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Abstract Previously identified, potentially neuroprotective
reactions of neuroglobin require the existence of yet unknown re-
dox partners. We show here that the reduction of ferric neuroglo-
bin by cytochrome b5 is relatively slow (k = 6 · 102 M�1 s�1 at
pH 7.0) and thus is unlikely to be of physiological significance.
In contrast, the reaction between ferrous neuroglobin and ferric
cytochrome c is very rapid (k = 2 · 107 M�1 s�1) with an appar-
ent overall equilibrium constant of 1 lM. Based on this data we
propose that ferrous neuroglobin may well play a role in prevent-
ing apoptosis.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Neuroglobin (Ngb) is a member of the globin protein family

pre-dating the origins of myoglobin and hemoglobin [1] and

belongs to the class of hexa-coordinate globins. The protein

is found in all orders of vertebrates and in mammals is pre-

dominantly found in the neural tissues of the brain [2], in neu-

rons with a high metabolic activity [3,4] and in particular in the

retina [5].

The finding that mammalian Ngb binds O2 led to specula-

tion that the physiological role of the protein might be to act

as a neuronal O2 reserve analogous to myoglobin [2]. However,

this function would be possible in vivo only if a reductase

activity exists that is able to keep the heme in the ferrous form

[6] as Ngb rapidly autoxidizes [7,9]. The relatively low intracel-

lular concentration [2,5,8] and low in vitro oxygen affinity of

Ngb [9] would also appear to rule out a major function in

O2 binding and delivery [8].

Ngb provides protection to neuronal cells during hypoxia

and ischaemia [10,11]. In vitro kinetic studies have shown that

Ngb in the oxygenated or nitrosylated ferrous form undergoes

rapid redox reactions to scavenge either nitrogen monoxide
Abbreviations: Ngb, neuroglobin; Cyt b5, cytochrome b5; Cyt c, cyto-
chrome c; NO, nitrogen monoxide
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(NO) or peroxynitrite, respectively [12–14] potentially fulfilling

a neuroprotective role. In either reaction the end product is fer-

ric Ngb. However, for Ngb to play a significant role in cell pro-

tection via NO or peroxynitrite scavenging, it must undergo a

number of redox cycles, as it is present in cells at a relatively

low concentration. This redox cycling would require a yet

unidentified redox partner to reduce the ferric Ngb product

back to the reactive ferrous form. A likely candidate for this

reductant is cytochrome b5 (Cyt b5), which has numerous roles

[15], including the reduction of the ferric forms of hemoglobin

in red blood cells [16,17].

It is also possible that Ngb is able to enhance neuronal sur-

vival in ischaemic episodes [11] by an entirely different mecha-

nism, such as suppression of apoptosis. Apoptosis is initiated

by several factors and one major pathway of apoptosis in-

volves the release of cytochrome c (Cyt c) from the mitochon-

drion. Cyt c binds to a partner protein, Apaf-1 in the presence

of dATP and activates procaspase 9 in an assembled apopto-

some [18,19]. This interaction specifically requires ferric Cyt

c [20,21]. Immunohistochemical studies on retinal sections

have shown that Ngb is present at high levels in the vicinity

of mitochondria [5,22]. It is thus conceivable that Ngb may

interfere with the apoptotic interaction of ferric Cyt c and

Apaf-1 by rapidly converting Cyt c to the ferrous state.

In light of their possible physiological significance we report

here a study of the redox reaction between ferrous Cyt b5 and

ferric Ngb and of the redox reaction of ferrous Ngb with ferric

Cyt c.
2. Materials and methods

Recombinant murine Ngb was expressed and purified as previously
described [7]. Cyt b5 was prepared from fresh bovine liver as described
earlier [17]. Bovine Cyt c was obtained from Sigma and purified further
to remove aggregates. Steady state absorbance spectra and slow reac-
tion time courses were measured using a Shimadzu UV PC 2500 spec-
trophotometer. The molar extinction coefficients (mM�1cm�1) used
were e = 26.6 at 555.6 nm for ferrous Cyt b5 [23]; e = 27.6 at 550 nm
for ferrous Cyt c [24]; e = 10.7 at 532 nm and e = 11.2 at 561 nm for
the ferric and CO form of Ngb, respectively [9].

Redox reactions were studied at room temperature under second-or-
der conditions by mixing together appropriate aliquots of the ferrous
Cyt b5 and ferric Ngb (2.5-6.6 lM), in the presence of 1 mM CO, in
a sealed spectrophotometer cell previously thoroughly purged with
pure nitrogen gas. Absorbance was monitored over time at 416 nm.
The equilibrium reaction between Ngb and Cyt c was investigated at
room temperature by monitoring changes in absorbance in the wave-
length range 500–600 nm during anaerobic titrations of ferric Cyt c
with ferrous Ngb. The apparent equilibrium constant for the reaction
was obtained by fitting a single hyperbolic function to the absorbance
blished by Elsevier B.V. All rights reserved.
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data at 550 nm plotted against total Ngb concentration. Rapid kinetics
were measured at 416.6, 545 and 557.5 nm under anaerobic conditions
at 25 �C using an Applied Photophysics SX stopped flow apparatus
coupled to an Applied Photophysics P*. Control experiments made
under pseudo-first order conditions using a Cyt c concentration of
20 lM after mixing. Reaction time courses were analysed by non-linear
least squares fitting of either second-order or pseudo-first-order kinetic
functions as appropriate, employing Table Curve 2D (Jandel Scientific,
CA, USA). Kinetic traces obtained under second-order conditions
were best fitted according to the equations y = a + b(1 � 1/(1 + bcx))
and y = a + b/(1 + bcx) for a formation or decay, respectively. Rate
constants (M�1 s�1) were obtained from k = bc/[A0] where [A0] is
the initial concentration of each protein, given that the half time is
t1/2 = 1/bc and t1/2 = 1/k[A0]. Traces obtained under pseudo-first-order
conditions were best fitted according to a monoexponential function
y = a + b(1 � e�cx).
3. Results and discussion

3.1. Ferrous Cyt b5–ferric Ngb

Ngb and Cyt b5 are both bis-His heme complexes and so any

redox exchange is essentially ‘‘iso-spectral’’ (Fig. 1). These dif-

ficulties can be circumvented by taking advantage of the fact

that ferrous Ngb can relatively rapidly dissociate the distal his-

tidine [7,25] and bind CO at high rate (k = 72 · 106 M�1 s�1)

and with high affinity (K = 0.18 · 10�9 M) [7], yielding a CO

complex with a distinct spectral signature (Fig. 1). In contrast

Cyt b5 does not bind CO. Thus when the reaction between fer-

rous Cyt b5 and ferric Ngb is carried out in the presence of a
Cytb5
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Fig. 1. Absorbance spectra of Cyt b5 (upper panel) and Ngb (lower
panel) in the ferric (continuous lines) and ferrous (discontinuous lines)
forms. The Fe(II)CO spectrum of Ngb is indicated (thick line). The
dotted line at 416 nm (isosbestic for ferrous and ferric Cyt b5) shows
the wavelength used for kinetic measurements. The 480–600 nm region
is enlarged 5-fold.
large excess of CO the ferrous Ngb product is rapidly and

quantitatively trapped as the CO complex. We have studied

the redox reaction between Cyt b5 and Ngb within the context

of the reaction scheme (1):

Cytb2þ
5 þ 6Ngb3þ

¡
k1

k�1

Cytb3þ
5 þ 6Ngb2þ

¡
k2

k�2

5Ngb2þ

þ CO ¡
k3

k�3

Ngb2þ–CO ð1Þ

where 6Ngb and 5Ngb refer to hexa- and penta-coordinate

Ngb, respectively. The CO binding rate (k3) and dissociation

rate (k�3) and the rate of association (k�2) and dissociation

(k2) of the distal histidine residue in Ngb have been previously

reported [7,25].

The reaction of ferrous Cyt b5 with ferric Ngb was followed

at 416 nm, a wavelength at which the redox reaction is isos-

bestic but at which the CO complex of ferrous Ngb has a con-

siderable absorption (Fig. 1). All reactions between ferric Ngb

and ferrous Cyt b5 demonstrated second-order behavior with

observed rates far slower than the rate of CO binding to

Ngb (Fig. 2). This indicates that the observed time courses re-

flect CO binding, which is rate limited by ferrous Ngb produc-

tion as described in reaction scheme (1).

The reaction showed a noticeable dependence of rate on pH

changing from 1200 M�1 s�1 at pH 6.0 to �400 M�1 s�1 at pH

7.5 (data not shown).

Previous studies on the reactivity of Ngb have been focused

almost exclusively on the reactions with gaseous ligands. Each

of these reactions, whether the scavenging of NO by oxygen-

ated Ngb [13] or scavenging of peroxynitrite by nitrosylated

Ngb [14], or even the supply of O2 to mitochondria [5], re-

quires an electron donor such as Cyt b5 to reduce the end-

product ferric Ngb back to the active ferrous form. The re-

ported redox potential of Cyt b5 as compared to Ngb is ade-

quate for the reduction process but would not provide a

large driving force (88 mV) [7,26].

Our kinetic results show that the reaction of ferrous Cyt b5

with Ngb is relatively slow compared to the rate constant for
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Fig. 2. Representative kinetic traces at 416 nm for the reaction
between ferric Ngb and ferrous Cyt b5 in the presence of 1 mM CO
at a 1:1 Ngb:Cyt b5 ratio at the following lM concentrations for each
protein and pH values: Open circles, 5.5 lM heme, pH 7.5; crosshairs,
5.4 lM heme, pH 6.0; grey circles, 2.4 lM heme, pH 7.5. Lines indicate
the fitting of the data according to second-order kinetic functions as
described in the text. The buffer was 0.04 M bis Tris-propane.
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its known physiologically relevant reaction with hemoglobin,

which has a rate of 5 · 104 M�1 s�1 [27]. Although we cannot

rule out a possible role for Cyt b5 in the reduction of Ngb

in vivo, its overall low rate suggests that this reaction is likely

to be of little significance in the protection of cells against hyp-

oxic ischaemic injury.

3.2. Ferric Cyt c–ferrous Ngb

The spectra of ferrous Ngb and ferric Cyt c are sufficiently

different that their redox exchange reaction yields useful opti-

cal density changes across most of the visible and Soret spec-

tral regions (Fig. 3). When ferric Cyt c was titrated, under

anaerobic conditions, with aliquots of ferrous Ngb a rapid

reaction occurred within the few seconds required for injection

of Ngb and mixing of the contents of the cuvette. Successive

spectra show the conversion of ferric to ferrous Cyt c after

addition of each aliquot of ferrous Ngb (Fig. 4A). The titration

followed at 550 nm showed that the reaction was associated

with an apparent equilibrium constant of approximately

1 lM (Fig. 4B). Assuming a redox potential for Cyt c of
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Fig. 3. Absorbance spectra of the ferric (continuous lines) and ferrous
(discontinuous lines) forms of Cyt c (grey) and Ngb (black) measured
at 1 lM protein concentration. Dotted lines show the isosbestic points
for ferrous and ferric Ngb (416.6 and 545 nm) and ferrous and ferric
Cyt c (557.5 nm) used in stopped-flow kinetic experiments. The 480–
600 nm region is enlarged 5-fold.
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Fig. 4. (A) Changes in the absorbance spectrum of ferric Cyt c (1.5 ml, 4.6 lM
anaerobic conditions. For reference the inset shows the absorbance spectra of
(thick line). (B) Absorbance at 550 nm as a function of the concentration of a
contributions of ferric Ngb after each addition. The solid line shows the hyper
the reaction. Experiments were performed in 0.05 M bis Tris-propane buffer
255 mV (NHE) [30,31], the equilibrium constant expected

from the Nernst equation for a simple electron exchange be-

tween these partners with a redox potential difference of

approximately 160 mV would be �10�3 M, suggesting that a

reasonable degree of interaction exists between these proteins.

Time courses for the reaction monitored at 416.6 nm,

545 nm (isosbestic points for the Ngb redox reaction, see

Fig. 3) and 557.5 nm (isosbestic point for the Cyt c redox reac-

tion, see Fig. 3) indicated rapid electron transfer from ferrous

Ngb to ferric Cyt c (Fig. 5). The concentration dependence of

the reaction obtained under both second-order and pseudo-

first order conditions yielded a second-order rate constant

for the reaction of 2.0 · 107 M�1 s�1 close to the fastest known

inter-protein redox reaction rate constants, for example that

between Cyt c and cytochrome c oxidase [31].

During ischaemic episodes cells can enter into an apoptotic

pathway via the partial release into the cytoplasm of mito-

chondrial Cyt c, which is a required component of the cas-

pase-cascade activating apoptosome [18,28,29]. It has

previously been noted that Ngb exists in relatively high con-

centrations in cells which have an unusually high oxidative

metabolic flux [3–5,22] and thus may be in increased danger

of Cyt c leakage from mitochondria. Some years ago Zhivo-

tovsky et al. showed that intracellular injection of Cyt c can

initiate apoptosis [32] and the effect of the redox status of

the intracellular Cyt c on the activation of apoptosis was later

studied by Hampton et al. [33] who suggested that both ferrous

and ferric Cyt c might be active. More recent studies have indi-

cated that the redox status of Cyt c released from mitochon-

dria [31] acts as a fail-safe mechanism in the regulation of

programmed cell death [34] and suggest that ferrous Cyt c is

inactive in the initiation of apoptosis [20,21], although apo-

Cyt c also interferes with apoptosis in vitro [35]. In the highly

metabolically active neuronal cells of the retina, where Ngb

has been found at local concentrations as high as 100 lM [5]

the very fast redox reaction between Ngb and Cyt c could well

be of physiological significance.

Our findings thus suggest a mechanism whereby, in highly

metabolically active cells, Ngb could reduce the small amounts

of Cyt c leaking from damaged mitochondria and thus prevent

unwanted initiation of the apoptotic process. Obviously, in sit-

uations in which apoptosis was the appropriate response to

some change in the cellular situation then the larger amount
0.04
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bolic fit to the data used to derive the apparent equilibrium constant for
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Fig. 5. Representative stopped flow reaction time courses for the anaerobic reduction of ferric Cyt c by ferrous Ngb measured at the indicated
wavelengths as described in the text. Reactions were performed at pH 7.4 in 0.05 M bis Tris-propane. Concentration of each protein was 4 lM after
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of released Cyt c would overwhelm the redox capability of Ngb

and apoptosis would proceed. It should be noted that such a

mechanism does not imply the existence of redox cycles and

of a reductase activity for Ngb, but only requires that Ngb is

at least in part in the ferrous (unliganded) state under normal

in vivo conditions. Recent investigations of the oxygen affinity

of Ngb, coupled with a likely cellular concentration of oxygen

of �1 Torr, suggest that in vivo more than 88% of Ngb is likely

to be present in the cell in the ferrous deoxy form [8,9]. A plau-

sible but previously unconsidered biological role for Ngb, at

least in neurons and retinal cells might thus be to intercede

in and control any inappropriate activation of apoptosis by

rapidly reducing the released Cyt c. Further studies on the pos-

sible role of this reaction in the interception of the initial event

in apoptosis are underway to test the hypothesis presented

here.
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