A Newton-Raphson Method for the Solution of Systems of Equations

ADI BEN-ISRAEL

Technion-Israel Institute of Technology and Northwestern University* Submitted by Richard Bellman

INTRODUCTION

The Newton-Raphson method for solving an equation

$$f(x) = 0 \tag{1}$$

is based upon the convergence, under suitable conditions [1, 2], of the sequence

$$x_{p+1} = x_p - \frac{f(x_p)}{f'(x_p)} \qquad (p = 0, 1, 2, \cdots)$$
(2)

to a solution of (1), where x_0 is an approximate solution. A detailed discussion of the method, together with many applications, can be found in [3].

Extensions to systems of equations

$$f_1(x_1, \dots, x_n) = 0$$

or $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ (3)
$$f_m(x_1, \dots, x_n) = 0$$

are immediate in case: m = n, [1], where the analog of (2) is:¹

$$\mathbf{x}_{p+1} = \mathbf{x}_p - J^{-1}(\mathbf{x}_p) \mathbf{f}(\mathbf{x}_p) \qquad (p = 0, 1, \cdots).$$
 (4)

Extensions and applications in Banach spaces were given by Hildebrandt and Graves [4], Kantorovič [5-7], Altman [8], Stein [9], Bartle [10], Schröder [11] and others. In these works the Frechet derivative replaces $J(\mathbf{x})$ in (4), yet nonsingularity is assumed throughout the iterations.

^{*} Part of the research underlying this report was undertaken for the Office of Naval Research, Contract Nonr-1228(10), Project NR 047-021, and for the U.S. Army Research Office-Durham, Contract No. DA-31-124-ARO-D-322 at Northwestern University. Reproduction of this paper in whole or in part is permitted for any purpose of the United States Government.

¹ See section on notations below.

The modified Newton-Raphson method

$$\mathbf{x}_{p+1} = \mathbf{x}_p - J^{-1}(\mathbf{x}_0) \mathbf{f}(\mathbf{x}_p) \qquad (p = 0, 1, \cdots)$$
(5)

was extended in [17] to the case of singular $J(\mathbf{x}_0)$, and conditions were given for the sequence

$$\mathbf{x}_{p+1} = \mathbf{x}_p - J^+(\mathbf{x}_0) \mathbf{f}(\mathbf{x}_p) \qquad (p = 0, 1, \cdots)$$
 (6)

to converge to a solution of

$$J^*(\mathbf{x}_0) \mathbf{f}(\mathbf{x}) = \mathbf{0}. \tag{7}$$

In this paper the method (4) is likewise extended to the case of singular $J(\mathbf{x}_p)$, and the resulting sequence (12) is shown to converge to a stationary point of $\sum_{i=1}^{m} f_i^2(\mathbf{x})$.

NOTATIONS

Let E^k denote the k-dimensional (complex) vector space of vectors \mathbf{x} , with the Euclidean norm $||\mathbf{x}|| = (\mathbf{x}, \mathbf{x})^{1/2}$. Let $E^{m \times n}$ denote the space of $m \times n$ complex matrices with the norm

$$||A|| = \max{\{\sqrt{\lambda} : \lambda \text{ an eigenvalue of } A^*A\}},$$

 A^* being the conjugate transpose of A.

These norms satisfy [12]:

 $||A\mathbf{x}|| \leq ||A|| ||\mathbf{x}||$ for every $\mathbf{x} \in E^n$, $A \in E^{m \times n}$.

Let R(A), N(A) denote the range resp. null space of A, and A^+ the generalized inverse of A, [13].

For $\mathbf{u} \in E^k$ and r > 0 let

$$S(\mathbf{u}, \mathbf{r}) = \{\mathbf{x} \in E^k : \| \mathbf{x} - \mathbf{u} \| < \mathbf{r}\}$$

denote the open ball of radius r around \mathbf{u} .

The components of a function $f: E^n \to E^m$ are denoted by $f_i(\mathbf{x})$, $(i = 1, \dots, m)$. The Jacobian of f at $\mathbf{x} \in E^n$ is the $m \times n$ matrix

$$J(\mathbf{x}) = \left(\frac{\partial f_i(\mathbf{x})}{\partial x_j}\right), \qquad \begin{pmatrix} i = 1, \cdots, m \\ j = 1, \cdots, n \end{pmatrix}$$

For an open set $S \subset E^n$, the function $f: E^n \to E^m$ is in the class C'(S) if the mapping $E^n \to E^{m \times n}$ given by $\mathbf{x} \to J(\mathbf{x})$ is continuous for every $\mathbf{x} \in S$ [4].

244

RESULTS

THEOREM 1. Let $f: E^n \to E^m$ be a function, \mathbf{x}_0 a point in E^n , and r > 0 be such that $f \in C'(S(\mathbf{x}_0, r))$.

Let M, N be positive constants such that for all u, v in $S(x_0, r)$ with $u - v \in R(J^*(v))$:

$$\| J(\mathbf{v}) (\mathbf{u} - \mathbf{v}) - \mathbf{f}(\mathbf{u}) + \mathbf{f}(\mathbf{v}) \| \leq M \| \mathbf{u} - \mathbf{v} \|$$
(8)

$$\| (J^{+}(\mathbf{v}) - J^{+}(\mathbf{u})) \mathbf{f}(\mathbf{u}) \| \leq N \| \mathbf{u} - \mathbf{v} \|$$
(9)

and

$$M \parallel J^{+}(\mathbf{x}) \parallel + N = k < 1 \quad \text{for all} \quad \mathbf{x} \in S(\mathbf{x}_{0}, r)$$
(10)

$$\| J^{+}(\mathbf{x}_{0}) \| \| \mathbf{f}(\mathbf{x}_{0}) \| < (1-k) r.$$
(11)

Then the sequence

$$\mathbf{x}_{p+1} = \mathbf{x}_p - J^+(\mathbf{x}_p) \mathbf{f}(\mathbf{x}_p) \qquad (p = 0, 1, \cdots)$$
(12)

converges to a solution of

$$J^*(\mathbf{x}) \mathbf{f}(\mathbf{x}) = \mathbf{0} \tag{13}$$

which lies in $S(\mathbf{x}_0, \mathbf{r})$.

PROOF. Let the mapping $g: E^n \to E^n$ be defined by

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} - J^{+}(\mathbf{x})f(\mathbf{x}). \tag{14}$$

Equation (12) now becomes:

$$\mathbf{x}_{p+1} = \mathbf{g}(\mathbf{x}_p) \qquad (p = 0, 1, \cdots) \tag{15}$$

We prove now that

$$\mathbf{x}_{p} \in S(\mathbf{x}_{0}, r) \qquad (p = 1, 2, \cdots).$$
 (16)

For p = 1, (16) is guaranteed by (11). Assuming (16) is true for all subscripts $\leq p$, we prove it for: p + 1. Indeed,

$$\begin{aligned} \mathbf{x}_{p+1} - \mathbf{x}_{p} &= \mathbf{x}_{p} - \mathbf{x}_{p-1} - J^{+}(\mathbf{x}_{p}) \, \mathbf{f}(\mathbf{x}_{p}) + J^{+}(\mathbf{x}_{p-1}) \, \mathbf{f}(\mathbf{x}_{p-1}) \\ &= J^{+}(\mathbf{x}_{p-1}) \, J(\mathbf{x}_{p-1}) \, (\mathbf{x}_{p} - \mathbf{x}_{p-1}) - J^{+}(\mathbf{x}_{p}) \, \mathbf{f}(\mathbf{x}_{p}) + J^{+}(\mathbf{x}_{p-1}) \, \mathbf{f}(\mathbf{x}_{p-1}) \\ &= J^{+}(\mathbf{x}_{p-1}) \, [J(\mathbf{x}_{p-1}) \, (\mathbf{x}_{p} - \mathbf{x}_{p-1}) - \mathbf{f}(\mathbf{x}_{p}) + \mathbf{f}(\mathbf{x}_{p-1})] \\ &+ (J^{+}(\mathbf{x}_{p-1}) - J^{+}(\mathbf{x}_{p})) \, \mathbf{f}(\mathbf{x}_{p}), \quad (17) \end{aligned}$$

where

$$\mathbf{x}_{p} - \mathbf{x}_{p-1} = J^{+}(\mathbf{x}_{p-1}) J(\mathbf{x}_{p-1}) (\mathbf{x}_{p} - \mathbf{x}_{p-1})$$
(18)

follows from

$$\mathbf{x}_{p} - \mathbf{x}_{p-1} \in R(J^{+}(\mathbf{x}_{p-1})) = R(J^{*}(\mathbf{x}_{p-1}))$$

$$(19)$$

and A^+A being the perpendicular projection on $R(A^*)$ [14]. Setting $\mathbf{u} = \mathbf{x}_p$, $\mathbf{v} = \mathbf{x}_{p-1}$ in (8) and (9), we conclude from (17), (19), and the induction hypothesis that

$$\|\mathbf{x}_{p+1} - \mathbf{x}_{p}\| \leq (M \| J^{+}(\mathbf{x}_{p}) \| + N) \| \mathbf{x}_{p} - \mathbf{x}_{p-1} \|$$
(20)

and from (10)

$$\|\mathbf{x}_{p+1} - \mathbf{x}_p\| \leqslant k \|\mathbf{x}_p - \mathbf{x}_{p-1}\|, \qquad (21)$$

which implies

$$\|\mathbf{x}_{p+1} - \mathbf{x}_0\| \leq \sum_{j=1}^p k^j \|\mathbf{x}_1 - \mathbf{x}_0\| = \frac{k(1-k^p)}{(1-k)} \|\mathbf{x}_1 - \mathbf{x}_0\|$$
(22)

and, finally, with (11)

$$\|\mathbf{x}_{p+1} - \mathbf{x}_0\| \leq k(1-k^p) r < r,$$
 (23)

which proves (16).

Equation (21) proves indeed that the mapping g is a contraction in the sense:

$$\| \mathbf{g}(\mathbf{x}_{p}) - \mathbf{g}(\mathbf{x}_{p-1}) \| \leq k \| \mathbf{x}_{p} - \mathbf{x}_{p-1} \| < \| \mathbf{x}_{p} - \mathbf{x}_{p-1} \| \qquad (p = 1, 2, \cdots).$$
(24)

The sequence $\{\mathbf{x}_{p}\}$, $(p = 0, 1, \dots)$, converges therefore to a vector \mathbf{x}_{*} in $S(\mathbf{x}_{0}, r)$.

 \mathbf{x}_* is a solution of (13). Indeed,

$$\|\mathbf{x}_{*} - \mathbf{g}(\mathbf{x}_{*})\| \leq \|\mathbf{x}_{*} - \mathbf{x}_{p+1}\| + \|\mathbf{g}(\mathbf{x}_{p}) - \mathbf{g}(\mathbf{x}_{*})\|$$
$$\leq \|\mathbf{x}_{*} - \mathbf{x}_{p+1}\| + k \|\mathbf{x}_{p} - \mathbf{x}_{*}\|, \qquad (25)$$

where the right-hand side of (25) tends to zero as $p \rightarrow \infty$. But

$$\mathbf{x}_* = \mathbf{g}(\mathbf{x}_*) \tag{26}$$

is equivalent, by (14), to

$$J^{+}(\mathbf{x}_{*}) \mathbf{f}(\mathbf{x}_{*}) = \mathbf{0},$$
 (27)

which is equivalent to

$$J^*(\mathbf{x}_*) \mathbf{f}(\mathbf{x}_*) = \mathbf{0} \tag{28}$$

since $N(A^+) = N(A^*)$ for every $A \in E^{m \times n}$ [14]. Q.E.D.

REMARKS. (a) If m = n and the matrices $J(\mathbf{x}_p)$ are nonsingular, $(p = 0, 1, \dots)$, then (12) reduces to (4), which converges to a solution of (3). In this case (13) and (3) are indeed equivalent because $N(J^*(\mathbf{x}_*)) = \{\mathbf{0}\}$.

(b) From

$$J^*(\mathbf{x}) \mathbf{f}(\mathbf{x}) = \frac{1}{2} \operatorname{grad} \left(\sum_{i=1}^m f_i^2(\mathbf{x}) \right)$$
(29)

246

it follows that the limit \mathbf{x}_* of the sequence (12) is a stationary point of $\sum_{i=1}^m f_i^2(\mathbf{x})$, which by Theorem 1 exists in $S(\mathbf{x}_0, r)$, where (8)-(11) are satisfied. Even when (3) has a solution in $S(\mathbf{x}_0, r)$, the sequence (12) does not necessarily converge to it, but to a stationary point of $\sum_{i=1}^m f_i^2(\mathbf{x})$ which may be a least squares solution of (3), or a saddle point of the function $\sum_{i=1}^m f_i^2(\mathbf{x})$, etc.

DEFINITION. A point \mathbf{x} is an isolated point for the function f in the linear manifold L if there is a neighborhood U of \mathbf{x} such that

$$\mathbf{y} \in U \cap L, \qquad \mathbf{y} \neq \mathbf{x} \Rightarrow \mathbf{f}(y) \neq \mathbf{f}(\mathbf{x}).$$

THEOREM 2. Let the function $f: E^n \to E^m$ be in the class $C'(S(\mathbf{u}, \mathbf{r}))$. Then **u** is an isolated point for f in the linear manifold $\{\mathbf{u} + R(J^*(\mathbf{u}))\}$.

PROOF. Suppose the theorem is false. Then there is a sequence

$$\mathbf{x}_k \in S(\mathbf{u}, r) \cap \{\mathbf{u} + R(J^*(\mathbf{u}))\} \quad (k = 1, 2, \cdots)$$
(30)

such that

$$\mathbf{x}_k \rightarrow \mathbf{u}$$
 and $\mathbf{f}(\mathbf{x}_k) = \mathbf{f}(\mathbf{u})$ $(k = 1, 2, \cdots)$ (31)

From $f \in C'(S(\mathbf{u}, r))$ it follows that

$$\|\mathbf{f}(\mathbf{u}+\mathbf{z}_k)-\mathbf{f}(\mathbf{u})-J(\mathbf{u})\,\mathbf{z}_k\| \leq \delta(\|\mathbf{z}_k\|)\,\|\,\mathbf{z}_k\|$$
(32)

where,

$$\mathbf{x}_k = \mathbf{u} + \mathbf{z}_k \qquad (k = 1, 2, \cdots) \tag{33}$$

and

$$\delta(t) \to 0$$
 as $t \to 0$. (34)

Combining (31) and (32) it follows that

$$\left\| f(\mathbf{u}) \frac{\mathbf{z}_{k}}{\|\mathbf{z}_{k}\|} \right\| \leq \delta(\|\mathbf{z}_{k}\|).$$
(35)

The sequence $\{\mathbf{z}_k\}/||\mathbf{z}_k||$, $(k = 1, 2, \cdots)$, consists of unit vectors which by (30) and (33) lie in $R(J^*(\mathbf{u}))$, and by (35) and (34) converge to a vector in $N(J(\mathbf{u}))$, a contradiction. Q.E.D.

REMARKS (a) In case the linear manifold $\{\mathbf{u} + R(J^*(\mathbf{u}))\}\$ is the whole space E^n , (i.e., $N(J(\mathbf{u})) = \{\mathbf{0}\}$, i.e., the columns of $J(\mathbf{u})$ are linearly independent), Theorem 2 is due to Rodnyanskii [15] and was extended to Banach spaces by S. Kurepa [16], whose idea is used in our proof.

(b) Using Theorem 2, the following can be said about the solution \mathbf{x}_* of (13), obtained by (12):

COROLLARY. The limit \mathbf{x}_* of the sequence (12) is an isolated zero for the function $J^*(\mathbf{x}_*) \mathbf{f}(\mathbf{x})$ in the linear manifold $\{\mathbf{x}_* + R(J^*(\mathbf{x}_*))\}$, unless $J(\mathbf{x}_*) = \mathbf{0}$ the zero matrix.

PROOF. \mathbf{x}_* is in the interior of $S(\mathbf{x}_0, r)$, therefore $f \in C'(S(\mathbf{x}_*, r_*))$ for some $r_* > 0$. Assuming the corollary to be false it follows, as in (35), that

$$\left\| J^{*}(\mathbf{x}_{*}) J(\mathbf{x}_{*}) \frac{\mathbf{z}_{k}}{\|\mathbf{z}_{k}\|} \right\| \leq \delta(\|\mathbf{z}_{k}\|) \| J^{*}(\mathbf{x}_{*}) \|, \qquad (36)$$

where $\mathbf{u}_k = \mathbf{x}_* + \mathbf{z}_k$, $(k = 1, 2, \dots)$, is a sequence in $\{\mathbf{x}_* + R(J^*(\mathbf{x}_*))\}$ converging to \mathbf{x}_* and such that

$$\mathbf{0} = J^*(\mathbf{x}_*) \mathbf{f}(\mathbf{x}_*) = J^*(\mathbf{x}_*) \mathbf{f}(\mathbf{u}_k).$$

Excluding the trivial case: $J(\mathbf{x}_*) = 0$ (see remark below), it follows that $\{\mathbf{z}_k | \| \mathbf{z}_k \| \}$, $(k = 1, 2, \dots)$, is a sequence of unit vectors in $R(J^*(\mathbf{x}_*))$, which by (36) converges to a vector in $N(J^*(\mathbf{x}_*) J(\mathbf{x}_*)) = N(J(\mathbf{x}_*))$, a contradiction. Q.E.D.

REMARK: The definition of an isolated point is vacuous if the linear manifold L is zero-dimensional. Thus if $J(\mathbf{x}_*) = 0$, then $R(J^*(\mathbf{x}_*)) = \{0\}$ and every $\mathbf{x} \in E^n$ is a zero of $J^*(\mathbf{x}_*) f(\mathbf{x})$.

EXAMPLES

The following examples were solved by the iterative method:

$$\mathbf{x}_{p\alpha+k+1} = \mathbf{x}_{p\alpha+k} - J^{+}(\mathbf{x}_{p\alpha}) \mathbf{f}(\mathbf{x}_{p\alpha+k}), \tag{37}$$

where $\alpha \ge 0$ is an integer

$$k = \begin{cases} 0, 1, \dots, \alpha - 1 & \text{if } \alpha > 0 \\ 0, 1, \dots & \text{if } \alpha = 0 \end{cases}$$

and

$$p=0,1,\cdots$$

For $\alpha = 1$: (37) reduces to (12), $\alpha = 0$ yields the modified Newton method of [17], and for $\alpha \ge 2$: α is the number of iterations with the modified method [17], (with the Jacobian $J(\mathbf{x}_{p\alpha})$, $p = 0, 1, \cdots$), between successive computations of the Jacobian $J(\mathbf{x}_{p\alpha})$ and its generalized inverse. In all the examples worked out, convergence (up to the desired accuracy) required the smallest number of iterations for $\alpha = 1$; but often for higher values of α less computations (and time) were required on account of computing J and J^+ only once in α iterations. The computations were carried out on Philco 2000. The method of [18] was used in the subroutine of computing the generalized inverse J^+ .

EXAMPLE 1. The system of equations is

$$\mathbf{f}(\mathbf{x}) = \begin{cases} f_1(x_1, x_2) = x_1^2 + x_2^2 - 2 = 0\\ f_2(x_1, x_2) = x_1 - x_2 = 0\\ f_3(x_1, x_2) = x_1x_2 - 1 = 0. \end{cases}$$

Equation (13) is

$$J^{*}(\mathbf{x}) \mathbf{f}(\mathbf{x}) = \begin{cases} 2x_{1}^{3} + 3x_{1}x_{2}^{2} - 3x_{1} - 2x_{2} = 0\\ 2x_{2}^{3} + 3x_{1}^{2}x_{2} - 2x_{1} - 3x_{2} = 0, \end{cases}$$

whose solutions are (0, 0) a saddle point of $\sum f_i^2(\mathbf{x})$ and (1, 1), (-1, -1) the solutions of $\mathbf{f}(\mathbf{x}) = \mathbf{0}$. In applying (37), derivatives were replaced by differences with $\Delta x = 0.001$.

Some results are

 $p\alpha + k$ 0 1 · 2 3 3.000000 1.578143 1.287151 1.155602 $\mathbf{X}_{p_{\alpha}+k}$ 1.199107 2.000000 1.355469 1.118148 $f(\mathbf{x}_{p_{\alpha+k}})$ 11.00000 2.327834 1.094615 0.585672 0.037454 1.00000 0.222674 0.088044 5.00000 1.139125 0.543432 0.292134 Σf_i^2 147.0000 6.766002 1.501252 0.429757 7 $p\alpha + k$ 4 5 6 1.008390 1.000981 1.000118 1.000000 $\mathbf{x}_{p_{\alpha}+k}$ 1.008365 1.000118 1.000000 1.000980 $\mathbf{f}(x_{p_{\alpha}+k})$ 0.033649 0.003924 0.000472 0.000000 0.000025 0.000000 0.000000 0.000000 0.001962 0.000000 0.016825 0.000236 Σf_i^2 0.001415 0.000019 0.000000 0.000000

Note the sharp improvement for each change of Jacobian (iterations: 1, 4, and 7).

 $\alpha = 3$

$p\alpha + k$	0	5	6	8	9
$\mathbf{x}_{p_{\alpha}+k}$	3.000000	1.050657	1.001078	1.000002	1.000000
	2.000000	1.043431	1.001078	1.000002	1.000000
$\mathbf{f}(\mathbf{x}_{p_{\alpha}+k})$	11.00000	0.192630	0.004315	0.000009	0.000000
	1.00000	0.007226	0.000000	0.000000	0.000000
	5.00000	0.096289	0.002157	0.000004	0.000000
Σf_i^2	147.0000	0.046430	0.000023	0.000000	0.000000

 $\alpha = 5$

The Jacobian and its generalized inverse were twice calculated (iterations 1, 6), whereas for $\alpha = 3$ they were calculated 3 times.

$\alpha = 10$

$p\alpha + k$	0	10	11	12
$\mathbf{x}_{p_{\alpha+k}}$	3.0	1.003686	1.000008	1.000000
-	2.0	1.003559	1.000008	1.000000
$\mathbf{f}(\mathbf{x}_{p_{\alpha}+k})$	11.0	0.014516	0.000032	0.000000
-	1.0	0.000128	0.000000	0.000000
	5.0	0.007258	0.000016	0.000000
Σf_i^2	147.0	0.000263	0.000000	0.000000

Example 2.

$$\mathbf{f}(\mathbf{x}) = \begin{cases} f_1(x_1, x_2) = x_1^2 + x_2^2 - 2 = 0\\ f_2(x_1, x_2) = (x_1 - 2)^2 + x_2^2 - 2 = 0\\ f_3(x_1, x_2) = (x_1 - 1)^2 + x_2^2 - 9 = 0. \end{cases}$$

This is an inconsistent system of equations, whose least squares solutions are (1.000000, 1.914854) and (1.000000, -1.914854). Applying (37) with $\alpha = 1$ and exact derivatives, resulted in the sequence:

Þ	0	1	2	3
X _p	10.00000			
	20.00000	12.116667	6.209640	3.400059
$f(\mathbf{x}_p)$	498.0000	145.8136	37.55963	10.56041
	462.0000	145.8136	37.55963	10.56041
	472.0000	137.8136	29.55963	25.60407
$\sum f_i^2(x_p)$	684232.0	61515.80	3695.223	229.60009
Þ	4	5	6	7
Xp	1.000000	1.000000	1.000000	1.000000
	2.239236	1.938349	1.914996	1.914854
$\mathbf{f}(\mathbf{x}_p)$	4.014178	2.757199	2.667212	2.666667
	4.014178	2.757199	2.667212	2.666667
	-3.985822	-5.242801	-5.332788	-5.333333
$\Sigma f_i^2(\mathbf{x}_p)$	48.114030	42.691255	42.666667	42.666667

Example 3.

$$\mathbf{f}(\mathbf{x}) = \begin{cases} f_1(x_1, x_2) = x_1 + x_2 - 10 = 0\\ f_2(x_1, x_2) = x_1 x_2 - 16 = 0. \end{cases}$$

The solutions of this system are (2,8) and (8,2). However, applying (12) with an initial \mathbf{x}_0 on the line: $x_1 = x_2$, results in the whole sequence being on the same line. Indeed,

$$J(\mathbf{x}_1, \mathbf{x}_2) = \begin{pmatrix} 1 & 1 \\ \mathbf{x}_2 & \mathbf{x}_1 \end{pmatrix} \text{ so that for } \mathbf{x}_0 = \begin{pmatrix} a \\ a \end{pmatrix}$$
$$J(\mathbf{x}_0) = \begin{pmatrix} 1 & 1 \\ a & a \end{pmatrix}, \qquad J^+(\mathbf{x}_0) = \frac{1}{2(1+a^2)} \begin{pmatrix} 1 & a \\ 1 & a \end{pmatrix},$$

and consequently \mathbf{x}_1 is also on the line: $x_1 = x_2$. Thus confined to: $x_1 = x_2$, the sequence (12) will, depending on the choice of \mathbf{x}_0 , converge to either (4.057646, 4.057646) or (-3.313982, -3.313982). These are the 2 least squares solutions on the line: $x_1 = x_2$.

Acknowledgment

The author gratefully acknowledges the computing facilities made available to him by the SWOPE Foundation.

References

- 1. A. S. HOUSEHOLDER. "Principles of Numerical Analysis," McGraw-Hill, 1953.
- 2. A. M. OSTROWSKI. "Solution of Equations and Systems of Equations," Academic Press, New York, 1960.
- 3. R. BELLMAN AND R. KALABA. "Quasilinearization and Nonlinear Boundary-Value Problems." American Elsevier, New York ,1965.
- 4. T. H. HILDEBRANDT AND L. M. GRAVES. Implicit functions and their differentials in general analysis. *Trans. Amer. Math. Soc.* 29 (1927), 127-153.
- L. V. KANTOROVIČ. On Newton's method for functional equations. Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 1237-1240; (Math. Rev. 9-537), 1948.
- L. V. KANTOROVIČ. Functional analysis and applied mathematics. Uspehi Mat. Nauk (N.S.) 3, No. 6 (28), (1948), 89-185 (Math. Rev. 10-380), 1949.
- L. V. KANTOROVIČ. On Newton's method. Trudy Mat. Inst. Steklov. 28 (1949), 104-144 (Math. Rev. 12-419), 1951.
- M. ALTMAN. A generalization of Newton's method. Bull. Acad. Polon. Sci. (1955), 189-193.
- 9. M. L. STEIN. Sufficient conditions for the convergence of Newton's method in complex Banach spaces. Proc. Amer. Math. Soc. 3 (1952), 858-863.
- R. G. BARTLE. Newton's method in Banach spaces. Proc. Amer. Math. Soc. 6 (1955), 827-831.
- J. SCHRÖDER. Über das Nøwtonsche Verfahren. Arch. Rat. Mech. Anal. 1 (1957), 154-180.
- 12. A. S. HOUSEHOLDER. "Theory of Matrices in Numerical Analysis." Blaisdell, 1964.
- R. PENROSE. A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51 (1955), 406-413.
- A. BEN-ISRAEL AND A. CHARNES. Contributions to the theory of generalized inverses. J. Soc. Indust. Appl. Math. 11 (1963), 667-699.
- A. M. RODNYANSKII. On continuous and differentiable mappings of open sets of Euclidean space. Mat. Sb. (N.S.) 42 (84), (1957), 179-196.
- S. KUREPA. Remark on the (F)-differentiable functions in Banach spaces" Glasnik Mat.-Fiz. Astronom. Ser. II 14 (1959), 213-217; (Math. Rev. 24-A1030), 1962.
- A. BEN-ISRAEL. A modified Newton-Raphson method for the solution of systems of equations. Israel J. Math. 3 (1965), 94-98.
- A. BEN-ISRAEL AND S. J. WERSAN. An elimination method for computing the generalized inverse of an arbitrary complex matrix. J. Assoc. Comp. Mach. 10 (1963), 532-537.