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INTRODUCTION 

The Newton-Raphson method for solving an equation 

f(x) =o (1) 
is based upon the convergence, under suitable conditions [l, 21, of the 
sequence 

X la+1 = x, ;g$ -- (p=O,1,2;**) (2) 

to a solution of (l), where x,, is an approximate solution. A detailed discussion 
of the method, together with many applications, can be found in [3]. 

Extensions to systems of equations 

f&l, ***, x7&> = 0 
or f(x) = 0 (3) 

f*(% 3 **-, x78) = 0 

are immediate in case: m = n, [l], where the analog of (2) is? 

X p+1 = x, - Hx,) f(x,) (P = 0, 1, -*). (4) 

Extensions and applications in Banach spaces were given by Hildebrandt 
and Graves [4], Kantorovic [5-71, Altman [8], Stein [9], Bartle [lo], Schroder 
[ll] and others. In these works the Frechet derivative replaces J(x) in (4), 
yet nonsingularity is assumed throughout the iterations. 

* Part of the research underlying this report was undertaken for the Office of Naval 
Research, Contract Nonr-1228(10), Project NR 047-021, and for the U.S. Army 
Research Office-Durham, Contract No. DA-31-124-ARO-D-322 at Northwestern 
University. Reproduction of this paper in whole or in part is permitted for any pur- 
pose of the United States Government. 

* See section on notations below. 

243 



244 BEN-ISRAEL 

The modified Newton-Raphson method 

X 9+1 = % - J-Yxo> f(x,) (P = 0, 1, -) (5) 

was extended in [17] to the case of singular J(x,), and conditions were given 
for the sequence 

X p+1 = xp - J’(xrJ> fb,) (P = 0, 1, --) (6) 

to converge to a solution of 

J*(x& f(x) = 0. (7) 

In this paper the method (4) ’ l’k IS 1 ewise extended to the case of singular 
J(xJ, and the resulting sequence (12) is shown to converge to a stationary 
point of Z&fiz(x). 

NOTATIONS 

Let Ek denote the k-dimensional (complex) vector space of vectors x, 
with the Euclidean norm /I x I/ = (x, x)l12. Let EmXR denote the space of 
m x n complex matrices with the norm 

Ij A jl = max (~6: h an eigenvalue of A*A}, 

A* being the conjugate transpose of A. 
These norms satisfy [12]: 

II Ax II G II A II II x II for every XEE~, A E Emx”. 

Let R(A), N(A) denote the range resp. null space of A, and A+ the generalized 
inverse of A, [13]. 

For u E Ek and r > 0 let 

S(u, Y) = {x E Ek : II x -u II < r} 

denote the open ball of radius Y around u. 
The components of a function f : En + Em are denoted by J(x), (a = 1, 

. . . , m). The Jacobian off at x E En is the m x n matrix 

J(x) = (F), ~-\;:::yJ. 

For an open set S C I?, the function f : En --+ E* is in the class C‘(S) if the 
mapping En -+ El”xn given by x ---f J(x) is continuous for every x E S [4]. 
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RESULTS 

THEOREM 1. Let f : En -+ Em be a function, x0 a point in E”, and r > 0 
be such that f E c’(S(x, , Y)). 

Let M, N be positive constants such that for all u, v in S(x, , Y) with 
11 - v E q]*(v)): 

II J(v) (u - v) - f(u) + f(v) II < M II u - v II 

II U+(v) - J+(u)> f(u) II < iv II u - v I/ 
and 

M II J+(x) II + N = k < 1 for all x E WJ , r> 

II J’kJ II II fb,) II < (1 - 4 r* 
Then the sequence 

X D+l = XXI - J+(%)fw (P = 0, 1, .**) 

converges to a solution of 
J*(x) f(x) = 0 

which lies in S(x,, , t). 

PROOF. Let the mapping g : En + En be defined by 

g(x) = x - J’(x) f (4. 

Equation (12) now becomes: 

%+1 = gw (p = 0, 1, ***) 

We prove now that 

x, E S(x, , T) (p = 1, 2, *em). 

03) 

(9) 

(10) 
(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

For p = 1, (16) is guaranteed by (11). Assuming (16) is true for all sub- 
scripts < p, we prove it for: p + 1. Indeed, 

%+1 -x, = XP -x,-1 - J'(x,)f(x,) + J+(%-l> We-J 

= J+(%-l) J(%-1) (x, - X,-l) - J+G%J f&J + J'(XD-1) fh-1) 

= J"b,-1) ukl-1) (x, -x9-1) - fbb) + f(XD-Jl 

+ (J+(%-l) - J+(%N fed (17) 
where 

x, -x,-1 = J+bd J&-l) (XD -x,-J (18) 
follows from 

x, - x,-l~w++(x,-l)) = w*(x,-d w-9 
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and A+A being the perpendicular projection on R(A*) [14]. Setting u = x, , 
v = xp-1 in (8) and (9), we conclude from (17), (19), and the induction 
hypothesis that 

l/%+1 -% II < w II I+(%) II + w I/% -x,-1 II (20) 

and from (10) 

II %+1 - x, 81 < k II qJ - XD-1 II , (21) 
which implies 

II%+1 - x0 /I < 2 kj I/ x1 - x0 I/ = 4'; 7 ;;' II Xl - x0 II (22) 
j=l 

and, finally, with (11) 

II x9+1 - x0 11 < k(1 - kP) r < r, (23) 

which proves (16). 
Equation (21) proves indeed that the mappingg is a contraction in the sense: 

II dx,) - &,-d II G k II x, - xg--1 II < II x, - x9-1 II (p = 1, 2, ***). 

(24) 

The sequence {x,}, (p = 0, 1, .*e), converges therefore to a vector x* in 

qxo , y). 
x* is a solution of (13). Indeed, 

II x* - &*) II < II x* - %+1 II + II d%> - dx*> II 

G It x* - xa+l II + k II x, -x* II 5 

where the right-hand side of (25) tends to zero as p + co. But 

x* = !dx*) 
is equivalent, by (14), to 

J’b*) f(x*) = 0, 
which is equivalent to 

J*(x*) f(x*) = 0 

since N(A+) = N(A*) for every A EE~X~ [14]. 

(25) 

(26) 

(27) 

(28) 

Q.E.D. 

REMARKS. (a) If m = n and the matrices 1(x,) are nonsingular, 
(p = 0, 1, **a), then (12) reduces to (4), which converges to a solution of (3). 
In this case (13) and (3) are indeed equivalent because N(J*(x,)) = (0). 

(b) From 

J*(x) f(x) = + grad (z$f~2(4) (29) 



A NEWTON-WHSON METHOD 247 

it follows that the limit x* of the sequence (12) is a stationary point of 
~~ifi2(x), which by Theorem 1 exists in S(x, , Y), where (8)-(11) are satis- 
fied. Even when (3) has a solution in S(x, , r), the sequence (12) does not 
necessarily converge to it, but to a stationary point of Cz”=,fi2(x) which may 
be a least squares solution of (3), or a saddle point of the function CErfi2(x), 
etc. 

DEFINITION. A point x is an isolated point for the function f in the linear 
manifold L if there is a neighborhood U of x such that 

YEUr-IL, Y # x - f(Y) # f(x). 

THEOREM 2. Let the function f : En--j Em be in the class c’(S(u, Y)). Then 
u is an isolated point for f in the linear manifold {u + R( J*(u))}. 

PROOF. Suppose the theorem is false. Then there is a sequence 

xk E s(u, Y) n {u + R(]*(u))} (k = 1, 2, “‘) 

such that 

xk-+u and f(xk) = f(u) (A = 1, 2, *.‘) 

From f E C’(S(u, r)) it follows that 

where, 

and 

11 f(u + zk> - f(u) - JW Zk 11 d s(il zk II) 11 zk 11 

xk = u + !& (k = 1, 2, a**) 

8(t) +O as t -+ 0. 

Combining (31) and (32) it follows that 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

The sequence{z,}/11 zI, /I, (k = 1, 2, ***), consists of unit vectors which by (30) 
and (33) lie in R( J*(u)), and by (35) and (34) converge to a vector in N( J(u)), 
a contradiction. Q.E.D. 

REMARKS (a) In case the linear manifold {u + R(J*(u))} is the whole 
space En, (i.e., N(J(u)) = (O}, i.e., the columns of J(u) are linearly inde- 
pendent), Theorem 2 is due to Rodnyanskii [ 151 and was extended to Banach 
spaces by S. Kurepa [16], whose idea is used in our proof. 

(b) Using Theorem 2, the following can be said about the solution x* 
of (13), obtained by (12): 
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COROLLARY. The limit X* of the sequence (12) is an isolated zero for the 
function 1*(x.+) f( x zn ) ’ th I e inear manifold {xx + R(J*(x,))}, unless 1(x*) = 0 
the zero matrix. 

PROOF. x* is in the interior of S(x, , r), therefore f E C'(S(x, , Y,)) for 
some Y* > 0. Assuming the corollary to be false it follows, as in (35), that 

where uk = x* + zk , (K = 1,2, *a*), is a sequence in {x* + R(J*(x,))} 
converging to x* and such that 

0 = J*(x*) f(x*) = 1*(x*) f(uk)* 

Excluding the trivial case: J(x.+.) = 0 (see remark below), it follows that 
(zk/jl zk: I/}, (K = 1,2, a-.), is a sequence of unit vectors in R(J*(x,)), which 
by (36) converges to a vector in N(J*(x,) 1(x*)) = N(J(x,)), a contradic- 
tion. Q.E.D. 

REMARK: The definition of an isolated point is vacuous if the linear 
manifold L is zero-dimensional. Thus if J(x*) = 0, then R(j*(x,)) = (0) 
and every x E En is a zero of J*(x*) f (x). 

EXAMPLES 

The following examples were solved by the iterative method: 

Xwx+k+l = %ol+k - J+(x,,) f(Xzw+kh (37) 

where 01 > 0 is an integer 

and 
p = 0, 1, **a 

For a = 1: (37) reduces to (12), (Y = 0 yields the modified Newton method 
of [17], and for (Y > 2 : 01 is the number of iterations with the modified method 
[17], (with the Jacobian J(xsa), p = 0, 1, a**), between successive computa- 
tions of the Jacobian J(xPd) and its generalized inverse. In all the examples 
worked out, convergence (up to the desired accuracy) required the smallest 
number of iterations for (Y = 1; but often for higher values of (Y less computa- 
tions (and time) were required on account of computing 1 and /+ only 
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once in 01 iterations. The computations were carried out on Philco 2000. The 
method of [18] was used in the subroutine of computing the generalized 
inverse J+. 

EXAMPLE 1. The system of equations is 

Equation (13) is 

whose solutions are (0,O) a saddle point of Cfi2(x) and (1, l), (- 1, - 1) 
the solutions of f(x) = 0. In applying (37), derivatives were replaced by 
differences with Ax = 0.001. 

Some results are 
a=3 

~0: + k 0 1 2 I 3 

%,tk 

f(xm+J 

3.oOOoOo 1.578143 1.287151 1.155602 
2.OOOOoO 1.355469 1.199107 1.118148 

11 .oooOO 2.327834 1.094615 0.585672 
1 .ooOOo 0.222674 0.088044 0.037454 
5.00000 1.139125 0.543432 0.292134 

147.0000 6.766002 1.501252 0.429757 

pa + k 4 5 6 7 

%u+!i 

fh,+J 

Cfi” 

1.008390 1.000981 1.000118 1 .oooooo 
1.008365 1.000980 1.000118 1.oOOooo 

0.033649 0.003924 0.000472 
0.000025 o.oooooo 0.000000 
0.016825 0.001962 0.000236 

0.001415 0.000019 o.oooooo 

o.ooooO0 
o.oooooo 
o.oooooO 

0.000000 

Note the sharp improvement for each change of Jacobian (iterations: 
1, 4, and 7). 
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0 

3.000000 
2.000000 

11 .OOooo 
1 .ooooo 
5.00000 

147.0000 

BEN-ISRAEL 

CY=5 

5 6 8 9 
--I - 

1.050657 1.001078 
3.00107*~ 

1.000002 j 1.000000 
1.04343 1 1.000002 1 .oooooo 

0.192630 0.004315 0.000009 0.000000 
0.007226 0.000000 0.000000 1 0.000000 
0.096289 i 0.002157 0.000004 I 0.000000 

I 

0.046430 ~ 0.000023 0.000000 0.000000 

The Jacobian and its generalized inverse were twice calculated (iterations I, 
6), whereas for 01 = 3 they were calculated 3 times. 

pa + k 

Cfi" 

T 

I_ 
0 

3.0 
2.0 

11.0 
1.0 
5.0 

147.0 

a = 10 

10 11 

1.003686 1 .OOOOOS 
1.003559 1.000008 

0.014516 0.000032 
0.000128 0.000000 
0.007258 0.000016 

0.000263 0.000000 

- 

- 

12 

1 .oooooo 
1 .oooooo 

0.000000 
o.oooooo 
o.oooooo 

0.000000 

EXAMPLE 2. 

i 

f&q , x2) = x12 + x2 - 2 = 0 
f(x) = f& ) x2) = (X1 - 2)s + $2 - 2 = 0 

f&l 7 x2) = (x1 - 1)s + $2 - 9 = 0. 

This is an inconsistent system of equations, whose least squares solutions are 
(l.OOOOOO, 1.914854) and (1.000000, - 1.914854). Applying (37) with 01 = 1 
and exact derivatives, resulted in the sequence: 



P 

fkJ 

Ef Ax,) 

EXAMPLE 3. 

A NEWTON-RAPHSON METHOD 251 

1 2 

10.0ooo0 
20.00000 

498.0000 
462.0000 
472.0000 

.- 

.- 

_- 
1 .oooooo 1 .oooooo 

12.116667 6.209640 

145.8136 
145.8136 
137.8136 

37.55963 
37.55963 
29.55963 

684232.0 61515.80 3695.223 

4 5 6 

1 .oooooo 1 .oooooo 1 .oooooo 
2.239236 1.938349 1.914996 

4.014178 2.757199 2.667212 
4.014178 2.757199 2.667212 

-3.985822 -5.242801 -5.332788 

48.114030 42.691255 42.666667 

L 

- - 

.- 

- 

3 

1 .oooooo 
3.400059 

10.56041 
10.56041 
25.60407 

229.60009 

7 

1 .oooooo 
1.914854 

2.666667 
2.666667 

-5.333333 

42.666667 

1 x1 , x2) = x1 + x2 - 10 = 0 
f(x) = 1 ;2;xl , x2) = x1x2 - 16 = 0. 

The solutions of this system are (2,s) and (8,2). However, applying (12) with 
an initial x0 on the line: x1 = xa , results in the whole sequence being on the 
same line. Indeed, 

so that for 
a 

x,, = 0 a 

1 la 
J+(xo) = 41 + a2) 1 a ’ ( > 

and consequently x1 is also on the line: xi = xa . Thus confined to: x1 = xa , 
the sequence (12) will, depending on the choice of x,, , converge to either 
(4.057646,4.057646) or (- 3.313982, - 3.313982). These are the 2 least 
squares solutions on the line: xi = xa . 

409/rglz-6 
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