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Acutely transforming retrovirus AKT8 in rodent T-cell lymphoma (Akt) is a serine/threonine kinase that plays
important roles in survival, cell-cycle progression, and cell proliferation, and has recently been implicated in
collagen regulation. The aim of this study was to determine the role of Akt in collagen deposition by normal
dermal fibroblasts, and to determine the sensitivity of cultured systemic sclerosis (SSc) fibroblasts to Akt
inhibition. We show that blockade of Akt using pharmacological inhibitors, small interfering RNA (siRNA), and a
dominant-negative Akt mutant led to inhibition of the basal type I collagen production. Furthermore, inhibition
of Akt upregulated basal matrix metalloproteinase 1 (MMP1) production and reversed the inhibitory effect of
transforming growth factor-b (TGF-b) on MMP1 gene expression. In addition, SSc fibroblasts were more
sensitive to Akt inhibition, with respect to collagen and MMP1 production. These findings suggest that in
human dermal fibroblasts, Akt has dual profibrotic effects, increasing collagen synthesis and decreasing its
degradation via downregulation of MMP1. Akt could directly contribute to elevated collagen in SSc fibroblasts
and it may represent an attractive target for therapy of SSc fibrosis.
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INTRODUCTION
Akt is a key enzyme in signal transduction pathways involved
in cell survival, glycogen synthesis, cell-cycle progression,
angiogenesis, and migration (Kim and Chung, 2002; Hen-
nessy et al., 2005). The three Akt isoforms (Akt1/PKBa, Akt2/
PKBb, and Akt3/PKBg) are ubiquitously expressed and to
some extent have overlapping functions. Akt is activated
downstream of phosphatidylinositol 3-kinase (PI3K) by
growth factors, stimulators of G-protein-coupled receptors,
and integrins (Kim and Chung, 2002). Following PI3K
activation, Akt is recruited at the plasma membrane via
binding of phosphoinositol lipids to the Akt pleckstrin
homology domain. At the membrane, Akt is activated
by phosphorylation on two different residues, Thr 378 by

the phosphoinositol-dependent kinase–phosphoinositide-
dependent kinase 11, and Ser 473 by the mTOR/rictor
complex (Sarbassov et al., 2005). Increasing evidence
suggests that Akt may play a role in fibrosis (Chen
et al., 2005; Krepinsky et al., 2005; Vittal et al., 2005; Wu
et al., 2007). Fibrosis is a complex process that involves
overproduction of collagen by activated fibroblasts.

Collagen type I, the main constituent of the extracellular
matrix, is a triple helix composed of two a-1 and one a-2
chains, the products of COL1A1 and COL1A2 genes
(Cutroneo, 2003). The expression of these genes is regulated
at multiple levels by numerous cytokines and transcription
factors. Increased production of collagen and other extra-
cellular matrix components is a characteristic feature of
systemic sclerosis (SSc) (Varga and Abraham, 2007). Despite
intense efforts, the signaling pathways that regulate collagen
synthesis in SSc fibroblasts are not fully defined (Jimenez and
Derk, 2004). A unique feature of SSc fibroblasts is the
maintenance of the activated phenotype for several passages
in culture. This makes cultured SSc fibroblasts a valuable
in vitro model to study SSc. The excessive collagen
accumulation in SSc fibroblasts is a result of increased
synthesis as well as decreased degradation rate. Published
data show that MMP1, an enzyme that is degrading fibrilar
collagen, is downregulated in SSC cells (Takeda et al., 1994)
and in response to transforming growth factor-b (TGF-b).

TGF-b is one of the most potent profibrotic cytokines and
the major factor involved in fibroblast activation during
chronic fibrosis. In most cell types, TGF-b regulates collagen
via the canonical Sma- and Mad-related protein (Smad)
pathway by binding to and activating specific type I and type
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II serine/threonine kinase receptors. This results in phosphor-
ylation and activation of Smad3 at the C-terminal SSXS motif,
followed by its nuclear translocation (Chen et al., 1999,
2000; Flanders, 2004). There is evidence that TGF-b-
dependent signaling plays a key role in SSc fibrosis. Elevated
levels of TGF-b receptors (Kawakami et al., 1998; Kubo et al.,
2002; Yamane et al., 2002; Pannu et al., 2004) and increased
phosphorylation and nuclear localization of Smad2 and 3
(Mori et al., 2003) were reported in SSc fibroblasts, suggesting
a role for the canonical pathway in SSc fibrosis. However,
blockade of the canonical Smad pathway using pharmaco-
logical inhibitors of TGF-b type I receptor (TGF-bRI)/ALK5
kinase failed to completely normalize the SSc phenotype
(Chen et al., 2006). In addition to Smads, TGF-b receptors
can induce parallel signaling pathways, which can either
regulate Smad signaling or lead to Smad-independent TGF-b
responses (Derynck and Zhang, 2003). Increasing evidence
suggests that Smad3-independent downstream effectors
could also be involved in TGF-b-mediated fibrosis (Wang
et al., 2005; Cho and Yoo, 2007; Pannu et al., 2007). TGF-b
increases Akt phosphorylation in dermal fibroblasts and Akt is
constitutively phosphorylated in SSc biopsies (Jun et al.,
2005), also suggesting a possible role for Akt activation in
collagen synthesis in SSc fibroblasts.

The aim of our study was to establish the role of Akt in type
I collagen production in human dermal fibroblasts and its
contribution to SSc fibrosis. Our data demonstrate that Akt is
a positive regulator of collagen gene expression and a
negative regulator of MMP1 synthesis in dermal fibroblasts.
Furthermore, our data show that SSc fibroblasts are more
sensitive to Akt inhibition.

RESULTS
Akt inhibition significantly decreases basal collagen levels in
human dermal fibroblasts

To test whether Akt regulates collagen synthesis, dermal
fibroblasts were treated with increasing doses of two different
pharmacological Akt inhibitors (VIII and II) and COL1A1 and
COL1A2 mRNA levels were measured by quantitative real-
time reverse transcriptase–PCR (RT–PCR) (qRT–PCR). Treat-
ment with Akt inhibitor VIII resulted in dose-dependent
inhibition of both chains of type I collagen (Figure 1a), as well
as collagen I protein levels (Figure 1b). Similar results were
obtained with Akt inhibitor II (Figure 1c). A time course of
collagen downregulation in the presence of Akt inhibitor VIII
is shown in Figure 1d. COL1A1mRNA levels were more
rapidly affected, with significant decrease at 12 hours, but
both chains showed similar decrease at 48 hours (B70%).
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Figure 1. Akt inhibition significantly decreases basal collagen levels in human dermal fibroblasts. (a) Normal dermal fibroblasts were incubated in the

presence of the indicated concentrations of inhibitor VIII or DMSO for 48 hours and mRNA levels of COL1A1 and COL1A2 were quantified by qRT–PCR.

(b) Normal dermal fibroblasts were incubated in the presence of the indicated concentrations of inhibitor VIII or DMSO for 48 hours and collagen protein

levels were analyzed by western blot; b-actin was used as control. (c) Normal dermal fibroblasts were incubated for 48 hours with the indicated concentrations

of inhibitor II or DMSO and mRNA levels were quantified by qRT–PCR. (d) Normal dermal fibroblasts were treated with 20 mM of inhibitor VIII; cells were

collected at the indicated time points and mRNA levels of COL1A1 and COL1A2 were quantified by qRT–PCR. For all the experiments, mRNA values were

normalized to control (1) and the means±SEM of at least three independent experiments are shown. *Po0.05; **Po0.01 versus control, DMSO treated cells.

(e) Effect of Akt on the human �772COL1A2/CAT promoter. Transient transfections of foreskin fibroblasts with either empty vector (pcDNA3.0-CMV),

dominant-negative Akt, or constitutively active Akt expression vectors were performed as described. Transfection efficiency was normalized using

pSV-b-galactosidase control vector. Graphs represent quantitation of at least three independent experiments±SEM, with values normalized to the activity

of the promoter co-transfected with the control, empty vector, which was arbitrarily set at 1.
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To further investigate Akt-dependent collagen regulation,
we examined the effects of Akt blockade on collagen gene
transcription. For these experiments, we co-transfected the
�772COL1A2/chloramphenicol acetyltransferase (CAT) col-
lagen promoter construct with plasmids overexpressing either
a constitutively active or a dominant-negative form of Akt
(Bellacosa et al., 1998). Transient overexpression of consti-
tutively active Akt increased COL1A2 promoter activity by
3.6-fold in a manner similar to TGFb, whereas overexpres-
sion of dominant-negative Akt reduced it by 4- and 4.6-fold
in the presence of TGFb, suggesting that the effect of Akt on
collagen is partially promoter mediated. However, at this
point we cannot exclude additional mechanisms, including
an increase in collagen mRNA stability, as previously
reported by Ricupero et al. (2001) for COL1A1. Taken
together, these results suggest that in human dermal
fibroblasts, Akt is involved in the regulation of basal collagen
synthesis.

Akt inhibition has no effect on TGF-b-stimulated collagen levels

There is evidence that Akt is activated downstream of TGF-b
in different experimental models, including dermal fibro-
blasts (Bakin et al., 2000; Kim et al., 2002; Runyan et al.,
2004; Jun et al., 2005). We observed that stimulation of cells
with TGF-b induced a prolonged increase in the levels of
phospho-Akt, which was evident within 5 minutes after
agonist treatment, reached a maximum at 2 hours, and
remained increased at 24 hours (Figure 2a). Pharmacological
inhibition of Akt efficiently abrogated both basal and TGF-b-
stimulated Akt phosphorylation (Figure 2b).

To examine whether Akt is involved in TGF-b upregulation
of collagen in dermal fibroblasts, the effects of Akt inhibitor
on TGF-b-induced collagen protein levels were examined by
western blot analyses. Treatment of cells with Akt inhibitor
VIII or II did not prevent the induction of collagen by TGF-b
(Figure 2c). The effect of inhibitor VIII on TGF-b-induced
collagen steady-state mRNA levels was next examined. As
shown before in Figure 1d, there was a marked down-
regulation in COL1A1 and COL1A2 basal mRNA levels, but
the magnitude of TGF-b stimulation was similar in the
presence or absence of the inhibitor (Figure 2d).

To determine whether Akt inhibition affects the Smad2/3
pathway, dermal fibroblasts were treated with increasing
amounts of Akt inhibitor VIII in the presence or absence of
TGF-b. Western blot analysis showed no effect of inhibitor on
either basal or TGF-b stimulated levels of phospho-Smad3
and Smad2 (Figure 2e), consistent with the lack of effect of
Akt on TGF-b-induced collagen synthesis. Taken together,
these data suggest that in healthy dermal fibroblasts, Akt is
not involved in the regulation of TGF-b-stimulated collagen
synthesis.

Akt inhibition upregulates basal MMP1 levels and reverses
TGF-b-induced inhibition of MMP1

Previous reports have shown that selected pharmacological
inhibitors affected both collagen and MMP1 production
(Fineschi et al., 2006; Poulalhon et al., 2006). Therefore, the
effects of Akt inhibition on the expression of MMP1 were next

studied. Dermal fibroblasts were treated with the Akt
inhibitor VIII and MMP1 protein and mRNA levels were
assessed by western blot and qRT–PCR. As shown in Figure 3a,
Akt inhibition upregulated basal and TGF-b-induced MMP1
protein levels. The time course of the effects of TGF-b on
MMP1 mRNA levels in the presence or absence of Akt
inhibitor VIII is shown in Figure 3b. Consistent with previous
findings (Edwards et al., 1987; Yuan and Varga, 2001; Yin
et al., 2003), TGF-b treatment downregulated MMP1 levels as
early as 3 hours, with significant decrease at 6 hours (50%).
Akt blockade resulted in a time-dependent increase in MMP1
mRNA levels, with threefold upregulation at 12 hours and
fourfold at 24 hours. Concomitant treatment with TGF-b and
Akt inhibitor VIII reversed the inhibitory effect of TGF-b on
MMP1, increasing the mRNA levels by 2.2-fold at 6 hours
and by 3.8-fold at 24 hours. Taken together, these results
suggest that Akt is a negative regulator of MMP1 gene
expression in human dermal fibroblasts, and that it is required
for the inhibitory effect of TGF-b.

Knockdown of Akt downregulates collagen and upregulates
MMP1

Because of the known off target effects of inhibitors, we
employed a second approach to block Akt. The three Akt
isoforms (Akt1, Akt2, and Akt3) are widely expressed and loss
of one isoform can be partially compensated by the others, as
demonstrated in animal models (Chen et al., 2001; Garofalo
et al., 2003; Yang et al., 2004; Tschopp et al., 2005;
Dummler et al., 2006). To block total Akt, specific small
interfering RNAs (siRNAs) against Akt1, Akt2, and Akt3 were
concomitantly transfected into cells. There was similar
inhibition efficiency for each isoform (80%), as assessed by
qRT–PCR. In a separate experiment, each siRNA alone
specifically downregulated its target gene, while having no
effect on the other two isoforms (data not shown).

Next, the effects of Akt inhibition on COL1A1, COL1A2,
and MMP1 mRNA levels were assessed by qRT–PCR.
Following Akt knockdown, both chains of collagen were
downregulated (50%) and MMP1 was upregulated (7 fold)
(Figure 4). These results confirm that the effects of Akt
inhibitors on collagen and MMP1 expression were specific.

Akt contributes to collagen upregulation in a TGF-bRI-based
model of scleroderma

An increased ratio of TGF-bRI/TGF-bRII is a characteristic of
SSc fibroblasts (Pannu et al., 2004). On the basis of this
observation, we established an in vitro model of SSc by
titration of an adenovirus expressing TGF-b type I receptor
(AdTGF-bRI) in dermal fibroblasts (Pannu et al., 2006).
Overexpression of TGF-bRI recapitulates the SSc phenotype,
resulting in an increase in collagen type I and other
profibrotic markers. We have demonstrated that in this
model, collagen upregulation is independent of Smad3
activation (Pannu et al., 2007). To determine if Akt is
activated in response to AdTGF-bRI overexpression, we
analyzed its phosphorylation status by western blot at
different time points after adenoviral transduction. Akt was
activated in a time-dependent manner, starting at 6 hours
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(and as early as 4.5 hours in a different experiment), and
remained activated for at least 24 hours, with no change in
the levels of total Akt (Figure 5a). As previously shown, the
increase in TGF-bRI protein levels correlated with an increase
in collagen production.

To determine if Akt is involved in collagen upregulation in
this model, we treated cells with inhibitor II (1mM) or VIII
(10 mM). At this dose, treatment with Akt inhibitor II for
24 hours had little or no effect on the basal collagen levels,
whereas completely preventing AdTGF-bRI-induced collagen
synthesis. Similarly, treatment with inhibitor VIII resulted in a
more efficient inhibition of collagen levels in cells over-
expressing TGF-bRI than in control cells (Figure 5b). These

data suggest that Akt is required for collagen upregulation in
this model.

Akt is involved in increased collagen synthesis by SSc fibroblasts

The effects of Akt inhibition were compared in SSc fibroblasts
versus normal controls. In a preliminary experiment, the
minimal dose of inhibitor VIII required for significant
inhibition of collagen in SSc was established as 10 mM for
24 hours. Under these experimental conditions, there was a
more pronounced downregulation of collagen protein levels
in SSc as compared with healthy fibroblasts. MMP1 protein
levels were also more sensitive to the effects of Akt inhibition
in SSc than in control fibroblasts (Figure 6a). Similar results
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Figure 2. The effect of Akt inhibition on TGFb-induced collagen gene expression. (a) Time-dependent phosphorylation of Akt in response to TGFb.

Serum-starved normal dermal fibroblasts were incubated in the presence of 2.5 ng ml�1 of TGFb for the indicated time points. Levels of phospho-Akt

(Ser473) were evaluated by western blot. The experiments were repeated two times, and representative data are shown. (b) Inhibition of basal and

TGFb-mediated Akt phosphorylation by Akt inhibitor VIII. Normal dermal fibroblasts were serum starved and treated with 20mM of Akt inhibitor VIII or

DMSO for 1 hour prior to stimulation with TGFb (2.5 ng ml�1) for 30 minutes. Phospho-Akt (Ser473) levels were evaluated by western blot. A longer

exposure did not detect any bands in the presence of inhibitor. The experiments were repeated three times, and representative data are shown. (c) Decrease

of basal and TGFb-stimulated collagen protein levels with Akt inhibitors VIII and II. Normal dermal fibroblasts were treated with Akt inhibitor VIII (20 mM),

II (5 mM) or DMSO for 1 hour prior to addition of 2.5 ng ml�1 TGFb as indicated, and then at 48 hours cells were collected and analyzed by western blot for

collagen. Representative data of three independent experiments are shown, with quantitative representation obtained by densitometric analysis. (d) The

effect of Akt inhibitor VIII on TGFb-stimulated COL1A1 and COL1A2 mRNA levels. Normal dermal fibroblasts were treated with 20mM of Akt inhibitor

VIII for 24 hours and then the mRNA levels were analyzed by qRT–PCR. mRNA values were normalized relative to control, DMSO-treated cells (arbitrarily

set as 1) and means±SEM of at least three independent experiments are shown. *Po0.05; **Po0.01 versus control, vehicle-treated cells. (e) Effects

of Akt blockade on basal and TGFb-stimulated phosphorylation of Smad2 and 3. Normal dermal fibroblasts were treated with different concentrations of the

inhibitor VIII or DMSO for 1 hour and then incubated with 2.5 ng ml�1 TGFb for additional 30 minutes. The levels of phospho-Smad2, phospho-Smad3,

and total Smad2/3 were analyzed by western blot. The experiments were repeated two times and representative data are shown.
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were obtained at the mRNA levels by qRT–PCR (Figure 6c).
Following Akt inhibition, SSc fibroblasts showed significant
decrease in the mRNA levels of COL1A1 and COL1A2 (66
and 40% respectively). A less pronounced inhibition was

achieved in normal fibroblasts for COL1A1 and COL1A2
(25 and 10%, respectively). The increase in MMP1
levels with the inhibitor was 2.4-fold for SSc and twofold
for healthy fibroblasts, but the differences were not
statistically significant.

Published data suggest that Akt activation is involved in
the increased myofibroblast transdifferentiation seen in SSc
(Laplante et al., 2005). There was a significant decrease
(45%) in a-smooth-muscle actin (a-SMA) mRNA levels in
response to Akt inhibitor in SSc fibroblasts (Figure 6c), further
confirming this hypothesis. Although levels of a-SMA in
healthy cells were also decreased (by 40%), the results were
not statistically significant (Figure 6c). Taken together, these
results suggest that with respect to profibrotic markers,
cultured SSc fibroblasts show increased sensitivity to Akt
inhibition.

DISCUSSION
This study examined the role of Akt in matrix regulation in
human dermal fibroblasts and its contribution to the SSc
phenotype. We show that Akt regulates collagen and MMP1
production in an opposite manner. Using several approaches,
including Akt inhibitors, Akt siRNA, and constitutively active
and dominant-negative Akt constructs, we demonstrated that
Akt upregulates collagen type I gene expression at the
protein, mRNA, and promoter level in human dermal
fibroblasts. By similar means we showed that MMP1 mRNA
and protein levels are negatively regulated by Akt. In
addition, we provide evidence that Akt signaling contributes
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to the fibrotic SSc phenotype and that SSc fibroblasts show
enhanced sensitivity to Akt blockade.

Akt is a central element in the PI3K/Akt network, and there
is increasing evidence that this pathway plays a role in
fibrosis. The importance of PI3K in collagen gene regulation
was previously demonstrated in human dermal fibroblasts
(Asano et al., 2004), lung fibroblasts (Ricupero et al., 2001),
hepatic stellate cells (Reif et al., 2003), and mesangial cells
(Runyan et al., 2004). In addition, multiple downstream
targets of PI3K have previously been linked to collagen
regulation, including Akt, mammalian target of rapamycin
(Shegogue and Trojanowska, 2004; Poulalhon et al., 2006),
PKC-d ((Jimenez et al., 2001), extracellular signal-regulated
kinase (Pannu et al., 2007), and pp70-ribosomal S6 kinase
(Gabele et al., 2005). In mesangial cells, Akt was required for
induction of collagen by mechanical stretch (Krepinsky et al.,
2005) and by high glucose levels (Wu et al., 2007). Akt is
constitutively phosphorylated in cells derived from fibrotic
areas in a mouse model of bleomycin-induced pulmonary
fibrosis (Vittal et al., 2005). In a recent study, analysis of skin

from Akt1�/� mice revealed an impaired matrix organiza-
tion with reduced amount of collagen and decreased density
of collagen fibrils, suggesting the contribution of this pathway
to collagen synthesis in vivo (Chen et al., 2005). Interestingly,
in a recent report, PI3K activation in response to TGF-b
resulted in independent activation of p21 (CDKN1A)-
activated kinase 2 and Akt in a fibroblast-specific manner
(Wilkes et al., 2005). p21 (CDKN1A)-activated kinase 2
activation in these cells was also shown to mediate the
activation of abelson tyrosine kinase (c-Abl) a target of the
antifibrotic drug imatinib (Wilkes and Leof, 2006). Although
the exact roles of Akt and c-Abl in fibrosis are not yet known,
the proposed model could explain distinct pathways through
which PI3K regulates collagen synthesis in fibroblasts.

TGF-b is a central mediator of collagen deposition and a
major player in SSc fibrosis. There is evidence that PI3K/Akt
can be activated downstream of TGF-b and a direct
interaction between the TGF-b receptor complex and PI3K
was also demonstrated (Wilkes et al., 2005; Yi et al., 2005).
Furthermore, a recent study has shown that in fibroblasts,
PI3K activation in response to TGF-b does not affect Smad2/3
phosphorylation, nuclear translocation and transcriptional
activity (Wilkes et al., 2005). In agreement with this, our data
show that in human dermal fibroblasts, Akt inhibition does
not affect Smad2/3 activation. Although at this point we
cannot exclude a PI3K/Akt-mediated regulation of Smad
phosphorylation in the linker region (Asano et al., 2004;
Runyan et al., 2004), this report confirms that TGF-bRI-
induced Smad phosphorylation is not dependent on Akt
activation. Although several previous studies reported that
PI3K is involved in TGF-b regulation of collagen gene
expression, in our study Akt blockade did not prevent TGF-b
induction of collagen, suggesting that the effects of TGF-b on
collagen are mediated through activation of distinct PI3K
effectors. Thus, while inhibiting the components of the PI3K
network ultimately leads to decreased collagen deposition by
fibroblasts, distinct cellular mechanisms may be involved in
mediating this effect.

MMP1 is an interstitial collagenase secreted by fibroblasts
and other cells, that catalyses collagen degradation. Reduced
MMP1 expression is a characteristic of SSc fibroblasts and
may contribute to excessive collagen deposition seen in
patients with SSc (Takeda et al., 1994). Our results
demonstrate that Akt inhibition leads to increased MMP1
mRNA and protein. In addition, blockade of Akt in the
presence of TGF-b resulted in a very potent upregulation of
MMP1 protein and mRNA levels, reversing the inhibitory
effect of TGF-b on MMP1 gene expression. Thus, although
Akt is not involved in the TGF-b induced upregulation of
collagen, it is required for the TGF-b-mediated suppression of
MMP1. In agreement with our findings, several reports have
shown that an upstream Akt activator, insulin growth factor 1
(IGF-1), is a negative regulator of MMP1 expression (Canalis
et al., 1995; Hui et al., 2001; Im et al., 2003). Furthermore,
inhibition of another Akt activator, vascular endothelial
growth factor (VEGF), resulted in downregulation of MMP1
(Kamochi et al., 2002). Consistent with our study showing
dual effects of Akt on collagen and MMP1 production,
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inhibition of mammalian target of rapamycin (mTOR) by
rapamycin also induced collagen gene expression while
having an opposite effect on MMP1 (Poulalhon et al., 2006).
Thus, mammalian target of rapamycin, as a downstream Akt
effector, could contribute to the effects of Akt on collagen and
MMP1. Similar dual effects on MMP1 and collagen expres-
sion were recently described using proteasome blockade
(Fineschi et al., 2006). Several studies have linked protea-
some blockade with Akt inhibition via upregulation of protein
phosphatase 2A (PP2A) (Wei and Xia, 2006) or phosphatase
and tensin homologue deleted on chromosome 10 (PTEN)
(Fujita et al., 2006), suggesting that the specific effects of
these inhibitors on collagen and MMP1 could be at least in
part mediated via downregulation of the Akt pathway.

Systemic sclerosis biopsies are characterized by the
presence of constitutively phosphorylated Akt, but the
mechanism leading to its activation is currently unknown.
One of the main pathways that are upregulated in SSc in vivo
is the TGF-b pathway. Emerging evidence suggests that in
addition to canonical Smad activation, TGF-b induces
parallel signaling pathways that may modulate or be
independent of Smad signaling (Bakin et al., 2000).
The PI3K/Akt pathway is among the non-Smad signaling
mediators that have been shown to be activated by TGF-b
(Dumont et al., 2003; Jun et al., 2005). Furthermore, a
previous report indicated that constitutively active TGF-bRI
overexpression potently activated PI3K in epithelial cells (Yi
et al., 2005). Increased TGF-bRI expression levels are a
characteristic feature of SSc fibroblasts and were shown to
contribute to the elevated matrix gene expression in these
cells (Pannu et al., 2004). We have previously established an
in vivo model on the basis of adenovirus-mediated TGF-bRI
overexpression, and showed that this model recapitulates the
SSc phenotype with respect to elevated matrix production
(Pannu et al., 2006). In addition, we found that collagen
upregulation in response to aberrant TGF-bRI signaling is
independent of Smad2/3 and dependent on Smad1 and
extracellular signal-regulated kinase (Pannu et al., 2007).
Furthermore, we now show that in this model Akt is activated
at early time points, suggesting that aberrant TGF-bRI
signaling in SSc could contribute to increased Akt phosphor-
ylation seen in this disease. We also provide evidence that
Akt is required for AdTGF-bRI-dependent upregulation of
collagen. Further studies are necessary to elucidate the
mechanism of collagen regulation by Akt in this model.

To test the potential clinical importance of Akt activation
in SSc, we evaluated the sensitivity of cultured SSc fibroblasts
to Akt blockade. Collagen downregulation in SSc fibroblasts
was achieved after exposure for a shorter time at lower doses
of Akt inhibitor than the ones used to obtain similar responses
in normal fibroblasts. Furthermore, these conditions failed to
inhibit collagen in the normal, matched control fibroblasts.
Increased levels of a-SMA were reported in SSc in vitro
and in vivo (Kirk et al., 1995; Jelaska and Korn, 2000).
Coexpression of a-SMA and phosphorylated Akt was reported
in SSc in vivo (Jun et al., 2005) and PI3K/Akt activation was
previously linked to myofibroblasts differentiation (Laplante
et al., 2005). In agreement with this, our results show that Akt

positively regulates the expression of a-SMA mRNA in
SSc fibroblasts. The increased sensitivity seen with SSc
fibroblasts identifies Akt as a potential target for the
antifibrotic therapy in SSc.

MATERIALS AND METHODS
Reagents

The pharmacologic inhibitors Akt inhibitor VIII and II, protease

inhibitor cocktail set III, and phosphatase inhibitor cocktail set II

were purchased from Calbiochem (San Diego, CA). Recombinant

human TGF-b1 was obtained from R&D Systems (Minneapolis, MN).

Tissue culture reagents, DMEM and 100� antibiotic antimycotic

solution (penicillin streptomycin and amphotericin B) were obtained

from Gibco BRL (Grand Island, NY) and fetal bovine serum was

purchased from HyClone (Logan, UT). Enhanced chemilumines-

cence reagent and bicinchoninic acid protein assay reagent

were obtained from Pierce Chemical Co. (Rockford, IL). TRI

Reagent was purchased from the Molecular Research Center Inc.

(Cincinnati, OH).

Antibodies used were as follows: goat anti-type I collagen

(Southern Biotechnology, Birmingham, AL); monoclonal b-actin,

clone AC-150 (Sigma, St Louis, MO), MMP1 (Chemicon, Temecula,

CA); Akt, phospho-Akt (Ser473), Smad2, Smad3, and Smad2/3

(Cell Signaling); and TGF-bRI (Santa Cruz Biotechnology, Santa

Clara, CA). Primers were obtained from Operon (Huntsville, AL).

Cell culture

Human fibroblasts were obtained from skin biopsies from the dorsal

forearm of healthy donors or patients who had diffuse cutaneous SSc

for less than a year, upon informed consent and in compliance with

the Institutional Review Board for Human Studies. The study was

conducted according to the Declaration of Helsinki Principles. All

patients fulfilled the American College of Rheumatology (formerly,

the American Rheumatism Association) criteria for SSc (American

Rheumatism Association Diagnostic and Therapeutic Criteria Com-

mittee, 1980) and had not undergone any treatment for SSc at the

time of biopsy. Biopsy specimens from healthy donors matched with

each SSc patient for age, sex, and race were processed in parallel.

Dermal fibroblasts were cultured from the biopsy specimens as

described previously (Pannu et al., 2007).

Adenoviral constructs

Replication-incompetent adenoviral vectors expressing rat full-

length ALK5/TGF-bRI (AdTGF-bRI) and control green fluorescent

protein (AdGo) were generated as described earlier (Pannu et al.,

2004). The dose used to transducer dermal fibroblasts was 50

multiplicities of infection of the adenovirus.

Plasmid constructs, transient transfection, and CAT assay

The �772COL1A2/CAT construct contains the human COL1A2

fragment from þ 58 to �772 bp fused to the CAT reporter gene (Ihn

et al., 1996). Expression vectors containing constitutively active and

dominant-negative Akt expressed from the CMV promoter have been

previously described (Bellacosa et al., 1998). All transfections were

performed using FuGene 6 transfection reagent (Roche Molecular

Biochemicals, Indianapolis, IN) according to the manufacturer’s

instructions. The pSV-b-galactosidase control vector (Promega,

Madison, WI) was co-transfected with the collagen promoter and
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used to normalize for transfection efficiency. Cells were stimulated

24 hours after transfection with TGF-b and incubation was continued

for another 24 hours. Then cells were scraped and lysed in lysis

buffer (Promega). CAT activities were measured as described

previously (Ihn et al., 1996).

siRNA experiments

SMARTpool siRNA directed against human Akt1, Akt2, and Akt3
were purchased from Dharmacon RNA Technologies, CO. Negative-

control siRNA was purchased from Qiagen (Chatsworth, CA) and

RNAiFectTM (Qiagen) was used for transfection of dermal fibroblasts

according to the manufacturer’s recommendations.

Immunoblotting

Dermal fibroblasts were grown to confluence, serum-starved for

24 hours, and then subjected to different treatments. After the

appropriate time period, the medium was removed and cells were

processed as described previously (Pannu et al., 2004).

Total cellular RNA extraction, cDNA preparation, and
quantitative real-time RT–PCR analysis
Total RNA was extracted using TRI Reagent. Quality was assessed by

agarose-gel method and (B)1mg of RNA was used to prepare cDNA

using Transcriptor First-Strand synthesis kit (Roche Applied Sciences,

Indianapolis, IN). Real-time RT–PCR was performed using IQ SYBR

Green mixture (Bio-Rad, Hercules, CA) on an iCycler PCR machine

(Bio-Rad) using 1ml of cDNA in triplicate with b2-microglobulin as

internal control. Side-strand-specific primers for COL1A1, COL1A2,

b2-microglobulin, MMP1, Akt1, Akt2, Akt3, and a-SMA were as

follows: COL1A1 forward (CCAGAAGAACTGGTACATCAGCA),

COL1A1 reverse (CGCCATACTCGAACTGGGAAT); COL1A2 for-

ward (GATGTTGAACTTGTTGCTGAGG), COL1A2 reverse (TCTTTC

CCCATTCATTTGTCTT); b2-microglobulin forward (GCCGTGTGAA

CCATGTGACTTT), b2-microglobulin reverse (CCAAATGCGGCATC

TTCAAA); MMP1 forward (TCTGGGGTGTGGTGTCTA), MMP1

reverse (GCCTCCCATCATTCTCAGGTT); Akt1 forward (CGTGACC

ATGAACGAGTTTG), Akt1 reverse (GCCACGATGACTTCCTTCTT);

Akt2 forward (ACGTGGATTCTCCAGACGA), Akt2 reverse (GCTGCT

TGAGGCTGTTGG); Akt3 forward (TGGATTTACCTTATCCCCTCAA),

Akt3 reverse (TGGCTTTGGTCGTTCTGTTT); and a-SMA forward

(GCACTGCCTTGGTGTGTG), a-SMA reverse (TCCCATTCCCAC

CATCAC).
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