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Abstract

The generalized Stieltjes—Wigert polynomials depending on parameters 0 < p < land 0 < g < 1
are discussed. By removing the mass at zero of an N-extremal solution concentrated in the zeros of the
D-function from the Nevanlinna parametrization, we obtain a discrete measure ™, which is uniquely
determined by its moments. We calculate the coefficients of the corresponding orthonormal polynomials
(P,f’l ). As noticed by Chihara, these polynomials are the shell polynomials corresponding to the maximal
parameter sequence for a certain chain sequence. We also find the minimal parameter sequence, as well as
the parameter sequence corresponding to the generalized Stieltjes—Wigert polynomials, and compute the
value of related continued fractions. The mass points of wM have been studied in recent papers of Hayman,
Ismail-Zhang and Huber. In the special case of p = ¢, the maximal parameter sequence is constant and the
determination of uM and (P,f” ) gives an answer to a question posed by Chihara in 2001.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

In [10], Chihara formulated an open problem concerning kernel polynomials and chain
sequences motivated by the results in his paper [8] and his monograph [9]. To formulate the
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problem precisely, we need some notation and explanation, but roughly speaking it deals with
the following observation of Chihara.

Let (k;,) denote the kernel polynomials of an indeterminate Stieltjes moment problem. The
corresponding shell polynomials ( pﬁ), parametrized by the initial condition 0 < hy < My for
the non-minimal parameter sequences h = (h,) of the associated chain sequence, are orthogonal
with respect to the measure

ph = M 4+ (Mo/ ho — D™ (R)S.

In the case of the generalized Stieltjes—Wigert polynomials S, (x; p, g) with p = g, Chihara
observed that the maximal parameter sequence is constant

1

n = 1+q
and for this special case Chihara’s question is:

“Find the measure u™ which has the property that the Hamburger moment problem is
determinate, but if mass is added at the origin, the Stieltjes problem becomes indeterminate.”

In this paper we find the measure ¥ as the discrete measure

oo
WM =" pubs,,
n=1

obtained by removing the mass at zero from an N-extremal solution to the generalized
Stieltjes—Wigert moment problem, and the numbers 7,, behave like

T, =q 1214+ 0@G") asn — .

For p, g small enough or n sufficiently large, there are constants b;, j > 1, such that 7, is given
by

00
T, = q—2n—1/2 (Z qujn> ,
=1

see Theorem 3.3 for details. These results are due to Hayman [13], Ismail-Zhang [16], and
Huber [14]. It does not seem possible to find more explicit formulas for the numbers 7,, because
this is equivalent to finding the zeros of the g-Bessel function Jlfz) (z; q).

We also find explicit formulas for the coefficients of the orthonormal polynomials associated
with the measure ,uM , see Theorem 4.1, and compute the minimal and maximal parameter
sequences as well as the parameter sequence corresponding to S, (x; p, ¢) in Theorem 5.1. The
explicit expressions at hand allow us to show that

LB a((pg" " Do = @" 75 o)

1= e = (14 g = (L4 P)g)((PG"; Doo = (475 Doo)

for every n > 1, where

_ q(1 —¢"d — pg")
A+g— 0+ pgHd+qg— 1+ p)g'th)’

Bn
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2. Preliminaries

It is well known that chain sequences can be used to characterize those three-term recurrence
relations for orthogonal polynomials which have a measure of orthogonality supported by [0, col,
cf. [9]. The moments of such a measure form a Stieltjes moment sequence. A Stieltjes moment
sequence is called determinate in the sense of Stieltjes (in short det(S)) if there is only one
measure supported on [0, oo[ with these moments, while it is called indeterminate in the sense of
Stieltjes (in short indet(S)) if there are different measures on the half-line with these moments.

If a Stieltjes moment sequence is indet(S), then there are also measures with the
same moments not supported by the positive half-line. This follows from the Nevanlinna
parametrization of the indeterminate Hamburger moment problem. If the Stieltjes moment
sequence is det(S), it is still possible that it is an indeterminate Hamburger moment sequence.
See [6] for concrete examples.

In the following, let (p,) be a sequence of monic orthogonal polynomials for a positive
measure @ with moments of any order and infinite support contained in [0, co[. We denote
by (k) the sequence of monic orthogonal polynomials with respect to the measure xdu(x).
The polynomials (k,) are called kernel polynomials because they are the monic version of the
reproducing kernels

n

Koo, y) =Y pe@pe/Ipel® lpell* = / PR(x) duu(x)

k=0
when y =0, i.e.,
Il pnlI?
kn(x) = K, (x,0).
" pn(0) "

The three-term recurrence relation for the kernel polynomials is given as

kn(x) = (x — dp)kp—1(x) — vpkp—2, n=1 1
(with the convention that k_; = 0, v; is not defined). It is known, cf. [8], that

Bn = Vny1/(dpdpt1), n=1 2

is a chain sequence which does not determine the parameter sequence uniquely. In this case there
exists a largest My > O such that for any 0 < hg < M, there is a parameter sequence /,,n > 0,
such that

Bn =hn(1 —hp—1), n=>1 (3)

The parameter sequence M,, = h, (resp. m, = h;) determined by hg = My (resp. ho = my = 0)
is called the maximal (resp. minimal) parameter sequence. For each parameter sequence h =
(hy) with 0 < hg < My, there exists a family of monic orthogonal polynomials ( pﬁ) on [0, oo[
which all have (k) as kernel polynomials. The polynomials ( pfl’) are called the shell polynomials
of the kernel polynomials (k;). The coefficients in the three-term recurrence relation

i) = (x = D py_ () = Ay py_p(x) @)
are given explicitly in [8] in terms of d,,, h,, by

A =hody, ' =0 = hy_D)dy + hpdpyr, n =1, (5)
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and
A == hy_Dhy—1dl, n> 1. ©)
Theorem 2 in [8] states:

Theorem 2.1. The polynomials ( p,’y ) are orthogonal with respect to a determinate measure ™
which has no mass at 0.
For O < hg < My, the polynomials ( pz’) are orthogonal with respect to

ph =M 4+ (Mo/ ho — D™ (R), ©)

where 8¢ denotes the Dirac measure with mass 1 at 0.
The measure u" is indet(S) if and only if xdu"(x) = xduM (x) is indet(S).

Remark 2.2. Recall that for a measure j, the proportional measure A (A > 0) leads to the same
monic orthogonal polynomials as s. The normalization in (7) is chosen so that Au” precisely
corresponds to A for any A > 0.

In all of this paper we shall be focusing on the case where xdu™ (x) is indet(S), i.e., when the
kernel polynomials correspond to an indeterminate Stieltjes moment problem.

Concerning the “if and only if” statement of the theorem, it is easy to see that if u” is
indet(S), then xdu”(x) is indet(S). The reverse implication is proved in [8, p. 6-7], and the
reverse implication is also a consequence of [5, Lemma 5.4].

The measure u is determinate in the sense of Hamburger and xdu™ (x) is indet(S). Using
the terminology of [5, Sect.5], we see that the index of determinacy ind(1™) is 0. The measures
on [0, oo of index zero were characterized in [5, Thm. 5.5] as the discrete measures o defined
in the following way: Take any Stieltjes moment sequence (s,) which is indet(S) and let vy be
the corresponding N-extremal solution which has a mass at 0. Define o by

o = vy — vo({0})do.

In other words, if (P,) are the orthonormal polynomials corresponding to (s;,) and if

o
D(z) =2 ) Pu(2) Pa(0), (8)
n=0
then D has simple zeros tp =0 <11 < --- <1, < ---and
o0 o0
Vo= puby,. O =) pads,. C))
n=0 n=1
where
0
o' =" PE(Ta). (10)
k=0

Stieltjes observed that removing the mass at zero of the solution vy to an indeterminate Stielt-
jes problem leads to a determinate solution; see [17, Sect. 65]. This phenomenon was exploited
in [2] for indeterminate Hamburger moment problems and carried on in Berg—Duran [3]. It fol-
lows that all the measures /,Lh given by (7) for 0 < hg < M are N-extremal.
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3. The generalized Stieltjes—Wigert polynomials
For0 <g < 1land 0 < p < 1, we consider the moment sequence

_ 2
sn = (ps Qng~ V2 n >0, (11)

given by the integrals

1 /"O (_ (log x)?
V2w log(1/g) Jo 2log(1/q)

We call (s,) the generalized Stieltjes—Wigert moment sequence because it is associated with the
generalized Stieltjes—Wigert polynomials

) (P, —P/\ax; @)oo dx. (12)

n Ko k
Su(xi pg) = (=" "2 (prga Y m (a2 (13)
k=0 q (p’ Q)k

where we follow the monic notation and normalization of [9, p. 174] for these polynomials. We
have used the Gaussian g-binomial coefficients

|:n:| _ (4: Dn
ki, (@ @@ Pn-k’

involving the g-shifted factorial
n
(Z§‘I)71=1_[(1_qu_l)y zeC,n=0,1,...,0

We refer to [12] for information about this notation and g-series.

The Stieltjes—Wigert polynomials correspond to the special case p = 0. In his famous
memoir [17], Stieltjes noticed that the special values log(1/g) = 1/2 and p = 0 give an example
of an indeterminate moment problem, and Wigert [20] found the corresponding orthonormal
polynomials. The normalization is the same as in Szegé [18]. Note that

so=1/4. (14)

The Stieltjes—Wigert moment problem has been extensively studied in [11] using a slightly
different normalization.
For the generalized Stieltjes—Wigert polynomials, the orthonormal version is given as

k2+k/2
ok

Patx: pr ) = (—1yg/21/3 [P Z(— [ ] (15)

(@ Dn (p; q)k

From (15) we get

Py(0; p, q) = (—1)"q"*F14 | % (16)

and hence, by the g-binomial theorem, cf. [12],

=~ (P: @n (Pq; oo
P2(0; p, q" = Jg——= 17
,;) n( P = \/_Z (q Q)n ﬁ @ @)oo {17
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From the general theory in [1] we know that the generalized Stieltjes—Wigert moment
sequence has an N-extremal solution vy which has the mass

Va(pq: @)
at 0, and v is a discrete measure concentrated at the zeros of the entire function
o
D) =z)_ Pu(0; p.q)Pu(z: p. q). (19)
n=0

The measure i = vy — cdg is determinate, cf., e.g., [2, Thm. 7]. The moment sequence (5,) of i
equals the Stieltjes—Wigert moment sequence except for n = 0,

- a1 = (@ 9so/ (P45 D)ol ifn =0,

Sn = —(m+1)2/2 ifn> 1,

(20
(P; 9Ing

and so the corresponding Hankel matrices H and H only differ at the entry (0,0). The
orthonormal polynomials associated with (s,,) will be denoted P, (x; P, q). We call them the
modified generalized Stieltjes—Wigert polynomials, and they will be determined in Section 4.

With (15)—(16) at hand, we can find the entire function D in (19) explicitly. The following
generating function leads to the power series expansion of D.

Lemma 3.1. For |t| < 1, we have

o . n k2 +k/2 . 0 n%4n/2
Z (pj Dn Z |:n:| AR P (pf,q)oo q ——-y 21
= @ Dn \iZ [T (130 £=5 (P14 @n

Proof. Since the double series on the left-hand side is absolutely convergent, we can interchange
the order of summation to get

0o k2+k/2 00 .
LHS — q Zkz (Ps @n m
=P D =@ Dok

Shifting the index of summation on the inner sum, the ¢g-binomial theorem, see [12], leads to

1 0 _k>+k/2

q k k
LHS = 1) oo .
i 2 @iy P D

We thus arrive at (21). [

Set t = g and replace z by —z in (21) to get

n(n+1)

D() —zf(pq o 5 N 1) (22)
n=0

o]

(pq q; Dn

The expression in (22) is essentially the g-Bessel function Jlfz) (z; q) for g¥ = p, cf. [12].
Besides 79 = 0, the zeros 1, of (22) cannot be found explicitly. However, the asymptotic
behavior of 7, for n large can be described up to a small error. General results of
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Bergweiler—Hayman [7] show that

T, = Ag” "1+ O(G") asn — oo (23)
for some constant A > 0. In fact, A = g~ !/? as follows from later work of Hayman. He proved
in [13] that
Theorem 3.2. Given k > 1, there are constants by, .. ., by (depending on p, q) such that

k .

T, =g 212 (1 + Y big)"+ O(q(k+1)”)) asn — oo. (24)

j=l1

The first few values of the constants are

I+p

by=——— £ =0,
U=y ’
by = AU+ a)A+P) +2pg(L+ p)( +q +q7)
(1 -~ g*(1 - q;)1p12(q)
(1+p) o (2j — g%/~
F o 1T
by = b1 b3,
where
,(/j(q) — iqn(n-ﬁ-l)ﬂ — (qz’ qz)oo
= (4 4Ho0

Even stronger results were recently obtained by Ismail-Zhang [16] and Huber [14,15]. They
showed that for n sufficiently large (in [16]) or for every n when p, g are small enough (in [14]),

Theorem 3.3. There are constants bj, j > 1, such that T, is given exactly by the convergent
series

o0
T, = q 212 (1 + ijan> ) (25)
j=1

The b;’s satisfy a somewhat complicated recursion formula that in principle allows for
determining by from by,...,b;. See [14,15] for details. In particular, [15] includes the
coefficients b; up to index 14 and indicates how further coefficients may be derived.

4. The modified generalized Stieltjes—Wigert polynomials

It is a classical fact, cf. [1, p. 3], that the orthonormal polynomials (P,) corresponding to a
moment sequence (s;) are given by the formula

1 : oo :
P,(x) = ————==det : . : . , (26)
! vV Dn—1Dy Sn—1 Sn 0 S2n—1
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where
D, = detH,, Hy = (sitj)o<i,j<n-

In this way Wigert calculated the polynomials P,(x;0,q) and we shall follow the same
procedure for P,(x; p,q) and 13,, (x; p, q). Recall that (P,(x; p, g)) denote the orthonormal
generalized Stieltjes—Wigert polynomials corresponding to the moment sequence (11), so they
are known, cf. (15). Similarly, (f’n(x; P, q)) denote the orthonormal modified generalized
Stieltjes—Wigert polynomials corresponding to the moment sequence (20), and they have not
been calculated before as far as the authors know, except for the case p = 0, where the calculation
was carried out in [4].
It will be convenient to use the notation

Ap=(pq"; oo — (q@"; Q0,1 >0. 27
Writing
n _ n _
Pu(xip.q) =Y biax’s  Pulxip.q) = biax", (28)
we have:

Theorem 4.1. For 0 <k <n,

K2+k/2 1—g* ("9
bn = Cn —1k[]q [1— a q“], 29
¢ =D (P; Dk 1 — pg* (pg" s @)oo (29

where
. (P; Dn (q@"; @)oo @ 9o \17?
e[ - - )
-1’4 (45 Dn (Pq"; @)oo (Pg" ™ Do
_ (g2t | P D (pq"* vQ)oo 30
= @ Dn VA, An+] 0)

ie.,
~ 1 — pq"
bin=b ntl. — ntl, —1 31
kon = bin [(pq Doo = 7 Y k (q 9)oo Ao (3D
Moreover,
~ An—H
D, =—+—D,, (32)
(g oo
where D, = detH,, and D,, = det H,,.
Proof. We first recall the Vandermonde determinant
1 1 1
X ) e Xn
Va(xt, ... xp) =det | =TT @i (33)
. . . . 1<i<j<n
n—1 n—1 n—1
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Using the moments s, = (p; ¢)ng~"+1*/2, we find

D, = (l_[ Sj) det(si+;/sj) = (H(P: 61)j> g3 det(sit ) /5)). (34)
j=0 =1

where o, = Z;l':o j* = n(n + 1)(2n + 1)/6. Noting that

. _2 T
sivi/sj = (pa’s @i g~ g7, (35)
we get
L 1 ; o
D, = (n(p; q)j) q—j(tfn+1+0n) det((pq’; q); q—l(j'f‘l))' (36)
j=1

The last determinant can be simplified in the following way: Multiply the first row
(corresponding to i = 0) by p/gq and add it to the second row (i = 1). Then the second row
becomes q_(j b Jj =0,1,...,n, and the determinant is not changed. The third row (i = 2)
has the entries

g 2UtY — p+ 1/q)g Ut + p2rg, j=0,1,....n,

so adding the first row multiplied by —p?/q and the second row multiplied by p(1 + 1/g) to
the third row, changes the third row to q’z(/ D j =0,1,...,n, and the determinant is not
changed. If we go on like this, we finally get

n
D, = (H(p; q)j) g~ 3O+ dey(qTIUHD), (37)
Jj=1
The last determinant is precisely V,41(g~', ..., ¢~"*D), and, by (33), is equal to
n  n+l n
I[TT1 @/ —aH=[]a """ @ui1-i.
i=1 j=i+1 i=1

After some reduction, we get

n
Viri(g™h o, gm0y = gt VeRB T g ). (38)
j=1
Hence,
n
D, = (]_[(p, a; q)j) g~ rrhenEDErE/e, (39)
j=1

and for later use we note that

_ 2
Dy/Du1 = (p.q: @)n g~ > V72, (40)

We denote by A, s (resp. Am) the cofactor of entry (r, s) of the Hankel matrix H, (resp. 7:[,,),
wherer, s =0, 1, ..., n. (Note that entry (r, s) is in row number r 4 1 and column number s+ 1.)
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When r = 0 or s = 0, we clearly have A, ; = Am. For 0 < s < n, we get

Aps = (= D" Ydet(sl+j|l_% ........ r:, 7]1753)

= (=) Hs, det(s,+,/sj|_d~-*’;‘,#)

Jj=0
J#s

n
= (D" l_[(p;q)j q*%(‘fn+1+dn7r(s+1)2)

Jj=0
i#s
1 —i(j+1),i=0,...,n—1
x det ((pq’; @ig 'Vt )I’,-=o,m,'f1;j#).

However, the last determinant can be simplified like the simplifications from (36) to (37) to give

the Vandermonde determinant V,, (q’(/' +D | j=0,...,n,j #s). To calculate this determinant,
we observe that

s—1
Vart (@™o g7 ) = V@Y 1 =0, n £ 9) [ [T —g7UTY)
Jj=0

n
% 1—[ (q~U+D — g=6+Dy

Jj=s+1

—(i . . —s(s Ll .
=Vulg UtV 1 =0,...,n, ) #)(q: Qsq TV (g @)uosg 27O OHHD),

and hence
=D £
Aps = (P q)j
" @ (i )s UO /
X Vost(g~h q—<n+1))q—%(on+1+on71—n(n+3>—1>qs2+s/2

_ (=" |:n] an(n+l)(n+l/2)qs2+s/2.

q; Dn(P; Qs

Using (26) it is now easy to verify formula (15) for the generalized Stieltjes—Wigert polynomials
Po(x; p, q).
Expanding after the first column, we get

[jl’l:Dn_CAO,Ov C:M,
V4P @)oo

and a calculation as above leads to

Ag,o = det(sitj |i,j=1,...,n)

n
= (1_[ Sj+1) det(si+j/sj+1 i, j=1,...,n)

j=1
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n+1

1 .

= (]_[(p; q)j) g 2OtV j =3, n+2)
j=2

n+1
_1 _ —n(n— i .
- (l_[(p; q)‘/) q 2(5n+2+5n71 S)q n(n I)Vn(q j’ J = 19 L} n)'
j=2

Using (38) with n replaced by n — 1 and (39), we find
(P: Dnt1/4
"= p) @i

which gives (32).
For1 <s <n, we find

Ap,0 =D,

- j=1,...,n—1
An,s = An,s - C(_l)n * det (Si+j |lj=1,..‘,n; j ) ’
and the determinant on the right-hand side can be calculated by the same method as above to be
. i=1 1
i=1,..., n—
[Tsss1 | det (Sz‘+j/Sj+1 =1 n;j#s)

j=1
s

n
_1 _5_ 2 —(j . .
[ [ g 2ton2 52680y, (gm0 j =1, nij#s)

J=1

J#s
1 (P; Dn(Ps P+ —n2—(n—1)/2+s(s+1/2)
n— .
(I =p)(p; Ds+1(q; Pn—s(q; q)s—1
This leads to
: 1—¢* ("9
An,s - An,s |:1 - 3 1 x P (41)
1 —pg® (pg"*"; @)oo

which also holds for s = 0 because then An,O = Ap 0. Itis now easy to establish (31). U

Remark 4.2. The orthonormal polynomials P,(x; p,q) belong to a determinate moment
problem. From Theorem 4.1 it is possible to find the asymptotic behavior of P,(x; p, q) as
n — oo for any x € C, namely

Pu(x; p,q) ~ (=1)"c(x)g ™"/, (42)

where

2
c(x) = 6171/41 —q | (P @)oo i gt e (—gx)k
1=p\ (@ Do = (Pq- 05 Dk

is essentially the g-Bessel function Jv(z) (z; q) with p = g".
To see this, we notice that

2
i(_l)k |:n:| qk +k/2 |:1 B 1— qk (qn-&-l; Doo :|xk
= k], (P @)k 1= pgk (pg" s @)oo




1460 C. Berg, J.S. Christiansen / Journal of Approximation Theory 163 (2011) 1449-1464

converges to

2 2
. gk Hk2 1—g* . O k)2 )
Z( DF - xh = L (g
(P q: @k 1 —pq = (Pq. 4 D
From the g-binomial theorem, we find
n; 1—
EECELN pq” asn — 0o (43)
(Pq": @)oo 1—9q
and combining the above, we get (42).
The monic polynomials p,(x; p,q) = P.(x; p.q) /15,”, satisfy the three-term recurrence
relation
Pn(X: o @) = (x = ) a1 (X5 P, @) — KnPn2(x; pq), n =1, (44)
where the coefficients are given by
b by b
Gl= -l G =l et o (45)
b1 bpn  batinti
and
- b2_,
Ayl = 2=bnml s, (46)
b n

Using the expressions from Theorem 4.1, we get

Theorem 4.3. Let A,, be defined as in (27). Then the coefficients in (45)—(46) are given by

g = (p Qoo _3/2

A
q—Zn—3/2
Gt = [0 = g™ (Pq"; Qoo — (1 = pg" ™) (q@"; @)ool ——— (47)
(1 = @) Aps
| | q—2n+1/2
— (1 =g" n—1. —(1 — n n—1. I
[(1 =g (Pg" "5 @)oo — (1 = pg)(q ,q)oo](l_q)An,
and
- Apo1 4, . _
Fnp1 = %(1 —q")(1 — pg™g . (48)

Proof. Specializing (29)to k = n and k = n — 1, we find

1/2
En n= q"2+”+1/4 < An > /
' An1(ps Dnr1(q: @

and
2
G " TR A =g (Pg" T Do = (1= g @ T o
n—Ii,n — .
(1—¢q) V05 Dnt1(q5 Dndn D
Using (45)—(46), we obtain the expressions in (47)—(48). O
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In the special case p = ¢, the formulas of Theorems 4.1 and 4.3 simplify.

Corollary 4.4. The coefficients of (28) in the case p = q are given by

it - k|n ‘1k2+k/2 k+1 k 1
bin = Cp(=1) [k} —— [ =g =1 ¢ U= 4", 49)
g @ Dit1

where

Co = (=1)"q"*7 4, (50)
ie.,

- o (1 _ k)(l _ n+l)

bin = binq " [1 - i’_qkf 51
Moreover,

D, =4¢"t'D,. (52)
Finally, the coefficients (45)—(46) in the three-term recurrence relation are

Gi=0+q —(+qHgMg "% L= 0-g¢" g™ (53)
5. The kernel polynomials

By (12), the polynomials S, (x; p, g) are orthogonal with respect to the density
1 (log x)? )
D(x; p,q) = ——————¢x <—— (p, — X; q)oos (54)
7D = roati S\ 2egiygy ) PRIV e
and we see that
q
D(gx; pq,q) = x 1{_pD(x; P q)- (55)

This shows that the monic polynomials &k, (x) = ¢~ "S,(¢x; pq, q) are orthogonal with respect
to the density in (55), hence equal to the monic kernel polynomials corresponding to S, (x; p, q).
The three-term recurrence relation for S, (x; p, q) is

Sn(x;p,q) =& —cp)Sp—1(x; p.q) — AnSp—2(x; p,q), n=>1,
with
an=(0+qg—P+@q" Hg 2 =0 —g"A = pg" He™*. (56)
It follows that the coefficients in (1) for the case p,(x) = S, (x; p, q) are given by
dy=1+q—0+p)gg™ 12 v =0 —¢"A - pghg (57)

Chihara observed that for p = ¢ we have the following simple form of the coefficients in
57):

do=A+q)(1—gMg V2 v =10 —¢"HA =g g2 (58)
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In this case, the chain sequence (2) becomes the constant sequence

_ q
ST
satisfying 0 < 8, < 1/4, and the maximal parameter sequence is also constant
1
M, = ——.
I+gqg

For the shell polynomials p, which are equal to p,(x; g, q), Chihara gave the following
form of the coefficients from (4):

M= (1+¢*— A +gHg"Hg™ V2 M =0 ¢ (59)

(There is a misprint in [10]: The power 2 is missing in the last formula). The expressions in (59)
agree with the expressions in (53).
Going back to arbitrary 0 < p < 1, we find the following:

Theorem 5.1. The chain sequence (2) corresponding to the kernel polynomials k,(x) = g™"

Sn(gx; pq,q) is

_ q(1 —¢"d ~ pg")
(I4+q—A+p)g"nHd+q— 1+ pgty

The maximal and minimal parameter sequences (M) and (m,) are given by

_ q Ap S q(1—q")
l+q— 1+ pg" Apyy’ " l4q— 1+ pgntt

and the generalized Stieltjes—Wigert polynomials S, (x; p,q) correspond to the parameter
sequence

> 1. (60)

Bn

(61)

n

_ q(1 — pg")
I+g— 1+ p)g"tt’

(62)

n

Proof. The expression for 3, follows immediately from (57). We know from Theorem 2.1 that
Py (x) = palx; p. ). So by (5),

Ciw = Moyd,,
and by (47) and (57), we have
N A7) _
ol =a =570 di=(+g— A+ P
Hence,
q9(P; Q)0

T U+g-+paar”
showing the formula for M, for n = 0. It is now easy to show by induction that 8, = M,
(1—M,_) forn > 1.
It is similarly easy to see by induction that the sequences (m,), (h,) are parameter sequences
for (B,). Since my = 0, (m,) is the minimal parameter sequence. To see that (4,) corresponds
to S, (x; p, q), it suffices to verify that hod; = ¢, where ¢ is given by (56). O
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The parameter sequences from Theorem 5.1 enable us to find the value 8 of the continued
fraction

(63)

IR S b
1+L °T1ygG’

o0 &S]

L= : , G =

(l—hl) (l—h)

n=1

Since (M) is the maximal parameter sequence for the chain sequence (8;+¢), we can in fact
find the value of

Br+1

1 — Brk+2
1— Brt3
I—-

1— (64)

for every k > 0.
We collect the above considerations in the following:

Theorem 5.2. Let (B,) be the chain sequence given by (60). Then the continued fraction
in (63) has the value
g A _ g0 =P’ 9o
L=pg A1 (Pg: oo = (45 @)oo
More generally, the continued fraction in (64) has the value
q Ay
14+q— 1+ p)ght! A’

ﬂ:

k> 0.

My =

Proof. The result follows immediately from [9, Thm. 6.1 (Chap. III)]. To find L and G, note that

mi  q(l—gq") he g —pgh)
1—mg 1 — pgktl’ 1 — hy 1 — gkt ”’
so that
4L = Z(qq)n 4" 146G = Z(pqq)nn
(pq @Dn (% @n

The value of 1 4+ G can thus be found using the g-binomial theorem. To compute 1 + L, one first
applies Heine’s transformation formula and then the g-binomial theorem. [

Remark 5.3. We mention that

0 MM, _ ©5)
,;U—Ml)---(l—Mn) -
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precisely as should be the case for the maximal parameter sequence. To see this, note that
My MMy Ay q
I=Me Bt Az (=g DA = pghth)’
so that the series in (65) reduces to
— A1 q"
Api1 A2 (@7 g% O

n=1
On the lines of (43), we have

1_
Ay = 1—p "+ 0™,
—q

and the result follows.
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