JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 15, 243-252 (1966)

A Newton-Raphson Method for the Solution of
Systems of Equations

ADI BEN-ISRAEL

Technion-Israel Institute of Technology and Northwestern University*

Submitted by Richard Bellman

INTRODUCTION

The Newton-Raphson method for solving an equation

fl®) =0 (1)
is based upon the convergence, under suitable conditions [1, 2], of the
sequence

_ ., S —
xr+1 - xﬂ f’(xp) (P - 0’ 1’ 2» ) (2)

to a solution of (1), where x, is an approximate solution. A detailed discussion
of the method, together with many applications, can be found in [3].
Extensions to systems of equations

fl(xl %) =0
or fx)=0 3
fm(xl » "t xn) =0

are immediate in case: m = n, [1], where the analog of (2) is:?

Xp1 =X, — J7U(%,) f(x,) (=0,1,-). C)]

Extensions and applications in Banach spaces were given by Hildebrandt
and Graves [4], Kantorovi& [5-7], Altman [8], Stein [9], Bartle [10], Schréder
[11] and others. In these works the Frechet derivative replaces J(x) in (4),
yet nonsingularity is assumed throughout the iterations,

* Part of the research underlying this report was undertaken for the Office of Naval
Research, Contract Nonr-1228(10), Project NR 047-021, and for the U.S. Army
Research Office-Durham, Contract No. DA-31-124-AR0O-D-322 at Northwestern
University. Reproduction of this paper in whole or in part is permitted for any pur-
pose of the United States Government.

1 See section on notations below.
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The modified Newton-Raphson method
X =X, — [ %) f(x,)  (p=0,1,-") )

was extended in [17] to the case of singular J(x,), and conditions were given
for the sequence

Xpn = X, — JH(x) f(x,) (p=0,1,-) (6)
to converge to a solution of
J¥(%0) f(x) = 0. ™

In this paper the method (4) is likewise extended to the case of singular
J(x,), and the resulting sequence (12) is shown to converge to a stationary
point of X7, f3(x).

NOTATIONS

Let E* denote the k-dimensional (complex) vector space of vectors x,
with the Euclidean norm | x || = (%, x)}/2. Let E™* denote the space of
m X n complex matrices with the norm

| 4 || = max {V/A: A an eigenvalue of A*4},

A* being the conjugate transpose of 4.

These norms satisfy [12]:

lA4Ax | <4 lx| for every x € En, A e Emxn,

Let R(A4), N(A) denote the range resp. null space of A, and A+ the generalized
inverse of 4, [13].

Forue E* and r > 0 let

S(u,r)={xcE:|x—ul| <r}

denote the open ball of radius r around u.

The components of a function f: E» — E™ are denoted by fi(x), ( =1,
--+, m). The Jacobian of f at x € E™ is the m X n matrix

=), (247

For an open set S C E”, the function f : E® — E™ is in the class C'(S) if the
mapping E” — E™*" given by x — J(x) is continuous for every x € S [4].
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ResuLTs

Tueorem 1. Let f: E* — E™ be a function, X, a point in E*, andr >0
be such that f € C'(S(x, , 7).

Let M, N be positive constants such that for all u, v in S(x,,r) with
u — v e R(J*(v)):

| J¥)(u—v) —f(u) + @) | < M|u —v]| (3)
I (JH(v) — JHu) fu) [ < N [lu — v | ®
and
M| JH@) |+ N=k<1 forall xe€S(x,,7) (10)
| JH=o) | | £(xo) I| < (1 — &) 7. (11)

Then the sequence
Xpp =X, — JH(x,) £(x,) (»=0,1,-) (12)

converges to a solution of
J¥x) f(x) =0 (13)
which lies in S(xq, 7).

Proor. Let the mapping g : E» — E" be defined by

g(x) =x — JHx) f(x). (14)
Equation (12) now becomes:
Xpn = &(Xyp) (»=0,1, '") (15)
We prove now that
x,€8@F,,7) (=12 ). (16)

For p =1, (16) is guaranteed by (11). Assuming (16) is true for all sub-
scripts < p, we prove it for: p 4+ 1. Indeed,

Xpi1 — Xp = Xp — Xpy — JH(R) £(x,) + JH(x,1) £(Zp-1)
= JH(Xp-1) J(Rp-1) (Xp — Xp1) — JH(x,) £(xp) + JH (1) £(xp1)
= JH(®p-1) [J(Xp-1) (Bp — %p1) — £(x,) + £(x,-1)]
+ (F(®pm) — ) (x,),  (17)

Xp — Xpo1 = JH(%pa) J(Xpa) (%p — Xpa) (18)

where

follows from

X, — %51 € R(JH(Xp1)) = R(J*(%5-1)) (19)
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and A% A being the perpendicular projection on R(A4*) [14]. Settingu = x,,,
v =X, in (8) and (9), we conclude from (17), (19), and the induction
hypothesis that

1 %pi1 — %5 [| (M| JHE) |+ N) 1% — %54 || (20)

and from (10)
H Xp1 — Xp ‘ k “ Xp —Xpy H ’ (21)
which implies

o =0 1 < 28 3, - xonzk((—;},’:)i)nxl—xon (22)

and, finally, with (11)
[ Bpsr — %o | S R(1 —~P)r <7, (23)

which proves (16).
Equation (21) proves indeed that the mapping g is a contraction in the sense:

[ 8(%5) — 8Epa) | SklI%y —%Xpq | <IBp —Xp || (r=12,-)
(24)

The sequence {x,}, (p =0, 1, ---), converges therefore to a vector x, in
S(x,, 7).
X Is a solution of (13). Indeed,

[y — (%) | < xpe — Xpia [| + [ 8(%p) — g(x4) |l
S xp —Xppa [ HEIX, — X ], (25)

where the right-hand side of (25) tends to zero as p — co. But

Xy = g(Xy) (26)
is equivalent, by (14), to
JH(=xy) f(x4) = 0, (27)
which is equivalent to
JH (x4 f(x4) = 0 (28)
since N(A4+) = N(4*) for every A e Em*» (14]. Q.ED

Remarks. (a) If m ==n and the matrices J(x,) are nonsingular,
(p =0, 1, --), then (12) reduces to (4), which converges to a solution of (3).
In this case (13) and (3) are indeed equivalent because N(J*(x)) == {0}.

(b) From

JH(x) £(x) = - grad (fo(x)) (29)



A NEWTON-RAPHSON METHOD 247

it follows that the limit x, of the sequence (12) is a stationary point of
o 1f:4(x), which by Theorem 1 exists in S(x, , 7), where (8)-(11) are satis-
fied. Even when (3) has a solution in S(x,, 7), the sequence (12) does not

necessarily converge to it, but to a stationary point of >'7*; f;¥(x) which may

be a least squares solution of (3), or a saddle point of the function }_7*, £;4(x),
etc.

DEerFINITION. A point x is an zsolated point for the function f in the linear
manifold L if there is a neighborhood U of x such that
vyeUNL, y#x-=1)+#1(z).
THEOREM 2. Let the function f : E® — E™ be in the class C'(S(u, r)). Then
u is an isolated point for f in the linear manifold {u + R(J*(u))}.
ProoF. Suppose the theorem is false. Then there is a sequence

X, €80, 7r) N{u+ R(J*w)} (k=12 (30)
such that
x,—~>u and f(x)=fu) (k=1,2,) (31)

From fe C'(S(u, r)) it follows that

1 £(u + z) — £(u) — J(u) 2z [} < 8(1| 22 1) |} 2 | (32)
where,
X = U+ Z k=12, 33)
and
8()—0 as t—0. (34)

Combining (31) and (32) it follows that

| g 2 < 8 1 (35)

The sequence {z}/|| z ||, (¢ = 1, 2, *+-), consists of unit vectors which by (30)
and (33) lie in R(J*(u)), and by (35) and (34) converge to a vector in N(J(u)),
a contradiction. Q.E.D.

Remarks (a) In case the linear manifold {u + R(J*(u))} is the whole
space E7, (i.e., N(J(u)) = {0}, i.e., the columns of J(u) are linearly inde-
pendent), Theorem 2 is due to Rodnyanskii [15] and was extended to Banach
spaces by S. Kurepa [16], whose idea is used in our proof.

(b) Using Theorem 2, the following can be said about the solution x,
of (13), obtained by (12):
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CoROLLARY. The limit X, of the sequence (12) is an isolated zero for the
Junction [¥(x ) f(x) in the linear manifold {x, - R(J*(x )}, unless J(x,) =0
o i x1713 JAEXS

the zero matrix.

ProoF. x, is in the interior of S(xq,r), therefore f e C'(S(x4, r,)) for
some 74 > 0. Assuming the corollary to be false it follows, as in (35), that

(34)
Y

where u, =x, +2,, (k=1,2, ), is a sequence in {X4 -+ R(J*(x4))}
converging to x4 and such that

0 = J¥(x4) f(x4) = J*(x4) f(uz)-

Excluding the trivial case: J(x,) =0 (see remark below), it follows that
{z/ll 2 I}, (R =1, 2, --+), is a sequence of unit vectors in R(J*(x,)), which
by (36) converges to a vector in N(J*(x,) J(x4)) = N(J(x«)), a contradic-
tion. Q.ED.

Remark: The definition of an isolated point is vacuous if the linear
manifold L is zero-dimensional. Thus if J(x,) =0, then R(J*(x,)) = {0}
and every x € E™ is a zero of [J*(x,) f(x).

ExaMPLES

The following examples were solved by the iterative method:

Xpattl = Xpatr J +(xaza) f(Xpor)s (37
where o 2> 0 is an integer

0,1, a—1 if o>0

k=o,1,... if  a=0

and

p :0’ 1, vee

For o = 1: (37) reduces to (12), « = 0 yields the modified Newton method
of [17], and for a == 2 : «a is the number of iterations with the modified method
[17], (with the Jacobian [(x,,), p =0, 1, --*), between successive computa-
tions of the Jacobian J(x,,) and its generalized inverse. In all the examples
worked out, convergence (up to the desired accuracy) required the smallest
number of iterations for « = 1; but often for higher values of « less computa-
tions (and time) were required on account of computing J and J+ only
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once in « iterations. The computations were carried out on Philco 2000. The
method of [18] was used in the subroutine of computing the generalized
inverse J*.

ExampLE 1. The system of equations is

Jolwey  x) =22 + %2 —2=0
f(x) = fz(x1 s xz) =X; — Xg = 0
f3(x1 ’ xz) = XXy — 1=0.
Equation (13) is
2x,3 4+ 3xyx,2 — 33y — 23, = 0
* _ 1 142 1 2
JHx) f(x) = 2,3 + 32,26, — 2%, — 3%, =0,

whose solutions are (0, 0) a saddle point of )" f}(x)and (1, 1), (— 1, — 1)
the solutions of f(x) = 0. In applying (37), derivatives were replaced by
differences with 4x = 0.001.

Some results are

a=23
\

ptk 0 1 -2 3
Ko f 3.000000 1.578143 1.287151 1.155602
| 2.000000 1.355469 1.199107 1.118148
£(%p01) 11.00000 2.327834 1.094615 0.585672
1.00000 0.222674 0.088044 0.037454
5.00000 1.139125 0.543432 0.292134
T fe 147.0000 6.766002 1.501252 0.429757

pa+k 4 5 6 7
Xyt 1.008390 1.000981 1.000118 1.000000
1.008365 1.000980 1.000118 1.000000
£(2p0x) 0.033649 0.003924 0.000472 0.000000
0.000025 0.000000 0.000000 0.000000
0.016825 0.001962 0.000236 0.000000
iz 0.001415 0.000019 0.000000 0.000000

Note the sharp improvement for each change of Jacobian (iterations:
1, 4, and 7).
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pa + k 0 5 | 6 8 ; 9

Xperr | 3.000000 1.050657 1.001078! 1.000002 1.000000
2.000000 1.043431 1.001078| 1.000002 | 1.000000

£(xporn) 11.00000 0.192630 0.004315 0.000009 | 0.000000
1.00000 0.007226 0.000000 0.000000 : 0.000000
5.00000 0.096289 | 0.002157 0.000004 | 0.000000

X f? 147.0000 0.046430 0.000023 0.000000 0.000000

The Jacobian and its generalized inverse were twice calculated (iterations 1,
6), whereas for « = 3 they were calculated 3 times.

a =10

pa -+ k 0 10 1 12
Xpo ik 3.0 1.003686 1.000008 1.000000
2.0 1.003559 1.000008 1.000000
f(%py k) 11.0 0.014516 0.000032 0.000000
1.0 0.000128 0.000000 0.000000
5.0 0.007258 0.000016 0.000000
ZfeE 147.0 0.000263 0.000000 0.000000

ExamprLE 2.
fl(xlaxz) =x12 +x22 —2=0
f(x) = { falwy, @) = (2, — 202+ %2 —2=0
f3(x1 ’ xz) = (xl - 1)2 +x2—9=0.

This is an inconsistent system of equations, whose least squares solutions are
(1.000000, 1.914854) and (1.000000, — 1.914854). Applying (37) with « = 1

and exact derivatives, resulted in the sequence:



A NEWTON-RAPHSON METHOD

251

P 0 1 2 3
X, 10.00000 1.000000 1.000000 1.000000
20.00000 12.116667 6.209640 3.400059
f(x,) 498.0000 145.8136 37.55963 10.56041
462.0000 145.8136 37.55963 10.56041
472.0000 137.8136 29.55963 25.60407
Z fi(x,) 684232.0 61515.80 3695.223 229.60009
? 4 5 6 7
X, 1.000000 1.000000 1.000000 1.000000
2.239236 1.938349 1.914996 1.914854
f(x,) 4.014178 2.757199 2.667212 2.666667
4.014178 2.757199 2.667212 2.666667
—3.985822 —5.242801 —5.332788 —5.333333
2 fA(x,) 48.114030 42.691255 42.666667 42.666667
ExamrpLE 3.

_ (flxe, ) =2 2, —10=0
830 = Uyl » 29) = s, — 16 =00
The solutions of this system are (2,8) and (8,2). However, applying (12) with
an initial x, on the line: x; = x,, results in the whole sequence being on the
same line. Indeed,

J(xy, x5) = (3162 xll) so that for X, = (Z)

Je =y o) Fe =5 (o)

and consequently x, is also on the line: x;, == x, . Thus confined to: x; = x,,
the sequence (12) will, depending on the choice of x,, converge to either
(4.057646, 4.057646) or (— 3.313982, — 3.313982). These are the 2 least
squares solutions on the line: %, = x, .

409/15/2-6



252 BEN-ISRAEL

ACKNOWLEDGMENT

The author gratefully acknowledges the computing facilities made available to him
by the SWOPE Foundation.

REFERENCES

—

. A. S. HouseHOLDER. “Principles of Numerical Analysts,”” McGraw-Hill, 1953.
. A. M. OstrOowsKI. ‘‘Solution of Equations and Systems of Equations,”” Academic
Press, New York, 1960.
3. R. BeLLmawn AND R. KarLaBa, “Quasilinearization and Nonlinear Boundary-Value
Problems.” American Elsevier, New York ,1965.
4, T. H. HiLpeBranDT anD L. M. Graves. Implicit functions and their differentials
in general analysis. Trans. Amer. Math. Soc. 29 (1927), 127-153.
5. L. V. KanTorovi¢. On Newton’s method for functional equations. Dokl. Akad.
Nauk SSSR (N.S.) 59 (1948), 1237-1240; (Math. Rev. 9-537), 1948.
6. L. V. KanTorovi¢. Functional analysis and applied mathematics. Uspehi Mat.
Nauk (N.S.) 3, No. 6 (28), (1948), 89-185 (Math. Rev. 10-380), 1949.
7. L. V. KanTorovi¢. On Newton’s method. Trudy Mat. Inst. Steklov. 28 (1949),
104-144 (Math. Rev. 12-419), 1951.
8. M. ArLTmAN. A generalization of Newton’s method. Bull. Acad. Polon. Sci.
(1955), 189-193.
9, M. L. StEeIN. Sufficient conditions for the convergence of Newton’s method in
complex Banach spaces. Proc. Amer. Math. Soc. 3 (1952), 858-863.
10. R. G. BarrtLE. Newton’s method in Banach spaces. Proc. Amer. Math. Soc. 6
(1955), 827-831.
11. J. ScHRODER. Uber das Newtonsche Verfahren. Arch. Rat. Mech. Anal. 1 (1957),
154-180.
12. A.S. HousenoLpER. ““Theory of Matrices in Numerical Analysis.”” Blaisdell, 1964.
13. R. PENROSE. A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51
(1955), 406-413.
14. A. Ben-IsraeL AND A. CHARNEs. Contributions to the theory of generalized inver-
ses. ¥. Soc. Indust. Appl. Math. 11 (1963), 667-699.
15. A. M. Ropnvanskil. On continuous and differentiable mappings of open sets of
Euclidean space. Mat. Sb. (N.S.) 42 (84), (1957), 179-196.
16. S. Kurepa. Remark on the (F)-differentiable functions in Banach spaces’ Glasnik
Mat.-Fiz. Astronom. Ser. II 14 (1959), 213-217; (Math. Rev. 24-A1030), 1962.
17. A. Ben-IsraEL. A modified Newton-Raphson method for the solution of systems
of equations. Israel ¥. Math. 3 (1965), 94-98.
18. A. BEN-ISRAEL AND S. J. WERsAN. An elimination method for computing the gene-
ralized inverse of an arbitrary complex matrix. J. Assoc. Comp. Mach. 10 (1963),
532-537.

[



