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Abstract Liver X receptor (LXR) plays an important role in reverse cholesterol transport (RCT), and
activation of LXR could reduce atherosclerosis. In the present study we used a cell-based screening
method to identify new potential LXRβ agonists. A novel benzofuran-2-carboxylate derivative was
identified with LXRβ agonist activity: E17110 showed a significant activation effect on LXRβ with an
EC50 value of 0.72 μmol/L. E17110 also increased the expression of ATP-binding cassette transporter A1
(ABCA1) and G1 (ABCG1) in RAW264.7 macrophages. Moreover, E17110 significantly reduced cellular
lipid accumulation and promoted cholesterol efflux in RAW264.7 macrophages. Interestingly, we found
that the key amino acids in the LXRβ ligand-binding domain had distinct interactions with E17110 as
compared to TO901317. These results suggest that E17110 was identified as a novel compound with
LXRβ agonist activity in vitro via screening, and could be developed as a potential anti-atherosclerotic
lead compound.
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1. Introduction

The liver X receptors (LXRα and LXRβ) are ligand-activated
transcription factors that belong to the nuclear receptor (NR)
superfamily1,2. LXRβ (NR1H2) is ubiquitously expressed at a
moderate level in most physiological systems, whereas LXRα
(NR1H3) is mainly expressed in the intestine, kidney, spleen and
adipose tissue, especially in the liver3. LXRs generally function as
permissive heterodimers with retinoid X receptor (RXR) that bind
to specific response elements in the regulatory region of their
target genes to regulate their expression4. LXRs sense excess
cholesterol and trigger various adaptive mechanisms to protect the
cells from cholesterol overload. ATP-binding cassette transporter
A1 (ABCA1) and G1 (ABCG1) are regulated by LXRs via
functional LXR response elements (LXREs) found in their genes,
which play important roles in cholesterol efflux5–7. ABCA1 can
transfer both cholesterol and phospholipids to lipid-free apolipo-
protein A-I (apoA-I), and ABCG1 can transfer cholesterol to high-
density lipoprotein (HDL)7,8.

Excessive absorption of lipoproteins in macrophages causes
foam cell formation within arterial walls, and these cells subse-
quently rupture and promote early atherosclerotic plaque forma-
tion9,10. The efflux of excess cellular cholesterol from peripheral
tissues and its return to the liver for excretion in the bile occurs by
a process referred to as reverse cholesterol transport (RCT)11.
Furthermore, RCT is regarded as a major mechanism that removes
cholesterol from the cells and transports it to the liver in order to
protect against atherosclerotic cardiovascular disease, and this
process can be stimulated by LXRs11.

Previous studies showed that treatment of atherosclerotic mice
with synthetic LXR ligands effectively inhibited progression and
promoted regression of atherosclerotic plaques12,13. Meanwhile,
macrophage-specific deletion of LXR in mice enhances atherogen-
esis14. Several LXR ligands, such as endogenous ligand 22(R)-
hydroxycholesterol and synthetic agonists TO901317 and
GW3965, have recently been reported and investigated substan-
tially15–17. However, these ligands have the undesirable side effect
of inducing lipogenesis and hypertriglyceridemia because of their
up-regulation of sterol response element binding protein 1c
(SREBP-1c) transcription18. Therefore, the identification of novel
LXRβ agonists which could achieve beneficial effects from
regulating cholesterol metabolism is necessary.

In this study, we discovered E17110 as a novel benzofuran-2-
carboxylate derivative with potential LXRβ agonist activity using
an LXRβ-GAL4 chimera reporter assay. We then investigated the
effect and mechanism of this compound on the target genes of
LXRβ and cholesterol efflux in murine macrophages. Furthermore,
based on the molecular docking of E17110 and LXRβ ligand-
binding domain (LBD) structures, we illustrated the probable
interaction mode between LXRβ and E17110.
2. Materials and methods

2.1. Reagents

The compound E17110 was donated by the National Laboratory for
Screening New Microbial Drugs, Peking Union Medical College
(PUMC, Beijing, China). TO901317 (also referred as T1317 in this
paper), oil red O stain and phorbol-12-myristate-13-acetate (PMA)
were purchased from Sigma (St. Louis, MO, USA). HEK293T cells
and RAW264.7 macrophages were obtained from the Cell Center of
PUMC. Fetal bovine serum (FBS) and Opti-MEM® reduced serum
medium used for transfection were purchased from Gibco (Invitro-
gen, Carlsbad, CA, USA). Dulbecco's modified Eagle's medium
(DMEM) was purchased from Hyclone (Thermo Scientific, Rock-
ford, USA). Lipofectamine 2000 and 22-(N-(7-nitrobenz-2-oxa-1,3-
diazol-4-yl)amino)�23,24-bisnor-5-cholen-3β-ol (22-NBD-choles-
terol) was purchased from Invitrogen. ApoA-I, HDL and oxidized
low-density lipoprotein (ox-LDL) was obtained from Union-Biology
Company (Beijing, China).
2.2. Plasmids construction and cell culture

The wild-type gene of human LXRβ-LBD was obtained by PCR
from HepG2 cells and cloned into the pBIND vector (Promega,
Madison, WI, USA), which included the GAL4 DNA-binding
domain (GAL4-DBD) in order to construct the pBIND-LXRβ-
LBD plasmid. The LXRβ-LBD forward primer was 50-ATTCGG-
GATCCCAGCGGCTCAA-30, and the reverse primer was 50-
TGGGGTACCTCACTCGTGGACGT-30. GAL4-pGL4-luc plas-
mid was constructed by inserting the 5�GAL4 response elements
into the promoter region of the pGL4.17 reporter vector (Promega)
as described previously19.

Mutations in pBIND-LXRβ-LBD were created by site-directed
mutagenesis using the Fast Mutagenesis System (TransGen
Biotech, Beijing, China). Several key amino acids were changed
to alanines in LXRβ-LBD. The mutated plasmids were generated
as follows: F271A (Phe271 to Ala) and T316A (Thr316 to Ala).
2.3. LXRβ-GAL4 chimera reporter assay and screening

In brief, HEK293T cells and RAW264.7 macrophages were
cultured in different media separately as described previously20.

A synthetic compound library with 20,000 drug-like structures
from the National Laboratory for Screening New Microbial Drugs
was used for screening in this study. This compound library was
purchased from J&K Chemical (synthesized by Enamine, Kyiv,
Ukraine), and all of the compounds in this library are modified
based on existing drug structures. These compounds were stocked
in 96-well plates at 10 mg/mL in 100% DMSO. HEK293T cells
were seeded in 96-well plates at 2� 104 cells/well in 100 mL
DMEM containing 10% FBS. After incubation for 12 h, the cells
at 90% confluence were washed once with phosphate-buffered
saline (PBS) and transfected with GAL4-pGL4-luc reporter
plasmids (180 ng/well) and pBIND-LXRβ-LBD expression plas-
mids (18 ng/well) using Lipofectamine 2000 (Invitrogen; 0.5 mL/
well). After 6 h, the transfected cells were washed twice with PBS
and the buffer replaced with 200 mL DMEM, containing the
indicated screening compounds (10 mg/mL of various screening
samples, 1 mmol/L TO901317 as a positive control, and 0.1%
DMSO as a negative control). For initial screening, each com-
pound was assayed only singly. For rescreening, each initially
positive compound was tested in triplicate. For E17110 activity
assay the cells were treated with various concentrations of E17110
in serum-free DMEM. After 18 h, the cells were washed with PBS
once and lysed with 20 mL 1�CCLR (Promega) per well. The
luciferase activity was measured as relative luminescence units
(RLUs) in a final volume of 60 mL with the Luciferase Assay
System (Promega) on a microplate reader (PerkinElmer, Waltham,
MA, USA)19.



Table 1 Primers for real-time quantitative PCR.

Gene Accession No. Forward primer Reverse primer

mGAPDH NM_008084.2 50-AACGACCCCTTCATTGAC-30 50-TCCACGACATACTCAGCAC-30

mABCA1 NM_013454.3 50-GTTCCTGCAGAAACAGTAGCA-30 50-ATGAGGTTGGAGATAGCAGAGA-30

mABCG1 NM_009593.2 50-AGGTCTCAGCCTTCTAAAGTTCCTC-30 50-TCTCTCGAAGTGAATGAAATTTATCG-30
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2.4. Real-time quantitative RT-PCR analysis

RAW264.7 macrophages were seeded in 6-well plates at 6� 105

cells/mL in DMEM containing 10% FBS. After cell attachment
(24 h), compound E17110 was added at various concentrations.
The cells were harvested after 18 h, total RNA was extracted from
the cells using TRIzol® reagent (Invitrogen) according to the
manufacturer's instructions, and the first-strand cDNA was synthe-
sized from the total RNA in a 20-mL system using a reverse
transcriptase kit (TransGen Biotech). Real-time quantitative PCR
assay with SYBR Green (Roche Diagnostics, Lewes, UK) detec-
tion chemistry was performed on a CFX96™ Real-Time PCR
Detection System (Bio-Rad, Hercules, USA). The sequences of the
primers are listed in Table 1. Melting curves were recorded, and
the specificity of the PCR products was checked by agarose gel
analysis. The mRNA levels of all genes were normalized for
glyceraldehyde-phosphate dehydrogenase (GAPDH) levels, and
the quantitative measurements were carried out by the ΔΔCt

method.
2.5. Western blotting

RAW264.7 macrophages were seeded on 6-well plates at
6� 105 cells/mL. The cells were stimulated with different con-
centrations E17110 for 18 h after which protein extracts were
prepared as previously described21. Protein concentrations were
determined by a BCA protein assay kit (Thermo Scientific). Equal
amounts of protein were analyzed by 10% SDS-PAGE gel
electrophoresis and electroblotted onto a 0.45 μm polyvinylidene
fluoride membranes (Millipore Corp., Bedford, MA, USA). The
membranes were blocked with 5% (w/v) skimmed milk in Tris-
buffered saline containing 0.2% Tween-20 (TBST) for 1 h, and
then incubated with the following primary antibodies which were
diluted in 5% (w/v) skimmed milk in TBST buffer: mouse anti-
ABCA1 (1:1000, Novus, Littleton, CO, USA), anti-ABCG1
(1:1000, Abcam) and anti-β-actin (1:2000, Sigma) for 4 1C over-
night. The membranes then were washed with TBST three times,
followed by incubation with horseradish peroxidase-conjugated
secondary antibodies: anti-mouse and anti-rabbit IgG antibodies
(1:5000, Novus) for 2 h at temperature. After being washed with
TBST three times, the protein bands were detected with an
Enhanced Chemiluminescence (ECL) reaction kit (Millipore),
and quantified by Quantity One Software (Bio-Rad). All the
proteins were normalized to β-actin.
2.6. Oil red O staining

Cellular lipid accumulation was evaluated by means of oil red O
staining in RAW264.7 macrophages. The cells were cultured in
96-well plates at 6� 104 cells/well, and 60 μg/mL ox-LDL was
added after cell attachment. After 12 h, when the cells were grown
to 90%–95% confluence, they were stimulated with the compound
E17110 for 18 h at various concentrations. Then the samples were
treated as described in the previous methods, and observed by light
microscopy19,22. To extract oil red O, isopropanol was added to
each well which was then shaken at room temperature for 5 min.
Samples were read at 510 nm using a microplate reader23.

2.7. Cholesterol efflux

Cellular cholesterol efflux experiments were performed using 22-
NBD-cholesterol in RAW264.7 macrophages20. The cells were
seeded in 96-well clear-bottom black plates (Costar) at
4� 105 cells/mL. After they attached to the plates the medium was
removed and the cells were labeled with 22-NBD-cholesterol
(2.0 mmol/L at the final concentration) in serum-free medium
containing 0.2% (w/v) bovine serum albumin (BSA) (Sigma Chemi-
cal) (medium A) for 24 h in a 37 1C 5% CO2 incubator. After 24 h of
labeling, cells were washed twice with PBS and incubated with
100 mL medium A containing E17110 (0, 0.3, 1, 3 and 10 mmol/L)
for an additional 18 h. 10 mg/mL ApoA-I or 50 mg/mL HDL was
added as the receptor protein to start the efflux experiment at 37 1C
for 6 h. Then the amounts of cholesterol in medium and cells were
assayed using a microplate reader respectively (PerkinElmer, excita-
tion 485 nm, emission 535 nm). The percentage of 22-NBD-
cholesterol efflux (%) was calculated as (medium)/(mediumþcell)�
100. Each efflux assay was performed in duplicate in three times.

2.8. Molecular docking

To evaluate the activity of E17110, the docking program Dis-
covery Studio 4.1 (Accelrys Inc., CA, USA) was used to dock the
structure of LXRβ (PDB code: 1PQC, LXRβ with TO901317).
First, all crystal water molecules were removed from the original
structure and hydrogen was added in the DS CDOCKER module.
To obtain an optimal starting conformation, the compound was
minimized to reach the lowest energy state before docking.

2.9. Statistical analysis

Statistics and best-fit curves were calculated with Graphpad Prism
5.0 software (San Diego, CA, USA). The data are expressed as
mean7SEM. Results were analyzed by the student's t-test and one-
way ANOVA analysis by SPSS version 11.0 (SPSS Inc., Chicago, IL,
USA). All P values o0.05 were considered statistically significant
(*Po0.05, **Po0.01 and ***Po0.001).
3. Results

3.1. Cell-based assay optimization

To assess an assay system, the reproducibility and signal
variation at the activity range must be evaluated. In our screening
system, TO901317 (1 mmol/L) was the positive control and four
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assay parameters influencing the signal and noise of the
cellular reaction were taken into consideration, including: DMSO
concentration: 0.1%; ratio between the reporter plasmid
and the expression plasmid: 10:1; cell number: 2� 104

cells/well; and incubation time: 18 h (Supplementary Fig. 1). The
signal-to-noise ratio (S/N), signal-to-background ratio (S/B), coef-
ficient of variation (CV%) and Z0 factor are classic and scientific
indices for evaluation of the quality of assays, and can be utilized
in assay validation and optimization24. According to our evalua-
tion, this transient transfection system can be used for screening
(Table 2).

3.2. E17110 has LXRβ agonist activity

In this study we identified E17110, a structural analog of
benzofuran-2-carboxylate (Fig. 1A), with LXRβ agonist activity
by the LXRβ-GAL4 luciferase reporter screening as described in
Materials and Methods. The chemical name of E17110 is [1-oxo-
1-(2-oxoimidazolidin-1-yl)propan-2-yl]5-fluoro-3-methylbenzo-
furan-2-carboxylate, which has not been reported previously to
possess pharmacological activity. E17110 significantly and dose-
dependently induced the activation of LXRβ from 0.001 μmol/L to
10 μmol/L with an EC50 of 0.72 μmol/L, and showed a maximal
activity of approximately 1.76-fold (Fig. 1B). In contrast,
TO901317 exhibited approximately 3-fold LXRβ activation, with
an EC50 of 0.06 μmol/L (Fig. 1C). TO901317 is regarded as a
positive control, therefore this result was consistent with other
prior studies, and our cell-based screening model was stable and
credible22.

3.3. E17110 induces ABCA1 and ABCG1 expression in vitro

ABCA1 and ABCG1 are crucial target genes of LXR involved in
the RCT process in macrophages17. The effects of E17110 on the
Table 2 The parameters of the LXRβ screening model.

Parameter LXRβ screening
model

High-throughput
screening

S/B 43 43
S/N 12.13 410
CV (%) 4.98 o10
Z0 factor 0.78 40.5

Figure 1 E17110 regulates LXRβ. (A) Structure of E17110. (B) LXRβ
GAL4-pGL4-luc reporter plasmid and pBIND-LXRβ expression plasmid.
activity assay described in the methods section. (C) LXRβ regulatory acti
experiments. Data are means7SEM (n¼3).
expression of ABCA1 and ABCG1 in murine macrophages were
first detected by western blotting. E17110 significantly increased
the protein expression of ABCA1 and ABCG1 in RAW264.7
macrophages (Fig. 2A and B). Furthermore, it up-regulated the
ABCA1 and ABCG1 mRNA levels at the same time (Fig. 2C).
However, a greater effect was observed when the cells were
stimulated with TO901317.

3.4. E17110 promotes cholesterol efflux from macrophages

LXR activation in macrophages induced the expression of genes
encoding ABCA1 and ABCG1, which facilitate cholesterol efflux
from macrophages to plasma HDL and ApoA-I25. We next
determined the effect on the cholesterol efflux in RAW264.7
macrophages. ApoA-I (10 mg/mL) or HDL (50 mg/mL) was added
to the medium to promote cholesterol efflux. Obviously, E17110
dose-dependently increased cholesterol efflux to ApoA-I or HDL,
and reduced the cellular cholesterol concentration in this cell line
(Fig. 3).

3.5. E17110 reduces cellular lipid accumulation

Here, we investigated the potential role of E17110 to inhibit lipid
accumulation and foam cell formation in RAW264.7 cells, to
evaluate whether it could promote lipid fluxing from mouse
peritoneal macrophages. As shown in Fig. 4C–E, treatment of
RAW264.7 cells with E17110 effectively reduced lipid accumula-
tion compared with ox-LDL alone (Fig. 4B). Furthermore, foam
cells were obviously inhibited when stimulated with 10 μmol/L
E17110 (Fig. 4E), with levels similar to the vehicle group
(Fig. 4A). At the same time, we used a fast and simple method
to quantitate the content of lipid in cells. The result showed that
E17110 could significantly reduce lipid accumulation from 1 to
10 μmol/L (Fig. 4F).

3.6. E17110 docks to the LXRβ-LBD

To determine the putative binding mode and potential ligand-
pocket interactions of E17110, the structure of E17110 was
docked into the ligand-binding domain of LXRβ (PDB code:
1PQC) using the docking program DS CDOCKER. The predicted
binding mode suggested that E17110 can fit nicely into the LXRβ
ligand-binding domain (Fig. 5A and B), and included two
hydrogen bonds and two π–π stacking interactions with the
surrounding amino acids. Specifically, one hydrogen bond formed
regulatory activity of E17110. HEK293T cells were transfected with
E17110 showed significant LXRβ agonistic activity in the luciferase
vity of TO901317. Similar results were obtained in three independent



Figure 2 Effect of E17110 on ABCA1 and ABCG1 expression. (A and B) RAW264.7 macrophages were incubated with E17110 at various
concentrations for 18 h, and the levels of ABCA1 and ABCG1 proteins were determined by western blotting. Induction factors were normalized to
β-actin, and the control groups were treated with DMSO (0.1%). (C) RAW264.7 macrophages were treated with E17110 at various concentrations
for 18 h. Then mRNAs levels of ABCA1 and ABCG1 were measured by real-time quantitative PCR. Induction factors were normalized to
GAPDH. Similar results were obtained in four independent experiments. Data are means7SEM (n¼4, *Po0.05, **Po0.01 and ***Po0.001 vs.
control).

Figure 3 E17110 induced cholesterol efflux in RAW264.7 macrophages. RAW264.7 macrophages were preincubated with 22-NBD-cholesterol
for 24 h, after which the cells were washed with PBS and incubated with E17110 (0, 0.3, 1, 3 and 10 μmol/L). After 18 h, (A) 10 mg/mL ApoA-I
or (B) 50 mg/mL HDL was added and the incubation continued for 6 h at 37 1C. The amounts of cholesterol in medium and cell were separately
measured. Relative 22-NBD-cholesterol efflux to ApoA-I or HDL induced by E17110 was calculated as described in the Methods section. Similar
results were obtained in three independent experiments. Data are means7SEM (n¼3, *Po0.05 and **Po0.01 vs. control).
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between the oxygen atom of E17110 and the hydrogen atom of
Thr316, and other one formed between the hydrogen atom of
E17110 and the oxygen atom of Phe271. Meanwhile, two atypical
π–π stacking interactions formed between E17110 and Thr272 and
Met312.

3.7. E17110 has interaction sites distinct from those of
TO901317

Two different amino acids of LXRβ that were shown as crucial
residues for binding of E17110 were individually replaced with
alanine residues, and the resulting LXRβ mutants were assayed for
activation by E17110 (Fig. 5C and D). The F271A and T316A
mutants exhibited a significant decrease of agonistic activation by
E17110, indicating a crucial role for these amino acid residues in
transcriptional activation. Consistent with this finding, compared
with the wild-type group, the different mutants showed distinct
agonist activity when treated with 3 μmol/L of E17110.
4. Discussion

In our study, we identified E17110, a benzofuran-2-carboxylate
derivative with LXRβ agonistic activity with an EC50 of 0.72 μmol/L.
ABCA1 and ABCG1 are major transporters involved in cholesterol
efflux from macrophages and play a vital role in maintaining
cellular cholesterol homeostasis. Here we demonstrated that in
RAW264.7 macrophages, E17110 dose-dependently induced the
expression of ABCA1 and ABCG1 proteins and mRNAs. At the
same time, we found that E17110 could reduce cellular lipid
accumulation in RAW264.7 macrophages. ABCA1 can transfer
both cholesterol and phospholipids from plasma membranes to
HDL or to lipid-free ApoA-I26, while ABCG1 only transfers
cholesterol to HDL but not to lipid-free ApoA-I27. We also
performed cholesterol efflux experiments in RAW264.7 macro-
phages. We found that E17110 significantly increased cholesterol
efflux to ApoA-I or HDL, and reduced the cellular cholesterol
concentration in a dose-dependent manner. Therefore, we specu-
lated that the cholesterol efflux induced by E17110 was related to
the upregulation of ABCA1 and ABCG1 expression via activation
of LXRβ in macrophages. This could be of benefit in the
prevention of atherosclerosis.

Molecular docking was carried out to analyze ligand character-
istics of E17110. Several potentially crucial amino acid residues
were identified from the docking results, and they were replaced
with alanine residues by site-directed mutagenesis. Interestingly,
we found that the amino acids in LXRβ-LBD proposed to interact
with E17110 differed from those identified for TO901317. Two
amino acids (Phe271 and Thr316) formed the most important
interaction forces with E17110. In contrast, H435 and W457,



Figure 4 E17110 reduces ox-LDL-induced lipid accumulation in RAW264.7 macrophages. RAW264.7 macrophages were preincubated with
(A) PBS for vehicle and (B)–(E) ox-LDL (60 μg/mL) for samples. After 24 h, these cells were separately treated with (B) DMSO, (C)–(E) E17110
(1, 3 and 10 μmol/L) for 18 h. The cells were fixed with 4% paraformaldehyde and stained with 0.5% oil red O to detect lipid accumulation.
Representative images of the five study group samples are shown (� 400 magnification). Similar results were obtained in three independent
experiments. (F) PBS, ox-LDL (60 μg/mL) and E17110 (1, 3 and 10 μmol/L) were added to the cultures throughout the experiment. After oil red O
staining, bound dye was solubilized and quantified spectrophotometrically at 510 nm.

Figure 5 (A and B) The result of E17110 docking into the active site of the ligand-binding domain of LXRβ based on the X-ray co-crystal
structure of T1317. (C) Activation of various LXRβ mutants by E17110, using the LXRβ-GAL4 chimera reporter assay. (D) E17110 (3 μmol/L)
showed different LXRβ agonist activity on the wild-type group and different mutants in the LXRβ-GAL4 chimera reporter assays. Similar results
were obtained in three independent experiments. Data are mean7SEM (n¼3, *Po0.05 and **Po0.01 vs. control).
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which are very important for binding TO901317, did not show
significant impact on E17110 binding (data not shown). Thus, we
suggest that E17110 has a distinct mechanism for promoting
LXRβ agonist activity in vitro.

LXRs are members of the nuclear receptor superfamily and are
present in two isoforms, LXRα and LXRβ2,28. LXRs act as
cholesterol sensors that control the expression of target genes
when activated by ligands. LXR activation promotes cholesterol
efflux and reduces cellular lipid accumulation, to prevent macro-
phage foam cell formation. Recently, LXRs have been regarded as
potential targets for treating atherosclerosis, and synthetic agonists
have been the key subject of many studies29,30. However, full LXR
agonists commonly lead to lipid accumulation in the liver because
they activate the LXRα subtype and increase the expression of
SREBP-1c regulated genes in the lipogenesis pathway25,31. There-
fore, in this study, our goal was to find a novel compound targeted
to LXRβ with potential anti-atherosclerotic activity by screening.
LXRα and LXRβ have a similar structure in both DBD and LBD
domains, so the effect of this new compound on the LXRα subtype
still needs to be tested and the possible effects on triglyceride
metabolism evaluated.
5. Conclusions

Overall, through screening we identified E17110, a derivative of
benzofuran-2-carboxylate as an anti-atherosclerotic lead com-
pound with potential LXRβ agonist activity in vitro. E17110
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increased the expression of ABCA1 and ABCG1 dependently on
LXRβ activation, and promoted cholesterol efflux in macrophages.
Meanwhile, E17110 could reduce lipid accumulation and inhibit
the foam cell formation. In summary, our study suggests that
E17110 may be useful for the development of pharmaceutical
agents for treating atherosclerosis.

Acknowledgments

This work was kindly supported by the National Natural Science
Foundation of China (Nos. 81273515, 81321004 and 81503065),
the Key New Drug Creation and Manufacturing Program (Nos.
2012ZX09301002-003 and 2012ZX09301002-001), and the Basic
Scientific Research Program of Materia Medica, CAMS (2014ZD03).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.apsb.2016.03.005.
References
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