will be a subcomplex of K. There exists a triangulation (T, μ) of M (T a $2 n$-simplicial complex and $\mu:|T| \rightarrow M$ a homeomorphism), and a further subdivision of K such that $f^{\prime}=\mu^{-1} f$ is simplicial and $\mu^{-1}(D)$ is a subcomplex of T. Take second deriveds of K and T such that f^{\prime} is still simplicial. Let $N_{0}=\left|N\left(\xi, K^{\prime \prime}\right)\right|$ and $N_{1}=\mid N\left(\mu^{-1}(D), T^{\prime \prime} \mid\right.$ be second derived neighborhoods of ξ and $\mu^{-1}(D)$. Then N_{0} and N_{1} are regular neighborhoods of collapsible polyhedrons and therefore are balls [3,9]. Also $f^{\prime}\left(\partial N_{0}\right) \subset \partial N_{1}$ and $f^{\prime}\left(N_{0}\right) \subset N_{1}$. If we identify $N_{0} \cong I^{n}$ and $N_{1} \cong I^{2 n}$, then every x in N_{0} can be represented by λx_{0} for $0 \leqslant \lambda \leqslant 1$ where $\lambda=1 \Longleftrightarrow x \in \partial N_{0}$. Define $g^{\prime}:|K| \rightarrow|T|$ by $g^{\prime}\left(\lambda x_{0}\right)=\lambda f^{\prime}\left(x_{0}\right)$ and $g^{\prime}=f^{\prime}$ on $\operatorname{cl}\left(K-N_{0}\right)$. Then $g^{\prime}\left(\sigma_{1}\right) \cap g^{\prime}\left(\sigma_{2}\right)=\emptyset, g^{\prime}=f^{\prime}$ on ∂N_{0}, and f^{\prime} is homotopic to g^{\prime} by the standard straight-line homotopy, namely h_{t} where $h_{t}(x)=t f^{\prime}(x)+(1-t) g^{\prime}(x)$ for $x \in N_{0}$ and $h_{t}(x)=f^{\prime}(x)$ on $\operatorname{cl}\left(K-N_{0}\right)$. The desired $g:|K| \rightarrow M$ is then $g=\mu g^{\prime}$.

Since K is a finite simplex and the double point set $S(f)$ must be finite for a general map f, we may apply the above theorem a finite number of times to obtain the following result.

Corollary 2. Let $f:|K| \rightarrow M$ be a general map with K and M as above. If the only double point pairs of f occur in adjacent simplices of K, then f is homotopic to an embedding.

4. Remote double points

We now consider remote double point pairs, i.e., those which exist in non-adjacent n simplices of K. We wish to be able to homotope a map f to an embedding in the event that $c(f)=0$. Recall that $c(f)$ vanishes precisely when, for $\sigma \cap \tau=\emptyset, f(\sigma) \cap f(\tau)$ is either empty or consists of pairs of intersection points of opposite orientation. The following theorem by Weber [10] gives us our desired result.

Theorem 3. Let M^{m} be a semi-linear manifold without boundary. Let $m=p+q$. Let $f: \sigma^{p} \rightarrow M$ and $g: \tau^{q} \rightarrow M$ be two semi-linear embeddings such that $f\left(\sigma^{p}\right)$ and $g\left(\tau^{q}\right)$ intersect in general position in exactly two points A and B. We suppose that:
(i) $p \geqslant 3, q \geqslant 3$;
(ii) There exists a path α in the interior of $f\left(\sigma^{p}\right)$ connecting A to B and a path α^{\prime} in the interior of $g\left(\tau^{q}\right)$ connecting A to B such that $\alpha^{-1} \alpha^{\prime}$ is homotopic to zero in M;
(iii) The intersection number $f\left(\sigma^{p}\right) \wedge g\left(\tau^{q}\right)=0$.

Then there exists an ambient isotopy h_{t} in M, whose support is a combinatorial ball of dimension m, leaving $f\left(\partial \sigma^{p}\right)$ and $g\left(\partial \tau^{q}\right)$ fixed, such that $h_{1}\left(g\left(\tau^{q}\right)\right) \cap f\left(\sigma^{p}\right)=\emptyset$.

If $c(f)=0$ for a general map $f:|K| \rightarrow M$, it is straightforward to subdivide K so that whenever $f(\sigma)$ intersects $f(\tau)$, (for $\sigma \cap \tau=\emptyset$), then $f(\sigma) \cap f(\tau)$ consists of exactly two points whose coordinate frames are of opposite orientation. Since the complex K and the manifold M of this paper satisfy the conditions of the above theorem, we can apply the result repeatedly to eliminate all intersections occurring in the images of pairs of nonadjacent n-simplices. In other words, f can be homotoped to a map f^{\prime} having no remote double point pairs. We then apply Corollary 2 to find a homotopy from f^{\prime} to an embedding. Therefore, we have the following theorem.

Theorem 4. Let $f:|K| \rightarrow M$ be a general map, where K is a finite n-dimensional simplicial complex, $n \geqslant 3$, and M is a 1 -connected, smooth, $2 n$-manifold. If $c(f)=0$, then f is homotopic to an embedding.

5. Coordinatizing maps

Next, given a general map $f:|K| \rightarrow M$, we wish to conclude that if $\gamma(f)=0$, then f is homotopic to an embedding. If $\gamma(f)=0$, but $c(f) \neq 0$, then there exists an f_{1} whose cochain is 0 and which is in the same cohomology class as $c(f)$. If we can find a homotopy from f to f_{1}, we will be done because we know from Theorem 4 that f_{1} is homotopic to an embedding. In order to construct the required homotopy (from f to f_{1}), we will need the following tools.

Definition 5 [9]. For S a submanifold of M, a tubular neighborhood $W(S, \varepsilon)$ of radius $\varepsilon>0$ is defined as follows. For a tangent vector v to M, let $\exp (v)$ be the point of M (if it exists) at a distance equal to the length of v along a geodesic in the direction of v. Let $N(M \mid S)$ be those tangent vectors to M at points of S which are orthogonal to S, i.e., the normal bundle along S. If $\operatorname{cl}(S)$ is compact, the implicit function theorem asserts that, for a suitably small ε, the exponential map, when restricted to vectors of $N(M \mid S)$ of length $<\varepsilon$, is a homeomorphism. We shall denote its image by $W(S, \varepsilon)$ and denote by h_{ε} the inverse of the exponential map so that $h_{\varepsilon}: W(S, \varepsilon) \rightarrow N(M \mid S)$ is a differentiable homeomorphism. If π is the natural projection of $N(M \mid S)$ on S, then $\pi h_{\varepsilon}: W(S, \varepsilon) \rightarrow S$ is a fiber map, where each fiber is a cell.

Definition 6. A normalizing map for a vector bundle is a map of the bundle into a vector space L, which induces a linear isomorphism of each fiber onto L. It is well known that there exists a normalizing map for a vector bundle if and only if it is a product bundle.

We wish to consider the normal bundle $N(M \mid \alpha)$ for $\alpha=p((-\delta, 1+\delta))$, a smooth arc in M. Then $N(M \mid \alpha)$ is a trivial bundle of (fiber) dimension $2 n-1$. So there exists a normalizing map $\Psi: N(M \mid \alpha) \rightarrow L$, where L is a vector space of dimension $2 n-1$.

Definition 7 [9]. If $\Psi: N(M \mid \alpha) \rightarrow L$ is a normalizing map, α_{1} is an open subset of α (i.e., $\alpha_{1}=p\left(\left(-\delta_{1}, 1+\delta_{1}\right)\right)$ for $\delta_{1}<\delta$) and U a neighborhood of the origin in L, then a map $\theta: \alpha_{1} \times U \rightarrow M$ is called a coordinatizing map for α_{1} with respect to Ψ if:
(i) θ is regular C^{∞} homeomorphism;
(ii) $\pi h_{\varepsilon} \theta(q \times v)=q$ for $q \in \alpha_{1}, v \in U$;
(iii) $\Psi h_{\varepsilon} \theta(q \times v)=v$ for $q \in \alpha_{1}, v \in U$.

The proof for the following lemma can be found in [9].
Lemma 1. If α_{1} is an open subset of α and if Ψ is a C^{∞} normalizing map for $N(M \mid \alpha)$ in L, then there exists a coordinatizing map θ for α_{1} with respect to Ψ.

The image of the coordinatizing map θ lies in the tubular neighborhood $W\left(\alpha_{2}, \varepsilon\right)$ where α_{2} is an open subset of α containing $\operatorname{cl}\left(\alpha_{1}\right)$. We have the following diagram:

6. Main result

Given a general map f and $(2 n-1)$-cochain d we desire to find a homotopy $\left\{f_{t}\right\}$, $0 \leqslant t \leqslant 1$, where $f=f_{0}$ and $\delta d=c(f)-c\left(f_{1}\right)$. This homotopy is constructed using d as a guide. For example, if $d\left(\Sigma^{n-1} \times \tau^{n}\right)=1$, this means that our homotopy will push f through a tube connecting Σ to τ and the end map f_{1} will have more intersection points than f, one in $f_{1}\left(\sigma^{n}\right) \cap f_{1}\left(\tau^{n}\right)$ for every σ^{n} having Σ as part of its boundary. This means that for some $r, 0<r<1, f_{r}$ will have a double point contained in $\Sigma^{n-1} \times \tau^{n}$. This f_{r} corresponds to the cochain d and, because it is always possible to use a general homotopy, δd and $c(f)-c\left(f_{1}\right)$ will have the proper values.

Theorem 5. Let $f:|K| \rightarrow M$ be a general map. Let $d \in C^{2 n-1}\left(J^{*} K ; Z\right)$ be such that $d[\Sigma \times \tau]=1, \Sigma$ an $(n-1)$-simplex, τ an n-simplex, and 0 , elsewhere. Then there exists a general homotopy $\left\{f_{t}\right\}:|K| \rightarrow M, 0 \leqslant t \leqslant 1$, such that $f_{0}=f$ and $f_{1}(x)=f(x)$ for $x \notin \operatorname{star}(\Sigma, K) \cup \tau$, and $\delta d= \pm\left(c(f)-c\left(f_{1}\right)\right)$.

Proof. Let $x \in \operatorname{int}(\Sigma), y \in \operatorname{int}(\tau)$. Choose a smooth arc $p: I \rightarrow M$ such that $a=p(0)=$ $f(x)$ and $b=p(1)=f(y)$. Since p is smooth, we can extend the domain of p to $(-\delta, 1+\delta)$ for some $\delta, 0<\delta<\frac{1}{2}$. Let $\alpha=p((-\delta, 1+\delta))$. Since $\operatorname{dim} K=n$, dim $M=2 n, n \geqslant 3$, there is no difficulty in assuming that $\alpha \cap f(K)=\{a, b\}$. For the same reason, we may assume that the unit tangent to α at a is not tangent to the image of any simplex having Σ as a face and, similarly, the unit tangent to α at b is not tangent to $f(\tau)$.

Now, if $N(M \mid \alpha)$ is the normal bundle along α, let $\Psi: N(M \mid \alpha) \rightarrow L$, where L is a ($2 n-1$)-dimensional vector space, be a normalizing map. By Lemma 1 we know there exists a coordinatizing map $\theta: \alpha_{1} \times U \rightarrow M$ with respect to Ψ for $\alpha_{1}=p\left(\left(-\delta_{1}, 1+\delta_{1}\right)\right)$ an open subset of α and U a neighborhood of the origin in L. We may choose ε small enough so that:
(i) The proof of the lemma is satisfied.
(ii) The tubular neighborhood $W\left(\alpha_{2}, \varepsilon\right)$ will meet the images under f of only τ and $\operatorname{star}(\Sigma, K)$.
(iii) $W\left(\alpha_{2}, \varepsilon\right)$ contains no points of $f(\tau) \cap f(\operatorname{star}(\Sigma, K))$.

Recall that $\theta\left(\alpha_{1} \times U\right) \subset W\left(\alpha_{2}, \varepsilon\right)$ for α_{2} an open set of α containing $\operatorname{cl}\left(\alpha_{1}\right)=$ $p\left(\left[-\delta_{1}, 1+\delta_{1}\right]\right)$. We repeat the following diagram:

Now, let $D_{x}=f^{-1}\left(\theta\left(\alpha_{1} \times U\right)\right) \cap \operatorname{star}(\Sigma, K)$ and $D_{y}=f^{-1}\left(\theta\left(\alpha_{1} \times U\right)\right) \cap \tau$. By (iii) above, $D_{x} \cap D_{y}=\emptyset$. The idea is to exchange the portions of $f(\operatorname{star}(\Sigma, K))$ and $f(\tau)$ which are inside the tube $\theta\left(\alpha_{1} \times U\right)$. For every $z \in D_{x}, f(z)$ has a pair of coordinates given by $f(z)=\theta\left(p\left(t_{z}\right), v_{z}\right)$ for a unique $t_{z} \in\left(-\delta_{1}, 1+\delta_{1}\right), v_{z} \in U$. Similarly for every $z \in D_{y}, f(z)=\theta\left(p^{\prime}\left(t_{z}\right), v_{z}\right)$ where $p^{\prime}(t)=p(1-t)$ is the reverse path of p.

Since every vector space is normal the Urysohn Lemma guarantees that existence of a smooth, real-valued function λ on L such that

$$
\begin{array}{ll}
0 \leqslant \lambda(v) \leqslant 1 & \forall v \in L, \\
\lambda(v)=0 & v \notin U, \\
\lambda(v)=1 & v \in \text { some closed } V \subset U \text { containing the origin. }
\end{array}
$$

In order to be able to define a homotopy for all $z \in D_{x} \cup D_{y}$, we assume U has small enough diameter so that for every n-simplex σ having Σ as a boundary, any sequence of points $\left\{z_{i}\right\}$ in D_{x} or in D_{y} such that if $f\left(z_{i}\right)$ is approaching the boundary of $\theta\left(\alpha_{1} \times U\right)$ then $\lim \lambda\left(v_{z_{i}}\right)=0$. This condition ensures the continuity of the homotopy $\left\{f_{t}\right\}:|K| \rightarrow M$ for $0 \leqslant t \leqslant 1$ as defined by:

$$
f_{t}(z)= \begin{cases}\theta\left(p\left(t_{z}+t \lambda\left(v_{z}\right)\right), v_{z}\right) & \text { if } z \in D_{x}, \\ \theta\left(p^{\prime}\left(t_{z}+t \lambda\left(v_{z}\right)\right), v_{z}\right) & \text { if } z \in D_{y}, \\ f(z) & \text { if } z \notin D_{x} \cup D_{y} .\end{cases}
$$

We now show that the end map of this homotopy has a double point introduced in each simplex having Σ as a boundary. In other words, for every n-simplex $\sigma \in$ $\operatorname{star}(\Sigma, K), f_{1}(\sigma) \cap f_{1}(\tau) \neq \emptyset$.

First note that f_{1} will have an intersection in $\theta\left(\alpha_{1} \times U\right)$ if the equation

$$
\theta\left(p\left(t_{z}+\lambda\left(v_{z}\right)\right), v_{z}\right)=\theta\left(p^{\prime}\left(t_{z^{\prime}}+\lambda\left(v_{z^{\prime}}\right)\right), v_{z^{\prime}}\right)
$$

has a solution pair $\left(z, z^{\prime}\right)$ with $z \in \sigma, z^{\prime} \in \tau$. Applying πh_{ε} and Ψh_{ε} separately to both sides of this equation implies that any such solution must satisfy

$$
p\left(t_{z}+\lambda\left(v_{z}\right)\right)=p^{\prime}\left(t_{z^{\prime}}+\lambda\left(v_{z^{\prime}}\right)\right) \quad \text { and } \quad v_{z}=v_{z^{\prime}} .
$$

Since p is an arc and p^{\prime} is the reverse path of p, the coordinates of the image of a solution pair $\left(z, z^{\prime}\right)$ must satisfy the equation $t_{z}+t_{z^{\prime}}+\lambda\left(v_{z}\right)+\lambda\left(v_{z^{\prime}}\right)=1$. To show we can find such a pair we define a continuous real-valued function ω on $\left(D_{x} \cap \sigma\right) \times D_{y}$ by

$$
\omega\left(z, z^{\prime}\right)=t_{z}+t_{z^{\prime}}+\lambda\left(v_{z}\right)+\lambda\left(v_{z^{\prime}}\right)
$$

It is clear that the set of points $\left(z, z^{\prime}\right)$ in $\left(D_{x} \cap \sigma\right) \times D_{y}$ that satisfy $v_{z}=v_{z^{\prime}}$ is connected. Denote this set by A. Since $t_{z}, t_{z^{\prime}} \in\left(-\delta_{1}, 1+\delta_{1}\right)$ for $0<\delta_{1}<1 / 2, \sup (\omega \mid A)>1$. By condition (iii) for $W\left(\alpha_{2}, \varepsilon\right), p\left(t_{z}\right) \neq p^{\prime}\left(t_{z^{\prime}}\right)$ for $v_{z}=v_{z^{\prime}}$ and so $t_{z}+t_{z^{\prime}}<1$ for $\left(z, z^{\prime}\right) \in A$. Thus, $\inf (\omega \mid A)<1$. By the intermediate value theorem for real-valued functions, there must exist a pair $\left(z^{*}, z^{*}\right)$ such that $\omega\left(z^{*}, z^{*}\right)=1$. So this pair is the desired solution for the above equation.

We can now complete the proof of the theorem. Since f_{t} is a general homotopy, f_{1} is a general map and therefore for every n-simplex $\sigma \in \operatorname{star}(\Sigma, K), f_{1}(\sigma) \cap f_{1}(\tau)$ consists of transverse intersections and therefore is a discrete set. We may assume that $f_{1}(\sigma) \cap f_{1}(\tau) \cap W\left(\alpha_{2}, \varepsilon\right)$ consists of a single point for if it does not we simply choose a smaller ε for the tube $W\left(\alpha_{2}, \varepsilon\right)$ in which the homotopy takes place. Then the following routine computation yields our result. For any n-simplex $\sigma \in \operatorname{star}(\Sigma, K)$,

$$
\begin{aligned}
\delta d[\sigma \times \tau] & =d[\partial(\sigma \times \tau)] \\
& =d[\partial \sigma \times \tau+\sigma \times \partial \tau] \\
& =d[\Sigma \times \tau+\cdots+\sigma \times \partial \tau] \\
& =1 \\
& = \pm\left(c(f)-c\left(f_{1}\right)\right)[\sigma \times \tau] .
\end{aligned}
$$

Observe that $d=0$ for pairs of simplices that are both outside $\operatorname{star}(\Sigma, K) \cup \tau$ and so $c(f)=c\left(f_{1}\right)$. If $\operatorname{star}(\Sigma, K)$ contains no n-simplices, there are no new intersections introduced since the homotopy is general. In this case $c(f)=c\left(f_{1}\right)$ everywhere since Σ does not appear as the boundary of an n-simplex and so δd would never be non-zero. Our f_{1} therefore meets the desired condition.

Theorem 6. Let $f:|K| \rightarrow M$ be a general map, where K is a finite n-dimensional simplicial complex, $n \geqslant 3$, and M is a 1 -connected, smooth $2 n$-manifold. If $\gamma(f)=0$, then f is homotopic to a general map $g:|K| \rightarrow M$ such that $c(g)=0$.

Proof. If $\gamma(f)=0$, but $c(f) \neq 0$, it is straightforward to subdivide K so that for every n-simplicial pair $[\sigma \times \tau] \in J^{*} K, c(f)[\sigma \times \tau]=0,1$, or -1 . Every n-simplicial pair $\sigma \times \tau$ where $c(f)[\sigma \times \tau]= \pm 1$ must then fall into one of three categories which are handled in the following ways:
(i) Either $\partial \sigma$ or $\partial \tau$ contains no $(n-1)$-simplex which bounds another n-simplex.

Suppose this is true of $\partial \sigma$. Let $\Sigma \in \partial \sigma$ be an ($n-1$)-simplex such that $d \in$ $C^{2 n-1}\left(J^{*} K ; Z\right)$ defined by $d[\sigma \times \tau]=1$ induces a homotopy via Theorem 5. This introduces one new double point for the end map f_{1} whose corresponding intersection in $f_{1}(\sigma) \cap f_{1}(\tau)$ is of opposite orientation from the existing one. Such a Σ must exist or else $\gamma(f) \neq 0$. Then $c\left(f_{1}\right)[\sigma \times \tau]=0$. Because $\operatorname{star}(\Sigma, K)$ consists of just the one n-simplex σ, no new double points are introduced and $c\left(f_{1}\right)=c(f)$ elsewhere.
(ii) The intersection in M corresponding to the double point pair (x, y) in $\sigma \times \tau$ which makes $c(f)[\sigma \times \tau]$ non-zero is movable to adjacent n-simplices.

Since $\gamma(f)=0$, an $\operatorname{arc} \xi$ in $K \times K$ from $(x, y) \in \sigma \times \tau$ to $(y, x) \in \tau \times \sigma$ exists that provides a sequence of desired homotopies. Since $\sigma \times \tau$ does not fall into category (i), we may assume that ξ intersects $\partial(\sigma \times \tau)$ in $\Sigma \times \tau$, for Σ an $(n-1)$-simplex which bounds another n-simplex. As in category (i), since $\gamma(f)=0$, there exists $d \in C^{2 n-1}\left(J^{*} K ; Z\right)$ defined by $d[\Sigma \times \tau]=1$ that provides a homotopy to a map f_{1} where $c\left(f_{1}\right)[\sigma \times \tau]=0$ and a new double point pair has been introduced into $\sigma_{1} \times \tau$ for every $\sigma_{1} \in \operatorname{star}(\Sigma, K)$. If σ_{1} is adjacent to $\tau, c\left(f_{1}\right)\left[\sigma_{1} \times \tau\right]=0$. For every σ_{1} such that $c\left(f_{1}\right)\left[\sigma_{1} \times \tau\right] \neq 0$ and $\xi \cap\left(\sigma_{1} \times \tau\right) \neq \emptyset$, the process is repeated using the intersection of ξ with $\partial\left(\sigma_{1} \times \tau\right)$ to provide the next homotopy. If $c\left(f_{1}\right)\left[\sigma_{1} \times \tau\right] \neq 0$ and $\xi \cap\left(\sigma_{1} \times \tau\right)=\emptyset$, then $\sigma_{1} \times \tau$ falls into one of these three categories (because $\gamma(f)=0$) and is dealt with accordingly. Theorem 5 ensures that $c\left(f_{1}\right)=c(f)$ elsewhere. Since the arc ξ must intersect the diagonal in $K \times K$, proceeding in this manner yields a finite sequence of m homotopies resulting in a map f_{m} where $c\left(f_{m}\right)\left[\sigma^{\prime} \times \tau^{\prime}\right]=0$ for every $\sigma^{\prime} \times \tau^{\prime}$ such that $\xi \cap\left(\sigma^{\prime} \times \tau^{\prime}\right) \neq \emptyset$ and where the double point of f_{m} now exists in a pair of adjacent n-simplices. It is removable by Theorem 2 .
(iii) The intersection in M corresponding to the remote double point pair (x, y) in $\sigma \times \tau$ has a matching intersection of opposite orientation corresponding to another remote double point pair $\left(x^{+}, y^{+}\right)$in, say, $\sigma^{+} \times \tau^{+}$.

Since $\gamma(f)=0$, an $\operatorname{arc} \xi$ exists in $K \times K$ from (x, y) to $\left(x^{+}, y^{+}\right)$whose path provides a sequence of homotopies in the same manner as (ii). Wherever ξ intersects $\partial(\sigma \times \tau)$, Theorem 5 implies the existence of a $(2 n-1)$ cochain which induces a homotopy to a map f_{1} where $c\left(f_{1}\right)[\sigma \times \tau]=0$ and a new double point pair has been introduced in a neighboring $\sigma_{1} \times \tau$. This is repeated m times until the map f_{m} is attained in which $c\left(f_{m}\right)\left[\sigma^{+} \times \tau^{+}\right]=0$. In this case, however, f_{m} does not have a double point in a pair of adjacent simplices. Rather each of the introduced double points has a matching double point of opposite orientation and is removable by Theorem 3.

Since f is general, the set of n-simplicial pairs $\sigma \times \tau$ where $c(f)[\sigma \times \tau]= \pm 1$ is a finite set. Applying the appropriate sequence of homotopies described above to f for each $\sigma \times \tau$ in this set therefore produces a finite sequence of homotopies resulting in the required map g.

Combining Corollary 1, Theorems 4 and 6 yields the main result.
Theorem 7. Let $f:|K| \rightarrow M$ be a map, where K is a finite n-dimensional simplicial complex, $n \geqslant 3$, and M is a 1-connected, smooth, orientable $2 n$-manifold. Then f is homotopic to an embedding if and only if $\gamma(f)=0$.

Acknowledgements

This paper was initiated through an extended dialogue with L. Larmore who, in 1970, introduced the first obstruction to embedding a 1-complex into an oriented 2-manifold, not necessarily simply-connected [6]. I am grateful for his generous help.

References

[1] W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.
[2] M.W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242-276.
[3] J.F.P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.
[4] J.F.P. Hudson, E.C. Zeeman, On regular neighborhoods, Proc. London Math. Soc. (3) 43 (1964) 719-745.
[5] M.C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. 82 (1965) 1-14.
[6] L.L. Larmore, The first obstruction to embedding a 1-complex in a 2-manifold, Illinois J. Math. 14 (1) (1970) 1-11.
[7] J. Munkres, Topology, Prentice-Hall, 1975.
[8] C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer, Berlin, 1982.
[9] A. Shapiro, Obstructions to the embedding of a complex in a Euclidean space, I. The first obstruction, Ann. of Math. (2) 66 (1957) 256-269.
[10] C. Weber, L'élimination des points doubles dans le cas combinatoire, Comment. Math. Helv. 41 (1966) 179-182.
[11] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. (2) 45 (1944) 220-246.
[12] H. Whitney, Differential Topology, Springer, Berlin, 1976.
[13] E.C. Zeeman, Seminar on Combinatorial Topology (notes), IHES, Paris, 1963.

