Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription

Highlights
- CENP-A deposition is coupled with transcription
- CAL1 recruits RNAPII onto DNA during CENP-A deposition
- CAL1 interacts directly with the histone chaperone FACT
- FACT depletion causes loss of transcription and defective CENP-A deposition

Authors

Correspondence
barbara.mellone@uconn.edu

In Brief
Centromeres are specified epigenetically by chromatin containing the histone H3 variant CENP-A. Chen et al. shed light on CENP-A deposition mechanisms, showing that the CENP-A chaperone CAL1 recruits FACT and RNAPII to CENP-A assembly sites, where they trigger transcription. In the absence of FACT, transcription ceases and CENP-A deposition is defective.
Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription

Chin-Chi Chen,1 Sarion Bowers,1,6 Zoltan Lipinszki,2,3 Jason Palladino,1 Sarah Trusiak,1 Emily Bettini,1 Leah Rosin,1 Marcin R. Przewloka,2 David M. Glover,2 Rachel J. O’Neill,1,4 and Barbara G. Mellone1,4,*

1Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
2Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
3Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, P.O. Box 521, 6701 Szeged, Hungary
4Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
5Present address: Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
*Correspondence: barbara.mellone@uconn.edu
http://dx.doi.org/10.1016/j.devcel.2015.05.012

SUMMARY

Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation.

INTRODUCTION

Accurate chromosome segregation during cell division is dependent on the correct assembly and propagation of a distinct region of the chromosome known as the centromere. The centromere forms the structural basis for the assembly of the kinetochore, a multi-protein complex to which spindle microtubules attach during mitosis and meiosis. In most eukaryotes, the position of the centromere is defined epigenetically through the heritable incorporation of the histone H3 variant CENP-A, which is both necessary and sufficient for centromere activity (De Rop et al., 2012).

Centromeric chromatin displays a conserved organization composed of interspersed blocks of CENP-A and H3 nucleosomes (Blower et al., 2002). During DNA replication in human cells, no new CENP-A deposition occurs (Jansen et al., 2007), and histone H3.3 and H3.1 are deposited as placeholders (Dunleavy et al., 2011). CENP-A deposition occurs during or after mitosis in Drosophila and humans, respectively (Hemmerich et al., 2008; Jansen et al., 2007; Mellone et al., 2011; Schuh et al., 2007) and is mediated by specialized histone chaperones known as Scm3 in fungi (Camahort et al., 2007; Pidoux et al., 2009; Stoler et al., 2007), HJURP in tetrapods (Barnhart et al., 2011; Bernad et al., 2011; Dunleavy et al., 2009; Foltz et al., 2009; Sanchez-Pulido et al., 2009; Shuaib et al., 2010), and CAL1 in flies (Chen et al., 2014). Each of these chaperones has been shown to selectively bind CENP-A, and not canonical H3, and to mediate the formation of CENP-A nucleosomes in vitro. However, how placeholder nucleosomes are reorganized to incorporate CENP-A/H4 tetramers is unknown. Additional histone chaperones have been found to either bind to CENP-A or contribute to proper CENP-A localization in vertebrate cells (Foltz et al., 2006; Okada et al., 2009; Perpelescu et al., 2009), but whether or not they are involved in this reorganization is unknown.

Mounting evidence points to a functional interplay between the transcription of centromeric repeats and centromere function across species. For instance, manipulation of a human artificial chromosome (HAC) revealed that targeting a transcriptional silencer to alpha-satellite repeats caused loss of CENP-A (Nakano et al., 2008). Remarkably, transcripts emanating from centromeric DNA have been identified in yeast, human, wallabies, and plants (Carone et al., 2009; Chan et al., 2012; Choi et al., 2011; Ohkuni and Kitagawa, 2011; Quénet and Dalal, 2014; Topp et al., 2004) and have been shown to be important for centromere integrity. However, the idea that specific RNAs play a role in centromere integrity is inconsistent with the notion that centromeres can form independently of centromeric DNA (Marshall et al., 2008). Additionally, the functional significance of transcription in the CENP-A assembly cascade remains poorly defined.

Here, we identify RNA polymerase II (RNAPII)-dependent transcription as a key requirement for Drosophila CENP-A deposition. Using an inducible ectopic centromere system, which allows for the direct comparison of chromatin states in the
presence or absence of active CENP-A deposition, we find that CENP-A assembly by its loading factor CAL1 is coupled with transcription of the underlying DNA. We identify facilitates chromatin transcription (FACT; Orphanides et al., 1998) as a central molecular player in this process and show that its role in centromere integrity is that of driving DNA sequence-independent RNAPII transcription through centromeric chromatin via a direct interaction with CAL1. Thus, current models for centromere transcription must take into account the transcriptional requirements for CENP-A recruitment by its assembly factor.

RESULTS

De Novo CENP-A Incorporation Temporally Coincides with Transcription of the Underlying DNA

Transcription of centromeric DNA has been described in several species (Chan and Wong, 2012), but whether or not it is directly linked to CENP-A deposition has remained elusive. One limitation of studying transcription at endogenous centromeres is the inability to precisely compare the same genomic locus in the presence and absence of active CENP-A deposition without interfering with cell-cycle progression or global transcription, which can result in reciprocal perturbation (Adolph et al., 1993; Whitfield et al., 2002). Furthermore, the endogenous CENP-A-bound DNA sequences of Drosophila are unknown, making an assessment of their transcription unfeasible. To overcome these limitations, we employed an ectopic centromere strategy based on the LacI/lacO system (Straight et al., 1996). This system utilizes a stably inserted lacO vector (10 kb of lacO repeats and 3 kb of vector backbone inserted within one arm of chromosome 2 or 3; Mendiburo et al., 2011), coupled with the inducible expression of the Drosophila CENP-A chaperone CAL1 fused to the lac repressor LacI (CAL1-GFP-LacI; Figure 1A). A GFP-LacI protein is used as a negative control. lacO-tethered CAL1-GFP-LacI induces the formation of fully functional and epigenetically propagated ectopic centromeres at the lacO site (Chen et al., 2014), allowing the direct comparison of the transcriptional status between lacO DNA with or without ongoing CENP-A incorporation.

CAL1-GFP-LacI is under the control of a metallothionein (MT) promoter, which can be induced by addition of CuSO₄ to the growth medium. First, we investigated how long after induction of CAL1-GFP-LacI CENP-A foci become visible at the lacO site by immunofluorescence (IF) on metaphase chromosome spreads. In parallel, we assessed transcription from the lacO backbone (lacO⁰) by qRT-PCR (primer set 1.6; Figures 1A and 1B; Mendiburo et al., 2011). Transcription of the lacO array portion of the vector could not be assessed by this method due to its repetitive nature. 2 hr after induction, 54% of metaphase spreads displayed CAL1-GFP-LacI foci on the lacO-containing chromosome arm, with 5% of these foci also containing CENP-A, showing that the recruitment of CENP-A at the lacO site occurs soon after CAL1-GFP-LacI induction (Figure 1C). Strikingly, at the 2 hr time point, a 28-fold change in transcription from lacO⁰ was detected by qRT-PCR. Furthermore, lacO⁰ transcript abundance persisted throughout the remainder of the time course (Figure 1D). LacI and lacO⁰
transcription levels displayed a decrease at 8 hr post-induction that was also observed in an independent time course experiment (Figure S1A). This transient dip likely reflects the kinetics of induction of the MT promoter (Bunch et al., 1988) driving the MT promoter (Bunch et al., 1988) driving CAL1-GFP-LacI. Detection of nascent lacOb transcripts showed they are produced continuously, reaching a peak from 24–30 hr after induction (Figures S1B and S1C), a time during which it is expected that most lacO cells have acquired CENP-A at the lacO site (Figure 1C). Thus, we reveal a striking correlation between transcription and CENP-A incorporation at the lacO site.

To ensure that transcription of lacOb is not due to the addition of CuSO\textsubscript{4} or is somehow linked to the binding of the GFP-LacI fusion protein to the lacO array, we carried out qRT-PCR comparisons in the presence or absence of CuSO\textsubscript{4} between the following cell lines: CAL1-GFP-LacI cells, GFP-LacI cells, and cells completely lacking any LacI transgene, yet still harboring the integrated lacO plasmid (lacO). These experiments showed that transcription from lacOb was only observed in induced CAL1-GFP-LacI cells (Figure 1E). No lacOb transcription was detected in induced cells containing CAL1-GFP-LacI or GFP-LacI without lacO (data not shown).

The expression of a control gene, actin, which is transcribed by RNAPII, was unaffected, suggesting that addition of CuSO\textsubscript{4} does not cause non-specific transcriptional upregulation (Figure S1D). An increase in transcription from lacOb was also observed when the lacO plasmid was introduced episomally, along with the CAL1-GFP-LacI plasmid, via transient transfection in S2 cells (Figure 1F). These transient transfections displayed low efficiency (~12%, as estimated by IF with anti-GFP antibodies, data not shown), resulting in fewer transcripts being detected by qRT-PCR compared to stable cells. Nonetheless, they demonstrate that transcription of lacOb occurs independently of its chromosomal insertion.

Transcription of lacOb Correlates with CENP-A and RNAPII Distribution

To gain more insight into the relationship between transcription and CENP-A occupancy across the lacO locus, we performed paired-end RNA sequencing (RNA-seq) and chromatin immuno-precipitation sequencing (ChIP-seq) experiments. RNA-seq of induced CAL1-GFP-LacI cells revealed that 28.5 fragments per million (fpm) mapped to lacOb, whereas only 0.45 fpm mapped to the lacO array itself, where CAL1 is tethered. This could be due to blockage of RNAAP by LacI bound to lacO repeats (Jacob and Monod, 1961). Thus, upon CAL1-GFP-LacI induction, most of the transcription originates from lacOb sequences. Consistent with our qRT-PCR results (Figures 1D–1F), induced GFP-LacI cells displayed fewer reads mapping to lacOb (12.8 fpm; p < 0.05; Figure 2A).

CENP-A ChIP-seq of induced CAL1-GFP-LacI cells revealed a preferential association of CENP-A with the lacOb versus the lacO array (4,751.6 versus 2,462.5 fpm; Figures 2B and 2C). Since GFP ChIP-qPCR showed that CAL1-GFP-LacI is also enriched at lacOb (Figure 2D), we concluded that CENP-A and CAL1-GFP-LacI spread to lacOb from the lacO array, where CAL1-GFP-LacI is initially tethered.

Active RNAPII localizes to the centromeres of metaphase chromosomes in Drosophila (Rościcki et al., 2014), raising the possibility that RNAPII may mediate transcription of lacOb upon CAL1-GFP-LacI tethering. ChIP-seq with antibodies specific for the elongating form of RNAPII (RNAPII\textsubscript{S2p}) showed a marked increase in RNAPII\textsubscript{S2p} occupancy at the lacOb after CAL1-GFP-LacI induction (178.3 fpm versus 75.5 fpm), suggesting that RNAPII mediates lacOb transcription. Furthermore, the distribution of RNAPII\textsubscript{S2p} closely resembled that of CENP-A in induced cells, with low occupancy on the lacO array and higher occupancy on the lacOb array (32.3 versus 178.3 fpm; Figures 2B–2C), consistent with a
functional interplay between CENP-A assembly and transcriptional activity.

Low levels of CENP-A and RNAPII-S2p were observed in uninduced CAL1-GFP-LacI cells (Figure 2B), possibly due to leaky expression of CAL1-GFP-LacI, but these were found to be significantly lower than in induced samples (p < 0.001 and q < 0.001 for both CENP-A and RNAPII-S2p ChIPs; see the Supplemental Experimental Procedures; ChIP-seq and RNA-seq mapping).

Interestingly, immunoprecipitation (IP) of chromatin-associated CAL1 revealed a physical association between CAL1 and RNAPII-S2p (Figure 2E). This interaction and our ChIP-seq results indicate that CAL1 recruits RNAPII-S2p onto chromatin, in turn stimulating transcription. Why only a subset of the RNAPII-S2p-associated sequences produced transcripts by RNA-seq remains unclear. It is possible that some of these transcripts are unstable and cannot be detected by this type of assay.

Isolation of FACT, a CAL1 Interactor

Having shown that targeting of CAL1 to lacO triggers accumulation of RNAPII-S2p and transcription, we sought to identify the key components of this process by isolating CAL1-interacting factors. We performed IPs of FLAG-tagged CAL1 (Chen et al., 2012) from chromatin-free (CF) and chromatin-associated (CA) cell extracts with anti-FLAG-M2 agarose beads, using Drosophila S2 cells (no FLAG tag) as a negative control. Mass spectrometric analysis (see Table S1; data not shown) identified among the highest scoring unique hits Spt16 (called Dre4 in Drosophila) and SSRP1, the two subunits of the heterodimeric FACT complex (Orphanides et al., 1999). FACT allows the progression of the transcriptional machinery through chromatinized templates (Belotserkovskaya et al., 2003; Orphanides et al., 1999), by a mechanism involving nucleosome destabilization and replication (Hondele and Ladurner, 2013; Hondele et al., 2013), and was found to be associated with human CENP-A (Foltz et al., 2006), and to be important for CENP-A localization in chickens (Okada et al., 2009). Thus, FACT is a strong candidate for mediating CENP-A deposition-coupled transcription.

In order to confirm the association between CAL1 and the FACT complex, CF and CA fractions were prepared from S2 cells, and CAL1 IPs were performed using anti-CAL1 antibodies. Dre4 and SSRP1 were present in both fractions (Figure 3A) and associated with CAL1 in both cases (Figure 3B), confirming our proteomic results. Reciprocal IPs were performed using anti-FLAG antibodies to precipitate FLAG-Dre4 or FLAG-SSRP1; however, CAL1 was not detected (Figure S2A), suggesting that only a small fraction of FACT interacts with CAL1.

Next, we sought to determine if the association between CAL1, Dre4, and SSRP1 is direct by analyzing protein-protein interactions between recombinant His-Dre4 or His-SSRP1 and in-vitro-translated 35S-methionine-labeled CAL1. The His-Dre4 and His-SSRP1 proteins heterodimerized in vitro (Figure S2B), suggesting that they are properly folded, and both pulled down CAL1 (Figure 3C), demonstrating direct interaction.

FACT is involved in RNAPII (Belotserkovskaya et al., 2003; Krogan et al., 2002; LeRoy et al., 1998; Orphanides et al., 1998), RNAPI, and RNAPIII transcription (Birch et al., 2009); therefore, it is expected to be broadly distributed throughout chromatin. To determine if FACT displays any centromeric enrichment, we used IF with anti-Dre4 and anti-SSRP1 antibodies. After extraction with detergent pre-fixation, a treatment expected to remove loosely chromatin-bound proteins, FACT was enriched at interphase centromeres (identified by CENP-A staining) and at the nucleolus (identified by Fibrillarin staining; Figure 3D). Examination of FACT localization on metaphase chromosome spreads revealed an even more striking centromeric accumulation of Dre4 and SSRP1, demonstrating that during mitosis, when active deposition of newly synthesized
CENP-A takes place (Mellone et al., 2011), FACT is more strongly associated with the centromere than with other regions of the genome (Figure 3E). These results were confirmed with epitope tagged SSRP1 and Dre4 (data not shown) and are consistent with a previous study in chicken DT-40 cells (Okada et al., 2009).

The Transcription Associated with CENP-A Deposition Requires FACT

Given that FACT enables RNAP progression, we next investigated whether FACT is required for the transcription we observed during CAL1-mediated CENP-A assembly at the lacO site. First, we investigated if CAL1-GFP-LacI recruits FACT to lacO by using ChIP-qPCR with anti-SSRP1 antibodies (Nakayama et al., 2007). CENP-A ChIPs were performed in parallel. CAL1-GFP-LacI or GFP-LacI (negative control) cells were induced for 24 hr. CENP-A and SSRP1 were both found to be enriched in induced CAL1-GFP-LacI cells (Figure 4A). We concluded that FACT is recruited by CAL1-GFP-LacI to lacO.

Next, we measured lacO transcription by qRT-PCR after induction of CAL1-GFP-LacI cells, in which Dre4 and SSRP1 had been knocked down by RNAi for 6 days. Control cells displayed, on average, a 6.8-fold increase in lacO transcript levels 24 hr after induction with CuSO₄. In contrast, cells lacking FACT showed virtually no increase (Figure 4B). This result was also confirmed in a time course experiment, in which, after 6 days of FACT RNAi, CAL1-GFP-LacI was induced and qRT-PCR was performed on RNA extracted every 4 hr for 24 hr (Figure 4C). Together, these data demonstrate that FACT is required for the transcription observed upon CAL1 targeting.

CAL1-directed transcription could be a by-product of CENP-A incorporation, or it could occur independently of CENP-A deposition through the recruitment of RNAPII and FACT onto chromatin. To distinguish between these two possibilities, we used a CAL1 mutation lacking a short Scm3-like domain (Phansalkar et al., 2012; CAL1Δ1-40), which is defective in recruiting CENP-A to the lacO (Figure 4D; Chen et al., 2014). Importantly, CAL1Δ1-40 can interact directly with Dre4 and SSRP1 (Figure 4E). When we tethered CAL1Δ1-40-GFP-LacI to the lacO, we observed levels of lacO transcription indistinguishable from those initiated by CAL1-GFP-LacI (Figure 4F). We concluded that lacO transcription depends on CAL1 and FACT, but it does not require CENP-A incorporation.
FACT-Mediated Transcription Is Required for De Novo CENP-A Incorporation

CAL1 binds directly to FACT and recruits FACT and RNAPII to sites of CENP-A assembly. To determine if the absence of lacO transcription caused by knockdown of FACT affects deposition of CENP-A at the lacO site, we depleted Dre4 or SSRP1 by RNAi for 5 days, induced CAL1-GFP-LacI for 24 hr, and performed IF with anti-CENP-A and anti-GFP antibodies on metaphase spreads (Figure 5A). Ectopic targeting of CAL1 via LacI/lacO leads to efficient de novo incorporation of CENP-A (Chen et al., 2014). In contrast, depletion of either SSRP1 or Dre4 resulted in a significant reduction in the percentage of CENP-A-positive lacO sites (Figures 5B and 5C). Since FACT depletion did not affect the formation of the CENP-A/CENP-C/CAL1 complex (Erhardt et al., 2008; Figure S3A), a defect in CENP-A incorporation is the most likely explanation for this reduction in ectopic CENP-A. Thus, these experiments demonstrate that efficient recruitment of CENP-A by CAL1 requires FACT and imply that CAL1 is not sufficient to assemble CENP-A into nucleosomes when chromatin is the substrate, as opposed to when naked DNA is the substrate (Chen et al., 2014).

Given the ubiquitous role of FACT in DNA metabolism, we investigated possible pleiotropic effects that could account for the CENP-A incorporation defect seen after FACT RNAi. Fluorescence-activated cell sorting (FACS) analysis showed no change in the distribution of cells in G1, S, or G2-M upon FACT RNAi (Figure 5D), suggesting that the CENP-A incorporation defect is not due to a cell-cycle defect. Additionally, qRT-PCR analyses of cenp-a, cal1, or cenp-c transcripts (Figures S3B and S3C) and western blot analyses from total protein extracts (Figure S3D) demonstrated that FACT depletion did not decrease the expression of these essential centromere genes. Similarly, expression of eight handpicked genes that are bound to Dre4 based on remodeling activities, at least in Drosophila-cultured cells. Altogether, these results demonstrate that FACT plays a specific function in CENP-A deposition.

Depletion of FACT Causes Defective CENP-A Recruitment at Endogenous Centromeres

To determine if FACT is required for the recruitment of newly synthesized CENP-A at endogenous centromeres, we performed quench-chase-pulse experiments in cells stably expressing SNAP-tagged CENP-A (Jansen et al., 2007; Mellone et al., 2011). FACT was knocked down by simultaneous RNAi of Dre4 and SSRP1 for 6 days, after which time pre-existing SNAP-CENP-A was irreversibly quenched using the BG-blocking agent (T0; quench). RNAi of CAL1 was used as a positive control. After a chase that lasted until cells had divided once, newly synthesized SNAP-CENP-A was clearly visible at the centromeres of control cells (Figure 6B, T1, top). In contrast, there was a significant drop in the TMR*-CENP-A intensity levels of FACT RNAi cells, consistent with defective CENP-A recruitment (Figures 6B, T1, and 6C).

To determine if FACT is also required to retain pre-existing centromeric CENP-A through one cell division, we quantified the total centromeric CENP-A IF signal at T2 and T4. In control cells, retention and recruitment of CENP-A are intact; therefore, no change in total CENP-A intensity occurs over one cell division.
division (T1/T0 = 100%). In contrast, in cells lacking FACT, centromeric CENP-A signal displayed a decrease in intensity consistent with a loading defect (T1/T0 = ~59%; Figure 6D; a ratio lower that 50% would be expected if the retention of pre-existing CENP-A were also affected). These results also explain why CENP-A is lost at a relatively slower rate in the absence of FACT (6 days): its loading is compromised but its retention is not. In contrast, loss of CENP-A from the centromere in the absence of CAL1 is much more rapid (Figure 6D), consistent with the dual role of CAL1 in CENP-A loading and stabilization from degradation (Chen et al., 2014).

Collectively, our data demonstrate that FACT is required for the centromeric recruitment of newly synthesized CENP-A at the centromere.

To examine if FACT depletion can lead to complete loss of CENP-A from centromeres, we knocked down Dre4 or SSRP1, transfecting S2 cells twice with double-stranded RNA (dsRNA) over 6 days and examined the intensity of centromeric CENP-A by IF. We observed a dramatic decrease in the intensity of CENP-A foci upon Dre4 or SSRP1 RNAi compared to control cells (Figures 6E and 6F), demonstrating that two consecutive RNAi lead to a nearly complete loss of CENP-A from centromeres. Consistent with defective CENP-A recruitment, we observed a significant increase in chromosome missegregation in mitosis in cells lacking FACT (Figure S4).

H3.1 and H3.3 Accumulate within Centromeric Chromatin upon FACT RNAi

In human cells, histone H3 nucleosomes are deposited in S phase as temporary placeholders that need to be replaced by CENP-A in order to maintain centromere identity (Dunleavy et al., 2011). Whether CENP-A chaperones or other factors perform this exchange is unknown. Transcription at the centromere could mediate the eviction of the placeholder H3 during CAL1-mediated CENP-A deposition, analogously to H3.3 deposition at active genes (Schwartz and Ahmad, 2005). To determine if, in the absence of FACT and transcription, histone H3.1 or H3.3 accumulate at centromeres, we depleted Dre4 (which causes loss of SSRP1 as well; Figure S5) in S2 cells transiently transfected with plasmids expressing V5-tagged H3.1 and H3.3 and inspected centromeric chromatin by IF on stretched chromatin fibers. In Dre4-depleted cells, the average length of continuous CENP-A fibers was about one-half that of control (Figure 7A) and the CENP-A signal became less contiguous, suggesting that...
CENP-A is lost throughout CENP-A centromeric chromatin stretches, as well as from their edges. IF with anti-CENP-A and anti-V5 antibodies showed that H3.1 and H3.3 were continuously present across CENP-A fibers in control and RNAi cells, indicating that upon loss of CENP-A, no “gaps” were left at the centromere (Figure 7B). These results, which are consistent with a previous study that looked at centromeric fibers upon CENP-A depletion (Blower et al., 2002), suggest defective exchange between the placeholders H3.1/H3.3 and CENP-A in the absence of FACT and transcription.

Collectively, our data suggest a model in which FACT is recruited to the centromere by interacting directly with CAL1 in a pre-nucleosomal complex. Once at the centromere, FACT destabilizes nucleosomes (Hondele and Ladurner, 2013; Hondele et al., 2013), allowing transcription through the region via RNAPII. Finally, transcription by RNAPII causes the eviction of the placeholders H3.1 and H3.3, allowing the deposition of CENP-A by CAL1 (Figure 7C).

DISCUSSION

The epigenetic maintenance of centromeres through faithful CENP-A deposition is a process crucial for genome stability. Much of the recent advances in understanding this process in metazoans have focused on the dissection of the specific proteins involved in CENP-A recruitment. In contrast, the roles of DNA and chromatin in CENP-A deposition have remained largely elusive. In this study, we have uncovered a key role for transcription in *Drosophila* CENP-A deposition and have identified FACT as a central player in this process. This mechanism of nucleosome reorganization—combining RNAPII passage with CENP-A/H3 exchange—is analogous to other paradigms seen during transcription and development. For example, FACT is recruited to specific genomic loci by the GAGA factor, where it destabilizes nucleosomes, allowing replacement of histone H3.1 with H3.3 by the chaperone HIRA and thereby modulating the expression of Hox genes (Nakayama et al., 2007; Shimojima et al., 2003).

To ensure the fidelity of centromere propagation, CENP-A chromatin must be replenished after each round of DNA replication. In human cells, newly synthesized CENP-A is recruited to centromeric chromatin along with newly synthesized histone H4, indicating that CENP-A and H4 form a sub-nucleosomal core, which is assembled simultaneously (Bodor et al., 2013). As such, it is conceivable that CENP-A/H4 deposition involves the eviction of pre-existing H3/H4 tetramers.

To determine if CENP-A assembly is coupled to transcription, we used an inducible ectopic centromere system in *Drosophila* S2 cells. We discovered that a remarkable change in transcription occurs rapidly upon CAL1-GFP-LacI targeting at the lacO site. The same DNA that is transcribed is enriched in RNAPII,
suggesting that this polymerase is the one mediating this transcription. The interaction between CAL1 and RNAPII supports this idea, although the involvement of additional RNAPs cannot be ruled out.

In order to characterize this phenomenon mechanistically, we biochemically isolated the CAL1 partner FACT and demonstrated that it is necessary for the transcription of the lacO site. Despite its function in global RNAP elongation, the depletion of FACT did not cause a decrease in expression of FACT-associated genes, suggesting a redundancy of mechanisms directing general transcription in *Drosophila* cells. In contrast, upon FACT RNAi, transcription at the lacO site was impaired, resulting in defective de novo CENP-A deposition, demonstrating a specific disruption of centromere chromatin assembly.

Surprisingly, we found that transcription at the lacO site is independent of CENP-A assembly, revealing that CENP-A chaperones can initiate local chromatin reorganization through the recruitment of FACT and RNAPII.

The discovery that chromatin poses a barrier to CENP-A deposition by its chaperone and the involvement of FACT-mediated transcription in overcoming this barrier is likely to be relevant to other complex eukaryotes. In budding yeast, FACT allows Phs1 to access misincorporated CENP-A/Cse4 nucleosomes, allowing the ubiquitylation and subsequent degradation of CENP-A/Cse4 (Deyter and Biggins, 2014). However, our studies in *Drosophila* demonstrate that FACT is directly implicated in CENP-A deposition. The finding that FACT is required for CENP-A localization in chicken (Okada et al., 2009) and interacts with human CENP-A (Foltz et al., 2006) raises the possibility that the mechanism by which FACT promotes chromatin reorganization during CENP-A deposition by its chaperone may be conserved from flies to vertebrates.

In budding yeast, FACT increases nucleosome accessibility to nucleases in the absence of H2A-H2B dimer displacement, suggesting that it can reorganize nucleosomes in a more open configuration, while maintaining their original composition (Xin et al., 2009). Consistent with this, the crystal structure and mutational analyses of Spt16/Dre4 showed that FACT allows a gradual invasion of the nucleosome, breaking strong octamer-TTTC|TTTT nucleosome contacts and allowing the passage of polymerases (Hondele et al., 2013). Thus, FACT is likely to function as a nucleosome destabilizer (Hondele and Ladurner, 2013), allowing the passage of RNAPII, which in turn interacts with CAL1 (Figure 7C).

A question that remains unanswered is whether the transcripts produced during CENP-A deposition are simply a by-product of the ongoing chromatin reorganization or if they are necessary components of centromere structure and identity. Specific RNAs emanating from centromeres do appear to play a role in centromere/kinetochore integrity (Carone et al., 2013; Quénet and Dalal, 2014; Rošić et al., 2014; Topp et al., 2004). However, the sequence requirements of these RNAs remain poorly defined. Our work demonstrates a requirement for transcription in CENP-A deposition as a means to reorganize nucleosomes and suggests the dispensability of specific centromeric RNA sequences in this process. Either there is a generic, non-sequence-specific role for RNA at the centromere or specific sequences emanating from the centromere possess additional structural properties. Further work is needed to elucidate the functional relationship between CENP-A deposition-coupled transcription and structural centromeric RNAs.

EXPERIMENTAL PROCEDURES

Large-Scale Immunoprecipitation and Mass Spectrometry

FLAG-CAL1 complexes were purified from chromatin-free extracts generated from 2 × 10^8 S2 cells, as described previously (Chen et al., 2012; Mellone et al., 2011). FLAG-CAL1 complexes from chromatin-associated complexes were generated by homogenization, nuclear extraction, and digestion with benzonase. Extracts were added to anti-FLAG M2 beads (Sigma-Aldrich). After washing, complexes were eluted with FLAG peptide (Sigma-Aldrich) and sent for mass spectrometric analysis (see the Supplemental Experimental Procedures for details).

Small-Scale Immunoprecipitations

Extracts from chromatin-free and chromatin-associated fractions were prepared from 10^6 cells, as described before (Mellone et al., 2011). Extracts were added to Dynabeads-protein A beads (Life Technologies) coupled with anti-CAL1 or anti-FLAG antibodies (Sigma-Aldrich) and incubated for 10 min at room temperature, followed by a 30 min incubation at 4°C with rotation. Beads were washed three times with PBS-T (PBS; 0.1% Triton). 6% of the input and 50% of the IP was analyzed by 10% SDS-PAGE, followed by western blot. See the Supplemental Experimental Procedures for details.

In Vitro Protein Binding Assay

All steps were performed at room temperature. ~5 μg of purified His::MBP (negative control) and His::Dre4 or His::SSRP1 immobilized on Ni-NTA agarose (qiagen) were equilibrated in binding buffer containing 50 mM HEPES (pH 7.4), 150 mM NaCl, 1 mM MgCl2, 1 mM EGTA, 0.1% Triton X-100, 1X EDTA-free protease inhibitor cocktail (Roche), 20 mM imidazole, and 0.5 mg/ml BSA, mixed with ^35^S-methionine-labeled proteins expressed by a coupled in vitro transcription translation system (IVT), and incubated for 1 hr. Beads were then washed in binding buffer (without BSA); proteins were eluted by boiling in Laemmli sample buffer and subjected to SDS-PAGE, followed by autoradiography. See also the Supplemental Experimental Procedures.

Cell Culture and RNA

Stable S2 cells containing an integrated lacO plasmid (pAFS52; Straight et al., 1996) were described before (Chen et al., 2014; Mendiburo et al., 2011). Additional stable S2 cells were generated by transfection with Celfectin reagent (Life Technologies) and selection with 450 μg/ml hygromycin. Stable lacO S2 cells were re-thawed after 1 month in culture due to loss of the lacO array over time. Transient transfections were performed by treating cells with FuGENE HD (Promega) for 2 days. Cells were induced with 0.5 mM CuSO4 for 2 hr.

Stable CAL1-GFP-Lac or GFP-LacI cells were induced with 0.5 mM CuSO4 at 25°C for 1–48 hr or left uninduced. RNAi was performed using DOTAP and 10 μg of dsRNA (see the Supplemental Experimental Procedures).

Total RNA Extraction and qRT-PCR

Total RNA was isolated from 1 × 10^7 cells using TRI-reagent (Sigma-Aldrich). 10 μg of RNA was treated with 1 μl of Turbo DNase (Life Technologies) for 30 min at 37°C. RNA was reverse transcribed using the iScript cDNA Synthesis Kit (Bio-Rad), and 2 μl were used in qPCR using SYBR-green (Bio-Rad) on a CFX96 Real-Time System (Bio-Rad). Transcription from the lacO (using primer pairs 1.6 or 3; Mendiburo et al., 2011) was normalized to uninduced samples. Values were calculated using the Pfaffl method (Pfaffl, 2001), with Rp49 (unaffected by FACT; Nakayama et al., 2007) as a reference gene. Some variability in the fold increase in lacO transcription between experiments was observed due to instability of the lacO array during cell culture over time. See the Supplemental Experimental Procedures for primer sequences.

For RNA-seq, libraries were generated using the Tru-Seq kit (Illumina) and ran on a HiSeq. See the Supplemental Experimental Procedures for mapping information.
Total Protein Extraction and Western Blotting
Total cell extracts were obtained from 1 x 10^6 cells resuspended in 15 µL of RIPA buffer (150 mM NaCl, 50 mM Tris [pH 8], 1% NP40, and 0.1% SDS), incubated on ice for 10 min, and digested with 1 µL of benzonase (Novagen) for 20 min at 37°C. Extracts were separated by 10% SDS-PAGE and transferred to nitrocellulose membranes. After 30 min incubation in blocking buffer (TBS, 0.1% Tween 20, 5% powder non-fat milk), membranes were incubated overnight at 4°C with anti-CAL1 (rabbit, 1:1,000; from A. Straight), anti-CENP-A (rabbit, 1:1,000; Active Motif), anti-FLAG (mouse, 1:1,000; Sigma-Aldrich), anti-Dre4 and anti-SSRP1 (rabbit, 1:1,000; from S. Hirose), and anti-RNAIP32p (mouse, 1:1,000; Abcam); anti-CENP-C (guinea pig, 1:3,000; Mellone et al., 2011), anti-tubulin (mouse, 1:1,000; Sigma-Aldrich), or anti-histone H3 (rabbit, 1:5,000; Abcam) antibodies were used as a loading control.

Immunofluorescence
IF on settled cells and metaphase spindles was performed as described (Chen et al., 2014). For pre-extraction with detergent, settled cells were immersed in 100 µL of PBS-T for 5 min, followed by the addition of 11 µL of 37% formaldehyde for 10 min. Stretched chromatin fibers were performed essentially as described (Sullivan, 2010), using twice the amount of primary antibodies than conventional IF. Only extensively stretched fibers (DAPI) nearly undetectable were used for our analyses. The antibodies used were anti-CENP-A (chicken, 1:1,000; Blower and Karpen, 2001), anti-GFP (rabbit-488 conjugated, 1:100; Life Technologies), anti-CENP-C (guinea pig, 1:1,000; Mellone et al., 2011), anti-fibrillarin (mouse, 1:500; Cytoskeleton), and anti-V5 (mouse, 1:50; Life Technologies). Secondary antibodies (Life Technologies Alexa-Fluor 488 or 546 conjugated; Santa Cruz biotechnology CYS conjugated; 1:500) were used as appropriate. Slides were mounted in Slowfade (Life Technologies) containing DAPI.

Quench-Pulse-Chase Assay
RNAi of both Dre4 and SSRP1 was simultaneously performed for 6 days in a 12-well plate. Quench-chase-pulse, followed by IF, was performed as described (Mellone et al., 2011), making sure the cells had divided once (~24 hr for control and 24–48 hr for FACT RNAi) between BG-block (quench) and TMRT labeling (chase).

Fluorescence- Activated Cell Sorting
After 6 days of RNAi (Bw for control and SSRP1/Dre4 for FACT), 1 x 10^6 cells were washed in PBS with 2% BSA and then incubated in PBS containing 50 µg/ml propidium iodide, 200 µg/ml RNase A, and 0.1% Triton X-100 for 15 min at 25°C in the dark. Samples were analyzed on a BD FACSCalibur Flow Cytometer and analyzed using FloJo.

Imaging
All images were taken at 25°C on an Olympus Fluorescence Microscope (PersonaliDi; Applied Precision) equipped with a 60 x 1.42 NA or a 100 x 1.40 NA oil-immersion objective (Olympus) and a CoolSnap HQ2 Camera (Photometrics), keeping exposure conditions constant between all samples. Images were acquired and deconvolved using softWoRx (Applied Precision), maintaining the scaling constant between samples, and all images were saved as Photoshop files. Figures were assembled in Adobe Illustrator. See the Supplemental Experimental Procedures for image quantifications.

Chromatin Immunoprecipitation
ChIP was performed using the MAgnify Kit (Life Technologies). 10^6 cells (~10 µg DNA) was used for each IP, and chromatin was sheared to fragments 200–300 bp long. 1 µL of anti-CENP-A (rabbit, Active Motif), anti-SSRP1 (Nakayama et al., 2007), anti-GFP (Abcam), or anti-RNAIP32p (Abcam) were coupled to 10 µL beads for 2 hr and mixed with chromatin overnight at 4°C. Immunoprecipitated DNA was eluted in 50 µl of elution buffer and analyzed by qPCR. Normalization was performed using the following formula: 100 x AE[averageCT INPUT] / [averageCT IP], where AE is the amplification efficiency calculated by the formula AE = 10^(-1/slope). The values obtained for induced cells were normalized by those for uninduced cells to calculate enrichment. For ChIP-seq, DNA from three independent ChIP experiments were pooled and made into libraries with the TruSeq ChIP Kit (Illumina). Samples were run on a MiSeq using the Reagent Kit (v. 3). See the Supplemental Experimental Procedures for mapping information.

Statistical Methods
SE, SD, and CI were calculated using Numbers (Apple). Unpaired t test and chi-square tests were performed in Prism (GraphPad). See the Supplemental Experimental Procedures for statistical analyses of next-generation sequencing data.

ACCESSION NUMBERS
The accession number for the ChIP-seq and RNA-seq raw data reported in this paper is NCBI: SRP059507.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, five figures, and two tables and can be found with this article online at http://dx.doi.org/10.1016/j.devcel.2015.05.012.

ACKNOWLEDGMENTS
We thank Bo Reese (CGI) for sequencing support, G. Karpen, S. Hirose, A. Straight, and P. Heun for reagents, I. Cheeseman for critically reading the manuscript, L. Core for suggestions and help with ChIP-chip data analysis, and the Drosophila RNAi Screening Center (DRSC) for resources. This work was supported by awards from the NSF (1024973) (to B.G.M.) and the NIH (GM108829) (to B.G.M.). D.M.G. is supported by grants from Cancer Research UK (C3/A11431) and the Medical Research Council (G1001696); Z.L. is supported by a long-term FEBS Fellowship; and R.J.O. is supported by an NSF award (1244148).

Received: October 7, 2014
Revised: April 9, 2015
Accepted: May 18, 2015
Published: July 6, 2015

REFERENCES

