A Newton-Raphson Method for the Solution of Systems of Equations

Adi Ben-Israel
Technion-Israel Institute of Technology and Northwestern University*
Submitted by Richard Bellman

Introduction

The Newton-Raphson method for solving an equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

is based upon the convergence, under suitable conditions [1, 2], of the sequence

$$
\begin{equation*}
x_{p+1}=x_{p}-\frac{f\left(x_{p}\right)}{f^{\prime}\left(x_{p}\right)} \quad(p=0,1,2, \cdots) \tag{2}
\end{equation*}
$$

to a solution of (1), where x_{0} is an approximate solution. A detailed discussion of the method, together with many applications, can be found in [3].

Extensions to systems of equations

$$
\begin{aligned}
& f_{\mathbf{1}}\left(x_{1}, \cdots, x_{n}\right)=0 \\
& f_{m}\left(x_{1}, \cdots, x_{n}\right)=0
\end{aligned} \quad \text { or } \quad \mathbf{f}(\mathbf{x})=\mathbf{0}
$$

are immediate in case: $m=n$, [1], where the analog of (2) is: ${ }^{1}$

$$
\begin{equation*}
\mathbf{x}_{p+1}=\mathbf{x}_{p}-J^{-1}\left(\mathbf{x}_{p}\right) \mathbf{f}\left(\mathbf{x}_{p}\right) \quad(p=0,1, \cdots) . \tag{4}
\end{equation*}
$$

Extensions and applications in Banach spaces were given by Hildebrandt and Graves [4], Kantorovič [5-7], Altman [8], Stein [9], Bartle [10], Schröder [11] and others. In these works the Frechet derivative replaces $J(\mathbf{x})$ in (4), yet nonsingularity is assumed throughout the iterations.

[^0]The modified Newton-Raphson method

$$
\begin{equation*}
\mathbf{x}_{p+1}=\mathbf{x}_{p}-J^{-1}\left(\mathbf{x}_{0}\right) \mathbf{f}\left(\mathbf{x}_{p}\right) \quad(p=0,1, \cdots) \tag{5}
\end{equation*}
$$

was extended in [17] to the case of singular $J\left(x_{0}\right)$, and conditions were given for the sequence

$$
\begin{equation*}
\mathbf{x}_{p+1}=\mathbf{x}_{p}-J^{+}\left(\mathbf{x}_{0}\right) \mathbf{f}\left(\mathbf{x}_{p}\right) \quad(p=0,1, \cdots) \tag{6}
\end{equation*}
$$

to converge to a solution of

$$
\begin{equation*}
J^{*}\left(\mathbf{x}_{0}\right) \mathbf{f}(\mathbf{x})=\mathbf{0} \tag{7}
\end{equation*}
$$

In this paper the method (4) is likewise extended to the case of singular $J\left(\mathbf{x}_{p}\right)$, and the resulting sequence (12) is shown to converge to a stationary point of $\sum_{i=1}^{m} f_{i}^{2}(\mathbf{x})$.

Notations

Let E^{k} denote the k-dimensional (complex) vector space of vectors \mathbf{x}, with the Euclidean norm $\|\mathbf{x}\|=(\mathbf{x}, \mathbf{x})^{1 / 2}$. Let $E^{m \times n}$ denote the space of $m \times n$ complex matrices with the norm

$$
\|A\|=\max \left\{\sqrt{\lambda}: \lambda \text { an eigenvalue of } A^{*} A\right\}
$$

A^{*} being the conjugate transpose of A.
These norms satisfy [12]:

$$
\|A \mathbf{x}\| \leqslant\|A\|\|\mathbf{x}\| \quad \text { for every } \quad \mathbf{x} \in E^{n}, \quad A \in E^{m \times n}
$$

Let $R(A), N(A)$ denote the range resp. null space of A, and A^{+}the generalized inverse of A, [13].

For $u \in E^{k}$ and $r>0$ let

$$
S(\mathbf{u}, r)=\left\{\mathbf{x} \in E^{k}:\|\mathbf{x}-\mathbf{u}\|<r\right\}
$$

denote the open ball of radius r around u.
The components of a function $f: E^{n} \rightarrow E^{m}$ are denoted by $f_{i}(\mathbf{x}),(i=1$, \cdots, m). The Jacobian of f at $\mathbf{x} \in E^{n}$ is the $m \times n$ matrix

$$
J(\mathbf{x})=\left(\frac{\partial f_{i}(\mathbf{x})}{\partial x_{j}}\right), \quad\binom{i=1, \cdots, m}{j=1, \cdots, n} .
$$

For an open set $S \subset E^{n}$, the function $f: E^{n} \rightarrow E^{m}$ is in the class $C^{\prime}(S)$ if the mapping $E^{n} \rightarrow E^{m \times n}$ given by $\mathrm{x} \rightarrow J(\mathbf{x})$ is continuous for every $\mathrm{x} \in S$ [4].

Results

Theorem 1. Let $f: E^{n} \rightarrow E^{m}$ be a function, \mathbf{x}_{0} a point in E^{n}, and $r>0$ be such that $f \in C^{\prime}\left(S\left(\mathbf{x}_{0}, r\right)\right)$.

Let M, N be positive constants such that for all \mathbf{u}, \mathbf{v} in $S\left(\mathbf{x}_{0}, r\right)$ with $\mathbf{u}-\mathbf{v} \in R\left(J^{*}(\mathbf{v})\right)$:

$$
\begin{array}{r}
\|J(\mathbf{v})(\mathbf{u}-\mathbf{v})-\mathbf{f}(\mathbf{u})+\mathbf{f}(\mathbf{v})\| \leqslant M\|\mathbf{u}-\mathbf{v}\| \\
\left\|\left(J^{+}(\mathbf{v})-J^{+}(\mathbf{u})\right) \mathbf{f}(\mathbf{u})\right\| \leqslant N\|\mathbf{u}-\mathbf{v}\| \tag{9}
\end{array}
$$

and

$$
\begin{gather*}
M\left\|J^{+}(\mathbf{x})\right\|+N=k<1 \quad \text { for all } \quad \mathbf{x} \in S\left(\mathbf{x}_{0}, r\right) \tag{10}\\
\left\|J^{+}\left(\mathbf{x}_{0}\right)\right\|\left\|\mathbf{f}\left(\mathbf{x}_{0}\right)\right\|<(1-k) r \tag{11}
\end{gather*}
$$

Then the sequence

$$
\begin{equation*}
\mathbf{x}_{p+1}=\mathbf{x}_{p}-J^{+}\left(\mathbf{x}_{p}\right) \mathbf{f}\left(\mathbf{x}_{p}\right) \quad(p=0,1, \cdots) \tag{12}
\end{equation*}
$$

converges to a solution of

$$
\begin{equation*}
J^{*}(\mathbf{x}) \mathbf{f}(\mathbf{x})=\mathbf{0} \tag{13}
\end{equation*}
$$

which lies in $S\left(\mathbf{x}_{0}, r\right)$.
Proof, Let the mapping $g: E^{n} \rightarrow E^{n}$ be defined by

$$
\begin{equation*}
\mathbf{g}(\mathbf{x})=\mathbf{x}-J^{+}(\mathbf{x}) f(\mathbf{x}) \tag{14}
\end{equation*}
$$

Equation (12) now becomes:

$$
\begin{equation*}
\mathbf{x}_{p+1}=\mathbf{g}\left(\mathbf{x}_{p}\right) \quad(p=0,1, \cdots) \tag{15}
\end{equation*}
$$

We prove now that

$$
\begin{equation*}
\mathbf{x}_{p} \in S\left(\mathbf{x}_{0}, r\right) \quad(p=1,2, \cdots) \tag{16}
\end{equation*}
$$

For $p=1,(16)$ is guaranteed by (11). Assuming (16) is true for all subscripts $\leqslant p$, we prove it for: $p+1$. Indeed,

$$
\begin{align*}
\mathbf{x}_{p+1}-\mathbf{x}_{p}= & \mathbf{x}_{p}-\mathbf{x}_{\nu-1}-J^{+}\left(\mathbf{x}_{p}\right) \mathbf{f}\left(\mathbf{x}_{p}\right)+J^{+}\left(\mathbf{x}_{p-1}\right) \mathbf{f}\left(\mathbf{x}_{p-1}\right) \\
= & J^{+}\left(\mathbf{x}_{p-1}\right) J\left(\mathbf{x}_{p-1}\right)\left(\mathbf{x}_{p}-\mathbf{x}_{p-1}\right)-J^{+}\left(\mathbf{x}_{p}\right) \mathbf{f}\left(\mathbf{x}_{p}\right)+J^{+}\left(\mathbf{x}_{p-1}\right) \mathbf{f}\left(\mathbf{x}_{p-1}\right) \\
= & J^{+}\left(\mathbf{x}_{p-1}\right)\left[J\left(\mathbf{x}_{p-1}\right)\left(\mathbf{x}_{p}-\mathbf{x}_{p-1}\right)-\mathbf{f}\left(\mathbf{x}_{p}\right)+\mathbf{f}\left(\mathbf{x}_{p-1}\right)\right] \\
& \quad+\left(J^{+}\left(\mathbf{x}_{p-1}\right)-J^{+}\left(\mathbf{x}_{p}\right)\right) \mathbf{f}\left(\mathbf{x}_{p}\right), \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{x}_{p}-\mathbf{x}_{p-1}=J^{+}\left(\mathbf{x}_{p-1}\right) J\left(\mathbf{x}_{p-1}\right)\left(\mathbf{x}_{p}-\mathbf{x}_{p-1}\right) \tag{18}
\end{equation*}
$$

follows from

$$
\begin{equation*}
\mathbf{x}_{p}-\mathbf{x}_{p-1} \in R\left(J^{+}\left(\mathbf{x}_{p-1}\right)\right)=R\left(J^{*}\left(\mathbf{x}_{p-1}\right)\right) \tag{19}
\end{equation*}
$$

and $A^{+} A$ being the perpendicular projection on $R\left(A^{*}\right)$ [14]. Setting $\mathbf{u}=\mathbf{x}_{p}$, $\mathbf{v}=\mathbf{x}_{p-1}$ in (8) and (9), we conclude from (17), (19), and the induction hypothesis that

$$
\begin{equation*}
\left\|\mathbf{x}_{p+1}-\mathbf{x}_{p}\right\| \leqslant\left(M\left\|J^{+}\left(\mathbf{x}_{p}\right)\right\|+N\right)\left\|\mathbf{x}_{p}-\mathbf{x}_{p-\mathbf{1}}\right\| \tag{20}
\end{equation*}
$$

and from (10)

$$
\begin{equation*}
\left\|\mathbf{x}_{p+1}-\mathbf{x}_{p}\right\| \leqslant k\left\|\mathbf{x}_{p}-\mathbf{x}_{p-1}\right\|, \tag{21}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left\|\mathbf{x}_{p+1}-\mathbf{x}_{0}\right\| \leqslant \sum_{j-1}^{p} k^{j}\left\|\mathbf{x}_{1}-\mathbf{x}_{0}\right\|=\frac{k\left(1-k^{p}\right)}{(1-k)}\left\|\mathbf{x}_{1}-\mathbf{x}_{0}\right\| \tag{22}
\end{equation*}
$$

and, finally, with (11)

$$
\begin{equation*}
\left\|\mathbf{x}_{p+1}-\mathbf{x}_{0}\right\| \leqslant k\left(1-k^{p}\right) r<r \tag{23}
\end{equation*}
$$

which proves (16).
Equation (21) proves indeed that the mapping g is a contraction in the sense:
$\left\|\mathbf{g}\left(\mathbf{x}_{p}\right)-\mathbf{g}\left(\mathbf{x}_{p-1}\right)\right\| \leqslant k\left\|\mathbf{x}_{p}-\mathbf{x}_{p-1}\right\|<\left\|\mathbf{x}_{p}-\mathbf{x}_{p-1}\right\| \quad(p=1,2, \cdots)$.

The sequence $\left\{\mathbf{x}_{p}\right\},(p=0,1, \cdots)$, converges therefore to a vector \mathbf{x}_{*} in $S\left(\mathrm{x}_{0}, r\right)$.
\mathbf{x}_{*} is a solution of (13). Indeed,

$$
\begin{align*}
\left\|\mathbf{x}_{*}-\mathbf{g}\left(\mathbf{x}_{*}\right)\right\| & \leqslant\left\|\mathbf{x}_{*}-\mathbf{x}_{p+1}\right\|+\left\|\mathbf{g}\left(\mathbf{x}_{p}\right)-\mathbf{g}\left(\mathbf{x}_{*}\right)\right\| \\
& \leqslant\left\|\mathbf{x}_{*}-\mathbf{x}_{p+1}\right\|+k\left\|\mathbf{x}_{p}-\mathbf{x}_{*}\right\| \tag{25}
\end{align*}
$$

where the right-hand side of (25) tends to zero as $p \rightarrow \infty$. But

$$
\begin{equation*}
\mathbf{x}_{*}=\mathbf{g}\left(\mathbf{x}_{*}\right) \tag{26}
\end{equation*}
$$

is equivalent, by (14), to

$$
\begin{equation*}
J^{+}\left(\mathbf{x}_{*}\right) \mathbf{f}\left(\mathbf{x}_{*}\right)=\mathbf{0}, \tag{27}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
J^{*}\left(\mathbf{x}_{*}\right) \mathbf{f}\left(\mathbf{x}_{*}\right)=\mathbf{0} \tag{28}
\end{equation*}
$$

since $N\left(A^{+}\right)=N\left(A^{*}\right)$ for every $A \in E^{m \times n}$ [14].
Q.E.D•

Remarks. (a) If $m-n$ and the matrices $J\left(\mathbf{x}_{p}\right)$ are nonsingular, ($p=0,1, \cdots$), then (12) reduces to (4), which converges to a solution of (3). In this case (13) and (3) are indeed equivalent because $N\left(J^{*}\left(\mathbf{x}_{*}\right)\right)=\{0\}$.
(b) From

$$
\begin{equation*}
J^{*}(\mathbf{x}) \mathbf{f}(\mathbf{x})=\frac{1}{2} \operatorname{grad}\left(\sum_{i=1}^{m} f_{i}^{2}(\mathbf{x})\right) \tag{29}
\end{equation*}
$$

it follows that the limit \mathbf{x}_{*} of the sequence (12) is a stationary point of $\sum_{i=1}^{m} f_{i}{ }^{2}(\mathbf{x})$, which by Theorem 1 exists in $S\left(\mathbf{x}_{0}, r\right)$, where (8)-(11) are satisfied. Even when (3) has a solution in $S\left(\mathbf{x}_{0}, r\right)$, the sequence (12) does not necessarily converge to it, but to a stationary point of $\sum_{i=1}^{m} f_{i}{ }^{2}(\mathbf{x})$ which may be a least squares solution of (3), or a saddle point of the function $\sum_{i=1}^{m} f_{i}{ }^{2}(\mathbf{x})$, etc.

Definition. A point \mathbf{x} is an isolated point for the function f in the linear manifold L if there is a neighborhood U of \mathbf{x} such that

$$
\mathbf{y} \in U \cap L, \quad \mathbf{y} \neq \mathbf{x} \Rightarrow \mathbf{f}(y) \neq \mathbf{f}(\mathbf{x}) .
$$

Theorem 2. Let the function $f: E^{n} \rightarrow E^{m}$ be in the class $C^{\prime}(S(u, r))$. Then \mathbf{u} is an isolated point for f in the linear manifold $\left\{\mathbf{u}+R\left(J^{*}(\mathbf{u})\right)\right\}$.

Proof. Suppose the theorem is false. Then there is a sequence

$$
\begin{equation*}
\mathbf{x}_{k} \in S(\mathbf{u}, r) \cap\left\{\mathbf{u}+R\left(J^{*}(\mathbf{u})\right)\right\} \quad(k=1,2, \cdots) \tag{30}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mathbf{x}_{k} \rightarrow \mathbf{u} \quad \text { and } \quad \mathbf{f}\left(\mathbf{x}_{k}\right)=\mathbf{f}(\mathbf{u}) \quad(k=1,2, \cdots) \tag{31}
\end{equation*}
$$

From $f \in C^{\prime}(S(\mathbf{u}, r))$ it follows that

$$
\begin{equation*}
\left\|\mathbf{f}\left(\mathbf{u}+\mathbf{z}_{k}\right)-\mathbf{f}(\mathbf{u})-J(\mathbf{u}) \mathbf{z}_{k}\right\| \leqslant \delta\left(\left\|\mathbf{z}_{k}\right\|\right)\left\|\boldsymbol{z}_{k}\right\| \tag{32}
\end{equation*}
$$

where,

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{u}+\mathbf{z}_{k} \quad(k=1,2, \cdots) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 . \tag{34}
\end{equation*}
$$

Combining (31) and (32) it follows that

$$
\begin{equation*}
\left\|J(\mathbf{u}) \frac{\boldsymbol{z}_{k}}{\left\|\boldsymbol{z}_{k}\right\|}\right\| \leqslant \delta\left(\left\|\boldsymbol{z}_{k}\right\|\right) . \tag{35}
\end{equation*}
$$

The sequence $\left\{\mathbf{z}_{k}\right\} /\left\|\boldsymbol{z}_{k}\right\|,(k=1,2, \cdots)$, consists of unit vectors which by (30) and (33) lie in $R\left(J^{*}(\mathbf{u})\right)$, and by (35) and (34) converge to a vector in $N(J(\mathbf{u}))$, a contradiction.
Q.E.D.

Remarks (a) In case the linear manifold $\left\{\mathbf{u}+R\left(J^{*}(\mathbf{u})\right)\right\}$ is the whole space E^{n}, (i.e., $N(J(\mathbf{u}))=\{\mathbf{0}\}$, i.e., the columns of $J(\mathbf{u})$ are linearly independent), Theorem 2 is due to Rodnyanskii [15] and was extended to Banach spaces by S. Kurepa [16], whose idea is used in our proof.
(b) Using Theorem 2, the following can be said about the solution \mathbf{x}_{*} of (13), obtained by (12):

Corollary. The limit \mathbf{x}_{*} of the sequence (12) is an isolated zero for the function $J^{*}\left(\mathbf{x}_{*}\right) \mathbf{f}(\mathbf{x})$ in the linear manifold $\left\{\mathbf{x}_{*}+R\left(J^{*}\left(\mathbf{x}_{*}\right)\right)\right\}$, unless $J\left(\mathbf{x}_{*}\right)=\mathbf{0}$ the zero matrix.

Proof. \mathbf{x}_{*} is in the interior of $S\left(\mathbf{x}_{0}, r\right)$, therefore $f \in C^{\prime}\left(S\left(\mathbf{x}_{*}, r_{*}\right)\right)$ for some $r_{*}>0$. Assuming the corollary to be false it follows, as in (35), that

$$
\begin{equation*}
\left\|J^{*}\left(\mathbf{x}_{*}\right) J\left(\mathbf{x}_{*}\right) \frac{\mathbf{z}_{k}}{\left\|\mathbf{z}_{k}\right\|}\right\| \leqslant \delta\left(\left\|\mathbf{z}_{k}\right\|\right)\left\|J^{*}\left(\mathbf{x}_{*}\right)\right\|, \tag{36}
\end{equation*}
$$

where $\mathbf{u}_{k}=\mathbf{x}_{*}+\boldsymbol{z}_{k},(k=1,2, \cdots)$, is a sequence in $\left\{\mathbf{x}_{*}+R\left(J^{*}\left(\mathbf{x}_{*}\right)\right)\right\}$ converging to \mathbf{x}_{*} and such that

$$
\mathbf{0}=J^{*}\left(\mathbf{x}_{*}\right) \mathbf{f}\left(\mathbf{x}_{*}\right)=J^{*}\left(\mathbf{x}_{*}\right) \mathbf{f}\left(\mathbf{u}_{k}\right)
$$

Excluding the trivial case: $J\left(\mathbf{x}_{*}\right)=0$ (see remark below), it follows that $\left\{\boldsymbol{z}_{k} /\left\|\boldsymbol{z}_{k}\right\|\right\},(k=1,2, \cdots)$, is a sequence of unit vectors in $R\left(J^{*}\left(\mathbf{x}_{*}\right)\right)$, which by (36) converges to a vector in $N\left(J^{*}\left(\mathbf{x}_{*}\right) J\left(\mathbf{x}_{*}\right)\right)=N\left(J\left(\mathbf{x}_{*}\right)\right)$, a contradiction.
Q.E.D.

Remark: The definition of an isolated point is vacuous if the linear manifold L is zero-dimensional. Thus if $J\left(\mathbf{x}_{*}\right)=0$, then $R\left(J^{*}\left(\mathbf{x}_{*}\right)\right)=\{0\}$ and every $\mathbf{x} \in E^{n}$ is a zero of $J^{*}\left(\mathbf{x}_{*}\right) f(\mathbf{x})$.

Examples

The following examples were solved by the iterative method:

$$
\begin{equation*}
\mathbf{x}_{p \alpha+k+1}=\mathbf{x}_{p \alpha+k}-J^{+}\left(\mathbf{x}_{p_{\alpha}}\right) \mathbf{f}\left(\mathbf{x}_{p \alpha+k}\right) \tag{37}
\end{equation*}
$$

where $\alpha \geqslant 0$ is an integer

$$
k=\left\{\begin{array}{lll}
0,1, \cdots, \alpha-1 & \text { if } & \alpha>0 \\
0,1, \cdots & \text { if } & \alpha=0
\end{array}\right.
$$

and

$$
p=0,1, \cdots
$$

For $\alpha=1$: (37) reduces to (12), $\alpha=0$ yields the modified Newton method of [17], and for $\alpha \geqslant 2: \alpha$ is the number of iterations with the modified method [17], (with the Jacobian $\left.J\left(\mathbf{x}_{p_{\alpha}}\right), p=0,1, \cdots\right)$, between successive computations of the Jacobian $J\left(\mathbf{x}_{p \alpha}\right)$ and its generalized inverse. In all the examples worked out, convergence (up to the desired accuracy) required the smallest number of iterations for $\alpha=1$; but often for higher values of α less computations (and time) were required on account of computing J and J^{+}only
once in α iterations. The computations were carried out on Philco 2000. The method of [18] was used in the subroutine of computing the generalized inverse J^{+}.

Example 1. The system of equations is

$$
\mathbf{f}(\mathbf{x})=\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}-2=0 \\
f_{2}\left(x_{1}, x_{2}\right)=x_{1}-x_{2}=0 \\
f_{3}\left(x_{1}, x_{2}\right)=x_{1} x_{2}-1=0 .
\end{array}\right.
$$

Equation (13) is

$$
J^{*}(\mathbf{x}) \mathbf{f}(\mathbf{x})=\left\{\begin{array}{l}
2 x_{1}^{3}+3 x_{1} x_{2}^{2}-3 x_{1}-2 x_{2}=0 \\
2 x_{2}^{3}+3 x_{1}^{2} x_{2}-2 x_{1}-3 x_{2}=0
\end{array}\right.
$$

whose solutions are $(0,0)$ a saddle point of $\sum f_{i}{ }^{2}(\mathbf{x})$ and $(1,1),(-1,-1)$ the solutions of $\mathbf{f}(\mathbf{x})=\mathbf{0}$. In applying (37), derivatives were replaced by differences with $\Delta x=0.001$.

Some results are

$$
\alpha=3
$$

$p \alpha+k$	0	1	2	3
$\mathrm{x}_{\mathrm{p}_{\alpha}+k}$	3.000000	1.578143	1.287151	1.155602
	2.000000	1.355469	1.199107	1.118148
$\mathbf{f}\left(\mathbf{x}_{p_{\alpha}+k}\right)$	11.00000	2.327834	1.094615	0.585672
	1.00000	0.222674	0.088044	0.037454
	5.00000	1.139125	0.543432	0.292134
$\Sigma f_{i}{ }^{2}$	147.0000	6.766002	1.501252	0.429757
$p \alpha+k$	4	5	6	7
$\mathbf{x}_{p_{\alpha}+k}$	1.008390	1.000981	1.000118	1.000000
	1.008365	1.000980	1.000118	1.000000
$\mathbf{f}\left(x_{p^{\alpha}+k}\right)$	0.033649	0.003924	0.000472	0.000000
	0.000025	0.000000	0.000000	0.000000
	0.016825	0.001962	0.000236	0.000000
$\Sigma f_{i}{ }^{2}$	0.001415	0.000019	0.000000	0.000000

Note the sharp improvement for each change of Jacobian (iterations: 1, 4, and 7).

$$
\alpha=5
$$

$p \alpha+k$	0	5	6	8	9
$\mathbf{x}_{p_{\alpha+k}}$	3.000000	1.050657	1.001078	1.000002	1.000000
	2.000000	1.043431	1.001078	1.000002	1.000000
$\mathbf{f}\left(\mathbf{x}_{p_{\alpha}+k}\right)$	11.00000	0.192630	0.004315	0.000009	0.000000
	1.00000	0.007226	0.000000	0.000000	0.000000
	5.00000	0.096289	0.002157	0.000004	0.000000
$\Sigma f_{\boldsymbol{i}^{2}}$	147.0000	0.046430	0.000023	0.000000	0.000000

The Jacobian and its generalized inverse were twice calculated (iterations 1 , 6), whereas for $\alpha=3$ they were calculated 3 times.

$$
\alpha=10
$$

$p \alpha+k$	0	10	11	12
$\mathbf{x}_{p_{\alpha}+k}$	3.0	1.003686	1.000008	1.000000
	2.0	1.003559	1.000008	1.000000
$\mathbf{f}\left(\mathbf{x}_{x_{\alpha+k}}\right)$	11.0	0.014516	0.000032	0.000000
	1.0	0.000128	0.000000	0.000000
	5.0	0.007258	0.000016	0.000000
$\Sigma f_{i}{ }^{2}$	147.0	0.000263	0.000000	0.000000

Example 2.

$$
\mathbf{f}(\mathrm{x})=\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}-2=0 \\
f_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+x_{2}{ }^{2}-2=0 \\
f_{3}\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+x_{2}{ }^{2}-9=0 .
\end{array}\right.
$$

This is an inconsistent system of equations, whose least squares solutions are $(1.000000,1.914854)$ and ($1.000000,-1.914854$). Applying (37) with $\alpha=1$ and exact derivatives, resulted in the sequence:

p	0	1	2	3
x_{p}	10.00000	1.000000	1.000000	1.000000
	20.00000	12.116667	6.209640	3.400059
$\mathrm{f}\left(\mathbf{x}_{p}\right)$	498.0000	145.8136	37.55963	10.56041
	462.0000	145.8136	37.55963	10.56041
	472.0000	137.8136	29.55963	25.60407
$\Sigma f_{i}{ }^{2}\left(x_{p}\right)$	684232.0	61515.80	3695.223	229.60009
p	4	5	6	7
\mathbf{x}_{p}	1.000000	1.000000	1.000000	1.000000
	2.239236	1.938349	1.914996	1.914854
$\mathbf{f}\left(\mathbf{x}_{\text {r }}\right)$	4.014178	2.757199	2.667212	2.666667
	4.014178	2.757199	2.667212	2.666667
	-3.985822	-5.242801	-5.332788	-5.333333
$\Sigma f_{i}{ }^{2}\left(\mathrm{x}_{p}\right)$	48.114030	42.691255	42.666667	42.666667

Example 3.

$$
\mathbf{f}(\mathbf{x})=\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-10=0 \\
f_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}-16=0
\end{array}\right.
$$

The solutions of this system are $(2,8)$ and $(8,2)$. However, applying (12) with an initial x_{0} on the line: $x_{1}=x_{2}$, results in the whole sequence being on the same line. Indeed,

$$
\begin{aligned}
& J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right) \quad \text { so that for } \quad \mathbf{x}_{0}=\binom{a}{a} \\
& J\left(\mathbf{x}_{0}\right)=\left(\begin{array}{ll}
1 & 1 \\
a & a
\end{array}\right), \quad J^{+}\left(\mathbf{x}_{0}\right)=\frac{1}{2\left(1+a^{2}\right)}\left(\begin{array}{ll}
1 & a \\
1 & a
\end{array}\right),
\end{aligned}
$$

and consequently \mathbf{x}_{1} is also on the line: $x_{1}=x_{2}$. Thus confined to: $x_{1}=x_{2}$, the sequence (12) will, depending on the choice of \mathbf{x}_{0}, converge to either ($4.057646,4.057646$) or $(-3.313982,-3.313982)$. These are the 2 least squares solutions on the line: $x_{1}=x_{2}$.

Acknowledgment

The author gratefully acknowledges the computing facilities made available to him by the SWOPE Foundation.

References

1. A. S. Householder. "Principles of Numcrical Analysis," McGraw-Hill, 1953.
2. A. M. Ostrowski. "Solution of Equations and Systems of Equations," Academic Press, New York, 1960.
3. R. Bellman and R. Kalaba. "Quasilinearization and Nonlinear Boundary-Value Problems." American Elsevier, New York ,1965.
4. T. H. Hildebrandt and L. M. Graves. Implicit functions and their differentials in general analysis. Trans. Amer. Math. Soc. 29 (1927), 127-153.
5. L. V. Kantorovič. On Newton's method for functional equations. Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 1237-1240; (Math. Rev. 9-537), 1948.
6. L. V. Kantorovıc̆. Functional analysis and applied mathematics. Uspehi Mat. Nauk (N.S.) 3, No. 6 (28), (1948), 89-185 (Math. Rev. 10-380), 1949.
7. L. V. Kantorovič. On Newton's method. Trudy Mat. Inst. Steklov. 28 (1949), 104-144 (Math. Rev. 12-419), 1951.
8. M. Altman. A generalization of Newton's method. Bull. Acad. Polon. Sci. (1955), 189-193.
9. M. L. Stein. Sufficient conditions for the convergence of Newton's method in complex Banach spaces. Proc. Amer. Math. Soc. 3 (1952), 858-863.
10. R. G. Bartle. Newton's method in Banach spaces. Proc. Amer. Math. Soc. 6 (1955), 827-831.
11. J. Schröder. Über das Newtonsche Verfahren. Arch. Rat. Mech. Anal. 1 (1957), 154-180.
12. A. S. Householder. "Theory of Matrices in Numerical Analysis." Blaisdell, 1964.
13. R. Penrose. A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51 (1955), 406-413.
14. A. Ben-Israel and A. Charnes. Contributions to the theory of generalized inverses. F. Soc. Indust. Appl. Math. 11 (1963), 667-699.
15. A. M. RodnyanskiI. On continuous and differentiable mappings of open sets of Euclidean space. Mat. Sb. (N.S.) 42 (84), (1957), 179-196.
16. S. Kurepa. Remark on the (F)-differentiable functions in Banach spaces' Glasnik Mat.-Fiz. Astronom. Ser. II 14 (1959), 213-217; (Math. Rev. 24-A1030), 1962.
17. A. Ben-Israel. A modified Newton-Raphson method for the solution of systems of equations. Israel f. Math. 3 (1965), 94-98.
18. A. Ben-Israel and S. J. Wersan. An elimination method for computing the generalized inverse of an arbitrary complex matrix. F. Assoc. Comp. Mach. 10 (1963), 532-537.

[^0]: * Part of the research underlying this report was undertaken for the Office of Naval Research, Contract Nonr-1228(10), Project NR 047-021, and for the U.S. Army Research Office-Durham, Contract No. DA-31-124-ARO-D-322 at Northwestern University. Reproduction of this paper in whole or in part is permitted for any purpose of the United States Government.
 ${ }^{1}$ See section on notations below.

