A characterization of a class of dimensional dual hyperovals with doubly transitive automorphism groups and its applications

Satoshi Yoshiara

Department of Mathematics, Tokyo Woman’s Christian University, Suginami-ku, Tokyo 167-8585, Japan

Received 3 September 2007; accepted 5 January 2008
Available online 4 March 2008

Abstract

A characterization theorem is given for d-dimensional hyperovals over $GF(2)$ with doubly transitive automorphism group, if it has the ambient space of dimension $2(d + 1)$. Based on this theorem, some classification of those dual hyperovals are obtained.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let U be a vector space over a finite field $GF(q)$ with q elements. A family A of $(d + 1)$-dimensional subspaces of U is called a d-dimensional dual arc (abbreviated to d-dual arc) over $GF(q)$ if it satisfies the following conditions.

1. $\dim(X \cap Y) = 1$ for every distinct members X and Y of A.
2. $X \cap Y \cap Z = \{0\}$ for mutually distinct members X, Y, Z of A.

The subspace of U spanned by the members of A is called the ambient space of A. It is easy to see that a d-dual arc has at most $((q^{d+1} - 1)/(q - 1)) + 1$ members. If the upper bound is attained, A is called a d-dimensional dual hyperoval (abbreviated to d-dual hyperoval).

Recall that the automorphism group $\text{Aut}(S)$ of a d-dual hyperoval S with ambient space V is defined to be the subgroup of automorphisms of the projective space $PG(V)$ associated with V which preserve S.
This paper is a continuation of [4], where the structure of the automorphism group $\text{Aut}(S)$ is restricted if it acts doubly transitively on S and $d \geq 2$. In particular, $q = 2$ or 4 and S is explicitly determined if $q = 4$. If $q = 2$, any subgroup G of $\text{Aut}(S)$ acting doubly transitively on S is of affine type, namely, it has a normal subgroup N acting regularly on S. Then $G = N : G_X$, a semidirect product of N with the stabilizer G_X of a member X of S in G. In the rest of this paper, N always denotes the regular normal subgroup of G on S.

In this paper, we investigate such S with ambient space of small dimension. In Section 3, we establish the following characterization theorem of a family of d-dual hyperovals S^{d+1} with $\sigma, \tau \in \text{Gal}(GF(2^{d+1})/GF(2))$ [3]. We use the symbol Z_m to denote a cyclic group of order m. Recall that a group acting on a set is called half-transitive if its orbits all have equal length greater than 1.

Theorem 1. Let d be a positive integer with $d \geq 2$. Let S be a d-dual hyperoval over $GF(2)$ with ambient space V of dimension $2d + 2$ on which a subgroup G of $\text{Aut}(S)$ acts doubly transitively. Assume that the stabilizer in G of a member $X \in S$ contains a cyclic subgroup S which is regular on the set $X^\#$ of nonzero vectors of X. If $d = 5$, assume further that S is half-transitive on the nonzero vectors of $[V, N]$, where N is the normal subgroup of G which is regular on S.

Then S is isomorphic to the dual hyperoval S^{d+1} for some field automorphisms σ and τ in $\text{Gal}(GF(2^{d+1})/GF(2))$ with $\sigma \tau \neq i d_{GF(2^{d+1})}$. In particular, $\text{Aut}(S)$ is the semidirect product of N with the stabilizer of a member X of S, which is isomorphic to $\Gamma L_1(2^{d+1}) \cong Z_{2^{d+1}} : Z_{d+1}$ or $SL_3(2)$ according as $d \geq 3$ or $d = 2$.

In Section 4, some classifications are obtained using **Theorem 1**. In these theorems, d is a positive integer with $d \geq 2$.

Theorem 2. Let S be a d-dual hyperoval over $GF(2)$ with ambient space V of dimension $2d + 1$. Assume that G is a subgroup of $\text{Aut}(S)$ which is doubly transitive on S. Then $G = N : G_X$ is a semidirect product of the regular normal subgroup N on S with the stabilizer G_X of a member X of S, which is isomorphic to a subgroup of $Z_{2^{d+1} - 1} : Z_{d+1}$, acting transitively on $X^\#$.

Theorem 3. Let S be a d-dual hyperoval over $GF(2)$ with ambient space V of dimension $2d + 2$. Assume that G is a subgroup of $\text{Aut}(S)$ which is doubly transitive on S. Then $G = N : G_X$ is a semidirect product of a regular normal subgroup N on S with the stabilizer G_X of a member X of S, which is isomorphic to one of the following groups:

(1) $\Gamma L_1(2^{d+1}) \cong Z_{2^{d+1}} : Z_{d+1}$, acting transitively on $X^\#$.

(2) a subgroup of $\text{GL}_2(r) : Z_{(d+1)/2}$ containing a normal subgroup $\text{SL}_2(r)$, where $r = 2^{(d+1)/2}$.

This occurs only when d is odd.

(3) $\text{SL}_3(2)$ with $d = 2$; A_6 or S_6 with $d = 3$; and $G_2(2)'$, $G_2(2)$ or $Sp_{6}(2)$ with $d = 5$.

If d is even and $2^{d+1} - 1$ is coprime with $d + 1$, then cases (2), (3) above do not occur, except $d = 2$ in case (3). In case (1), the normal subgroup $Z_{2^{d+1} - 1}$ is the unique subgroup acting regularly on $X^\#$. Thus from **Theorems 1 and 3** we obtain:

Corollary 4. Assume that d is even and $2^{d+1} - 1$ is coprime with $d + 1$. Then a d-dual hyperoval S over $GF(2)$ with ambient space of dimension $2d + 2$ admits an automorphism group acting doubly transitively on S if and only if S is isomorphic to $S^{d+1}_{\sigma, \tau}$ for some $\sigma, \tau \in \text{Gal}(GF(2^{d+1})/GF(2))$.

The paper is organized as follows. In Section 2, some general lemma are derived on the commutator space $[V, N]$ of the action of N on the ambient space V of S. Section 3 is the main part of the paper, where Theorem 1 is proved: we first determine the actions on both X and $[V, N]$ of a certain cyclic subgroup S of G_X, and then specify S by exploiting functional methods. In Section 4, we derive Theorems 2 and 3, using group theory, based on an observation that some substructures of S inherit the property of S (Lemma 15).

2. Some general results

In this section, we assume that S is a d-dual hyperoval over $GF(2)$ with ambient space V admitting an automorphism group $G (\leq Aut(S))$ which acts doubly transitively on S. Then G is of affine type by [4]. Let N be the normal subgroup of G acting regularly on S, and let X be a given member of S. Then $G = N : G_X$ is a semidirect product of N with G_X.

Notice that there is a bijection ν from the set $X^#$ of nonzero vectors of X to the set $N^# = N \setminus \{1\}$ of involutions of N:

$$x^# \ni x \mapsto \nu(x) := \text{the unique involution of } N^\# \text{ such that } x \in X \cap X^{\nu(x)}.$$

There are three actions of G_X: the first one is on $S \setminus \{X\}$, the second is on $X^# = PG(X)$, and the third is on $N^#$ by conjugation. Notice that they are equivalent to each other, via $Y \mapsto \nu(Y)$. In particular, $\nu(x)^g = \nu(x^g)$ for $x \in X^#$ and $g \in G_X$. As G is doubly transitive on S, G_X is transitive on $X^#$.

Let $[V, N]$ be the smallest subspace W of V such that N acts trivially on V/W. It is spanned by all commutators $[v, n] = -v + v^n = v + v^n$ for $v \in V$ and $n \in N$. As V is spanned by all $X^n (n \in N)$, $[V, N]$ is spanned by $x + x^n$ for $x \in X$ and $n \in N$.

Lemma 5. (1) We have $V = X \oplus [V, N]$.
(2) For each involution $n \in N$, we have $\{x + x^n \mid x \in X\} = [X, n] = \langle X, X^n \rangle \cap [V, N]$ and $\langle X, X^n \rangle = X \oplus [X, n]$.

Proof. (1) Since $[V, N]$ is G-invariant, $X \cap [V, N]$ is a G_X-invariant subspace of X. As G_X acts transitively on $X^#$, we have either $X \subseteq [V, N]$ or $X \cap [V, N] = \{0\}$. In the former case, $V = \langle X^n \mid n \in N \rangle$ is contained in $[V, N]$. However, $[V, N] \not= V$, as V is a nontrivial 2-group on which G_X acts 2-regularly. Thus we have $X \cap [V, N] = \{0\}$. As N acts trivially on $V/([V, N])$, N acts on $\langle X, [V, N] \rangle = X \oplus [V, N]$. Thus this subspace contains all members $X^n (n \in N)$ of S, and therefore $V = \langle X^n \mid n \in N \rangle = X \oplus [V, N]$.

(2) As the map $X \ni x \mapsto x + x^n \in [X, n]$ is a $GF(2)$-linear surjection with kernel $C_X(n)$, we have $X/C_X(n) \cong [X, n]$. As $X \not= X^n$, $X \cap X^n = C_X(n)$ is a projective point on X, whence $\dim_{GF(2)}[X, n] = d$. From claim 1, $\langle X, X^n \rangle = X \oplus ([X, X^n] \cap [V, N])$. Thus $\langle X, X^n \rangle \cap [V, N]$ is of dimension $\dim([X, X^n]) = 2(d + 1) - 1 = (d + 1) = d$. As $\langle X, X^n \rangle \cap [V, N]$ contains $[X, n]$, we have $\langle X, X^n \rangle \cap [V, N] = [X, n]$ by comparing the dimensions. \hfill \Box

Lemma 6. Let T be a subgroup of G_X which acts on N irreducibly, that is, N is the only nontrivial T-invariant subgroup of N. If $\dim(V) \geq 2(d + 1)$, then T does not centralize $[V, N]$.

Proof. Take an involution n of $N^#$, and let M be the subgroup of N generated by $g^{-1}ng$ for all $g \in T$. Then M is a nontrivial T-invariant subgroup of N, whence $M = N$ by the assumption. Suppose that T centralizes $Y : = [V, N]$. Then T acts on $H : = \langle X, X^n \rangle = X \oplus [X, n]$, and

$[X, n] = \langle X, X^n \rangle \cap Y$ (see Lemma 5(2)) is centralized by T and $T \subseteq G_X$. Since the involution
Theorem 1

Suppose that \(n \) normalizes \(H \), then \(g^{-1}ng \) normalizes \(H \) for all \(g \in T \). Thus \(N = M = \langle g^{-1}ng \mid g \in T \rangle \) normalizes \(H \). However, as \(N \) acts transitively on \(S \), this implies that \(H \) contains all the members of \(S \), whence \(H = V \), the ambient space. Then \(\dim(V) = \dim(X \oplus [X, n]) = (d + 1) + d = 2d + 1 \). \(\square \)

3. Proof of Theorem 1

Throughout this section, we assume the hypothesis in Section 2 and that \(\dim_{GF(2)}(V) = 2(d + 1) \). Since \(\dim(V) = 2(d + 1) \), we have \(\dim([V, N]) = d + 1 \) by Lemma 5(1). The group \(G \) acts on \([V, N]\), whence \(N \) acts on \([V, N]\), and the stabilizer \(G_X \) acts both on \(X \) and \([V, N]\). We begin with examining the actions of \(G_X \) and \(N \) on \([V, N]\).

Lemma 7. Assume that \(S \) is a cyclic subgroup of \(G_X \) acting regularly on the set \(X^\# \) of nonzero vectors of \(X \). If \(\dim(V) = 2(d + 1) \), then \(S \) acts irreducibly on \([V, N]\) unless \(d = 5 \). In the exceptional case, if \(S \) is half-transitive on \([V, N]^\# \), then the same conclusion holds.

Proof. Suppose that \(d \neq 5 \). Then it follows from the Zsigmondy theorem (e.g. [1, VIII, 8.3 Theorem]) that there exists a 2-primitive prime divisor \(p \) of \(2^{d+1} - 1 \), that is, \(p \) is a prime dividing \(2^{d+1} - 1 \), but \(p \) is coprime with \(2^i - 1 \) for all \(1 \leq i \leq d \). Let \(T \) be the unique subgroup of the cyclic group \(S \) of order \(p \). Notice that \(T \) acts irreducibly on \(N \), for otherwise there would be a subgroup of order \(2^i \) (for \(1 \leq i \leq d \)) of \(N \) on which \(T \) acts faithfully, then \(p \) would divide \(2^i - 1 \). Then it follows from Lemma 6 that \(T \) does not centralize \([V, N]\), as we have \(\dim(V) = 2(d + 1) \) by the assumption in this lemma.

Suppose that \(S \) acts on \([V, N]\) reducibly. As \(S \) is of odd order, its action on \([V, N]\) is semisimple. Thus \([V, N] = W_1 \oplus W_2 \) for some nontrivial proper \(S \)-invariant subspaces \(W_1 \) and \(W_2 \). Since \(p \) is a 2-primitive prime divisor of \(2^{d+1} - 1 \), the group \(T \) acts trivially on both \(W_1 \) and \(W_2 \). Thus \(T \) centralizes \([V, N]\), which contradicts the conclusion above. Hence \(S \) acts irreducibly on \([V, N]\) if \(d \neq 5 \).

Consider the case \(d = 5 \). In this case there is no 2-primitive prime divisor. However, we can verify that a subgroup \(T \) of \(S \) acts irreducibly on \(N \), if \(|T| = 9 \) or 21. Then it follows from Lemma 6 that the action of such \(T \) on \([V, N]\) is nontrivial.

Now the half-transitivity of \(S \) on \([V, N]^\# \) implies that \(S \) has the same orbit length \(s \) on \([V, N]^\# \) for \(s = 3, 7, 9, 21 \) or 63. As every nontrivial \(S \)-invariant subspace is a union of some \(S \)-orbits together with the zero vector, we have two possibilities if \(S \) acts reducibly on \([V, N]\). In the first possibility, \([V, N]\) is the sum of two 3-spaces \(W_i \) (for \(i = 1, 2 \)) such that \(S \) induces \(Z_7 \) on each \(W_i \). In the second possibility, \([V, N]\) is the sum of three 2-spaces \(W_i \) (for \(i = 1, 2, 3 \)) such that \(S \) induces \(Z_3 \) on each \(W_i \). Accordingly, the kernel \(T \) of the action of \(S \) on \([V, N]\) is of order 9 or 21. However, this contradicts the conclusion in the above paragraph. \(\square \)

Lemma 8. Under the assumption of Lemma 7, we have \(C_Y(N) = [V, N] \).

Proof. As \(N \) is a 2-group acting on a nontrivial 2-group \(Y := [V, N] \), we have \(C_Y(N) \neq \{0\} \). As \(C_Y(N) \) is \(G_X \)-invariant subspace of \(Y \), we have \(C_Y(N) = Y \) by Lemma 7. As \(X \cap C_Y(N) = \{0\} \), we have \(C_Y(N) = [V, N] \) from Lemma 5(1). \(\square \)

Now we assume the hypothesis of Theorem 1. Then it follows from Lemma 7 that the cyclic group \(S \) acting regularly on \(X^\# \) acts irreducibly on the \((d + 1)\)-space \([V, N]\) over \(GF(2) \). Let \(g \) be a generator of \(S \) and let \(K \) be the kernel of the action of \(S \) on \([V, N]\). Notice that we may have \(K \neq 1 \). Then \(S/K \) is isomorphic to an irreducible cyclic subgroup of \(GL([V, N]) \cong GL_{d+1}(2) \).
It is well known (e.g. [2, Proposition 19.8]) that then we can identify $[V, N]$ with the finite field $GF(2^{d+1})$ such that the action of S/K is given by the multiplication by elements of $GF(2^{d+1})^\times$. In particular, there is an element $\omega \in GF(2^{d+1})^\times$ such that $y^\omega = \omega y$ for all $y \in [V, N]$. Hence for every element $h = g^i$ of S, there exists an element $\omega_2(h) = \omega^i$ of $GF(2^{d+1})^\times$ such that $y^h = \omega_2(h)y$ for all $y \in [V, N]$. If g^i lies in K for some i, $0 \leq i \leq 2^{d+1} - 2$, then $\omega^i = 1$.

As S acts regularly on $X^\#$, S is also an irreducible cyclic subgroup of $GL(X) \cong GL_{d+1}(2)$. Thus we can identify X with $GF(2^{d+1})$ such that for each $h \in S$ there exists an element $\omega_1(h)$ satisfying $x^h = \omega_1(h)x$ ($x \in X$). Notice that ω_1 gives a bijection of S with $GF(2^{d+1})^\times$, as S acts regularly on $X^\#$. On the other hand, the image of ω_2 is a subgroup of $GF(2^{d+1})^\times$. Thus there exists an integer ε with $0 \leq \varepsilon \leq 2^{d+1} - 2$ such that $\omega_2(g) = \omega_1(g)^\varepsilon$. Then we have $\omega_2(h) = \omega_2(g)^i = \omega_1(g)^{i\varepsilon} = \omega_1(h)^\varepsilon$ for all $h = g^i \in S$.

For each $t \in GF(2^{d+1})^\times$, there is a unique element $h \in S$ with $\omega_1(h) = t$. We denote h by $g(t)$. Notice that $S = \{g(t) \mid t \in GF(2^{d+1})^\times\}$ and $g(t^{-1}) = g(t)^{-1}$. The conclusion in the above paragraph shows that under suitable identifications of X and $[V, N]$ with $GF(q)$, $q := 2^{d+1}$, we have $x^{g(t)} = tx$ and $y^{g(t)} = t^{\varepsilon}y$ for every $x \in X$ and $y \in [V, N]$. Now, we identify $V = X \oplus [V, N]$ with $GF(q) \oplus GF(q)$ by sending $v = x + y$ ($x \in X$, $y \in [V, N]$) to (x, y), where x in the first entry (resp. y in the second entry) is the correspondent to x (resp. y) under the above identification of X (resp. $[V, N]$) with $GF(q)$. Summarizing, we have obtained the following lemma.

Lemma 9. Assume the hypothesis of Theorem 1. Then there exist an identification of V with $GF(q) \oplus GF(q)$, $q = 2^{d+1}$, and an integer ε with $0 \leq \varepsilon \leq 2^{d+1} - 2$ such that the following properties hold:

1. X and $[V, N]$ are identified with $\{(x, 0) \mid x \in GF(q)\}$ and $\{(0, y) \mid y \in GF(q)\}$ respectively.
2. For each $t \in GF(q)^\times$, there is a unique element $g(t)$ of the cyclic group S satisfying $(x, y)^{g(t)} = (tx, t^{\varepsilon}y)$ and $g(t)^{-1} = g(t^{-1})$ for every $x, y \in GF(q)$.

Take an involution n of $N^\#$. Then for every $x \in GF(q)$, the element $(x, 0) + (x, 0)^n$ lies in $[V, N] = \{(0, y) \mid y \in GF(q)\}$. Thus there exists a map f from $GF(q)$ to itself such that

$$(x, 0)^n = (x, 0) + (0, f(x)) = (x, f(x))$$

for all $x \in GF(q)$. As n is $GF(2)$-linear on V, we see that the map f is $GF(2)$-linear as well. Thus f is represented by a polynomial of the following shape for some a_i in $GF(q)$ ($0 \leq i \leq d$):

$$f(X) = a_0X + a_1X^2 + \cdots + a_iX^{2^i} + \cdots + a_dX^{2^d}. \quad (1)$$

Notice that f is not the zero map, for otherwise $n \in N^\#$ would fix all vectors of X and whence $X = X^n$, contradicting the regularity of N on S. Thus there is at least one i with $0 \leq i \leq d$ such that $a_i \neq 0$. Notice also that there is $x_0 \in GF(q)^\times$ such that $f(x_0) = 0$, as $[X, n] = \{(0, f(x)) \mid x \in GF(q)\}$ is of dimension d.

Using the above index i and the above element x_0 of $GF(q)^\times$, we introduce a new identification of V with $GF(q) \oplus GF(q)$ by shifting the original identification. Tentatively we denote by $[x, y]$ the vector of $GF(q) \oplus GF(q)$ corresponding to $x + y \in V = X \oplus [V, N]$ via the new identification.

$$(x, y) = [x_0^{-1}x, ((a_i x_0^{2^i})^{-1}y)^{2^{d+1-i}}], \quad \text{or equivalently}$$

$$[x, y] = (x_0x, a_i x_0^{2^i} y^{2^i}).$$
Then the following hold for \(x \in GF(q) \), \(t \in GF(q)^\times \) and the involution \(n \in N \).

\[
[x, y]^{g(t)} = (t x_0 x, t^e a_i x_0^{2^i} y^{2^j}) = [t x, t^e x^{2d+1-i} y].
\]

\[
[x, 0]^n = (x_0 x, f(x_0 x)) = [x, ((a_i x_0^{2^i})^{-1} f(x_0 x))^{2d+1-i}].
\]

With the new identification, the first equation above shows that the property2 in Lemma 9 holds, if we replace \(\varepsilon \) by \(\varepsilon 2^{d+1-i} \) (modulo \(2^{d+1} - 1 \)). Furthermore, the second equation above shows that, with the new identification, the linear map \(\tilde{f} \) on \(GF(q) \) defined by \([x, 0]^n = [x, \tilde{f}(x)]\) is given by the polynomial \((a_i x_0^{2^i})^{-1} f(x_0 X)^{2d+1-i}\) (modulo \(X^{2d+1} - X \)). In particular, if we denote \(\tilde{f}(X) = \sum_{j=0}^{d} \tilde{a}_j X^{2^j} \), then we have \(\tilde{a}_0 = 1 \) and \(\tilde{f}(1) = \sum_{j=0}^{d} \tilde{a}_j = 0 \).

Hence, if we replace the original identification (resp. \(\varepsilon \) and \(\tilde{f}(X) \)) by the new one (resp. \(\varepsilon 2^{d+1-i} \) and \(\tilde{f}(X) \)), then the following lemma holds.

Lemma 10. In Eq. (1), we may assume that \(a_0 = 1 \) and \(f(1) = 1 + a_1 + \cdots + a_d = 0 \) by a suitable change of identification of \(V \) with \(GF(q) \oplus GF(q) \). In particular, there is at least one index \(i_0 \) with \(1 \leq i_0 \leq d \) such that \(a_{i_0} \neq 0 \).

In this section, we use the symbols \(a_k \) (\(0 \leq k \leq d \)) to denote the coefficients of the polynomial \(f(X) \) above satisfying the conditions in Lemma 10. Note that \(a_k \) (\(0 \leq k \leq d \)) are uniquely determined by \(n \in N \).

As \(N \) acts trivially on \([V, N]\) by Lemma 8, for every \(x, y \in GF(q) \) we have

\[
(x, y)^n = (x, 0)^n + (0, y)^n = (x, f(x)) + (0, y) = (x, f(x) + y).
\]

(2)

Now take any \(t \in GF(q)^\times \) and consider the unique element \(g(t) \) of \(S \) in Lemma 9. We calculate the action of an involution \(g(t)^{-1} n g(t) \) of \(N \). From property2 of Lemma 9 together with Eq. (2), for every \(x, y \in GF(q) \) we have

\[
(x, y)^{g(t)^{-1} n g(t)} = (t^{-1} x, t^{-e} y)^{g(t)}
= (t^{-1} x, f(t^{-1} x) + t^{-e} y)^{g(t)} = (x, t^e f(t^{-1} x) + y).
\]

(3)

In particular, \(X^{g(t)^{-1} n g(t)} = \{ (x, t^{e} f(t^{-1} x)) \mid x \in GF(q) \} \).

Since \(S \) acts regularly on \(X^\# \), it acts on \(N^\# \) regularly as well by conjugation, via the equivalence remarked earlier. Since for every \(s, t \in GF(q)^\times \) with \(s \neq t \) the element \(g(s)^{-1} n g(s) \cdot g(t)^{-1} n g(t) \) lies in \(N^\# \), there is a unique element \(u \in GF(q)^\times \) with \(g(s)^{-1} n g(s) \cdot g(t)^{-1} n g(t) = g(u)^{-1} n g(u) \). Applying both sides of this equation to \((x, 0)\), the following formula is obtained from Eq. (3):

\[
(x, 0)^{g(s)^{-1} n g(s) \cdot g(t)^{-1} n g(t)} = (x, s^{e} f(s^{-1} x))^{g(t)^{-1} n g(t)}
= (x, s^{e} f(s^{-1} x) + t^{e} f(t^{-1} x)) = (x, u^{e} f(u^{-1} x)).
\]

Hence we have

\[
s^{e} f(s^{-1} x) + t^{e} f(t^{-1} x) = u^{e} f(u^{-1} x)
\]

for every \(x \in GF(q) \). Now we rewrite both sides of this formula, using Eq. (1). As \(t^{e} f(t^{-1} x) = \sum_{i=0}^{d} t^{e-2^i} a_i x^{2^i} \), we then obtain the following equation for all \(x \in GF(q) \):

\[
\sum_{i=0}^{d} (s^{e-2^i} + t^{e-2^i} - u^{e-2^i})a_i x^{2^i} = 0.
\]
It can be verified that this happens only when \((s^{e-2i} + t^{e-2i} - u^{e-2i})a_i\) are all 0 \((i = 0, \ldots, d)\).
Remark that \(u\) is uniquely determined by the distinct elements \(s\) and \(t\) of \(GF(q)^*\), but is independent of \(i\) \((0 \leq i \leq d)\). Hence we proved:

Lemma 11. For every \(s, t \in GF(q)^*\) with \(s \neq t\), there is a unique element \(u \in GF(q)^*\) such that one of the following holds for each \(i = 0, \ldots, d\):

1. \(a_i = 0\).
2. \(s^{e-2i} + t^{e-2i} = u^{e-2i}\).

Lemma 12. Let \(i_0\) be an integer such that \(1 \leq i_0 \leq d\) and \(a_{i_0} \neq 0\) as in Lemma 10, and let \(\sigma = 2^{i_0}\). Then \(e - 1\) is invertible modulo \(2^{d+1} - 1\) and \((e - \sigma)(e - 1)^{-1} = 2^a\) for some \(0 \leq a \leq d\) modulo \(2^{d+1} - 1\).

Proof. From Lemma 11 applied to \(i = 0\) and to the index \(i_0\) in the statement of the lemma, we conclude that for every distinct \(s, t \in GF(q)^*\) there exists \(u \in GF(q)^*\) such that

\[s^{e-1} + t^{e-1} = u^{e-1} \quad \text{and} \quad s^{e-\sigma} + t^{e-\sigma} = u^{e-\sigma}. \]

Suppose that \(s^{e-1} = t^{e-1}\) for some distinct \(s, t \in GF(q)^*\). Then we have \(u^{e-1} = 0\) for an element \(u \in GF(q)^*\), which is a contradiction. Hence \(GF(q)^* \ni x \mapsto x^{e-1} \in GF(q)\) is an injection and then a bijection. Therefore \(e - 1\) is an invertible element in the quotient ring \(Z/(2^{d+1} - 1)\).

From the above equations we have

\[(s^{e-1} + t^{e-1})^{e-\sigma} = u^{(e-1)(e-\sigma)} = (s^{e-\sigma} + t^{e-\sigma})^{e-1}. \]

Dividing both sides by \(u^{(e-\sigma)(e-1)}\), we have \((s/t)^{e-1} + 1)^{e-\sigma} = ((s/t)^{e-\sigma} + 1)^{e-1}\) for every distinct \(s, t \in GF(q)^*\). Then, setting \(\delta := (e - \sigma)(e - 1)^{-1}\) and \(v = (s/t)^{e-1}\), we have

\[(v + 1)^\delta = v^\delta + 1 \]

for all \(v \in GF(q)^*\). As \(\delta\) preserves the multiplication, it follows from this equation that \(\delta\) preserves the addition as well. Hence, by defining \(0^\delta = 0\), the map \(GF(q) \ni x \mapsto x^\delta \in GF(q)\) is a Galois automorphism of \(GF(q)\). Hence modulo \(2^{d+1} - 1\), we have \(\delta \equiv 2^a\) modulo \(2^{d+1} - 1\) for some \(a\) with \(0 \leq a \leq d\). \(\square\)

Lemma 13. There is exactly one integer \(i\) with \(1 \leq i \leq d\) such that \(a_i \neq 0\).

To prove Lemma 13, we prepare a result on the solutions of some congruence relations modulo \(2^{d+1} - 1\).

Lemma 14. Let \(i_k\) \((k = 1, \ldots, 5)\) be integers modulo \(d + 1\) which satisfy

\[1 + 2^{i_1} + 2^{i_2} \equiv 2^{i_3} + 2^{i_4} + 2^{i_5} \pmod{2^{d+1} - 1}. \]

Then one of the following holds modulo \(d + 1\) after suitably permuting \(\{i_1, i_2\}\) and \(\{i_3, i_4, i_5\}\):

- (o) \((i_3, i_4, i_5) \equiv (0, i_1, i_2)\).
- (p) \(i_1 \equiv i_2\) and \((i_3, i_4, i_5) \equiv (0, i_1, i_1)\).
- (p') \(i_1 \equiv i_2\) and \((i_3, i_4, i_5) \equiv (-1, -1, i_1 + 1)\).
- (q) \(i_1 \equiv 0 \neq i_2, i_3 \equiv i_4 \equiv 0\) and \(i_5 \equiv i_2\).
- (q') \(i_1 \equiv 0 \neq i_2, i_3 \equiv i_4 \equiv i_2 - 1\) and \(i_5 \equiv 1\).
Lemma 12. Suppose there exist 1

For integers $i, j, k, i', j'k'$, we use the symbol $(i, j, k) \equiv (i', j', k')$ to denote the following congruence relations, after suitably permuting entries i, j, k and i', j', k': $i \equiv i', j \equiv j'$ and $k \equiv k'$ modulo $d + 1$.

For $k = 1, \ldots, 5$, let j_k be the integer in $\{0, \ldots, d\}$ such that $j_k \equiv i_k$ modulo $d + 1$. Then we have

$$1 + 2^{j_1} + 2^{j_2} - (2^{j_3} + 2^{j_4} + 2^{j_5}) = l(2^{d+1} - 1) \quad (4)$$

for some integer l. Suppose that j_1, \ldots, j_5 are distinct integers in $\{0, \ldots, d\}$. Then $d \geq 4$ and

$$|l|(2^{d+1} - 1) \leq 1 + 2^d + 2^{d-1} + 2^{d-2} + 2^{d-3} + 2^{d-4} = 1 + 2^{d-4}(1 + 2 + \cdots + 4)$$

$$= 1 + 2^{d-4}(2^5 - 1) = 2^{d+1} - (2^{d-4} - 1).$$

The last value is at most $2^{d+1} - 1$ if $d \geq 5$. In particular, if $l \neq 0$, then $l = \pm 1$ and we have either $d = 4$ and $(j_1, \ldots, j_5) = \{0, \ldots, 4\}$ or $d = 5$ and $(j_1, \ldots, j_5) = \{1, \ldots, 5\}$. However, we can verify that equality (4) does not hold in these cases. Thus we have $l = 0$ and

$$1 + 2^{j_1} + 2^{j_2} = 2^{j_3} + 2^{j_4} + 2^{j_5}.$$

If all j_k ($k = 1, \ldots, 5$) are positive, this equality does not hold. Thus one of (j_1, j_2) is 0 or one of (j_3, j_4, j_5) is 0. In the latter case, we may assume that $j_3 = 0$. Then we have $2^{j_1} + 2^{j_2} = 2^{j_4} + 2^{j_5}$ from the above equality. However, this is impossible, as j_k ($k = 1, 2, 4, 5$) are distinct positive integers. In the former case, we may assume that $j_1 = 0$. Then we have

$$1 + 2^{j_2-1} = 2^{j_3-1} + 2^{j_4-1} + 2^{j_5-1}.$$

From [1, VIII, Lemma 4.5(b)], this holds only when $(i_3 - 1, i_4 - 1, i_5 - 1) \equiv (0, i_2 - 2, i_2 - 2)$ or $(-1, -1, i_2 - 2)$. Both cases do not hold, as i_3, i_4, i_5 are mutually distinct.

Hence we conclude that some of j_1, \ldots, j_5 are the same. In the case $j_1 = j_2$, we have $1 + 2^{i_1+1} \equiv 2^{i_3} + 2^{i_4} + 2^{i_5}$ (mod $2^{d+1} - 1$). From [1, VIII, Lemma 4.5(b)] we have $(i_3, i_4, i_5) \equiv (0, i_1, i_1)$ or $(-1, -1, i_1 + 1)$. These are the first two solutions (p) and (p') of the lemma.

In the remaining case, we have $j_1 \neq j_2$. Without loss of generality, we may assume that either $j_1 = j_4$ or $j_3 = j_4$. In the former case, we have $1 + 2^{j_2} \equiv 2^{j_3} + 2^{j_5}$ (mod $2^{d+1} - 1$). Then $(0, i_2) \equiv (i_3, i_5)$ by [1, VIII, Lemma 4.4(c)]. This gives solution (o) in the lemma. In the latter case, we have

$$1 + 2^{i_3+1} - i_5 \equiv 2^{-i_5} + 2^{i_1-i_5} + 2^{i_2-i_5} \quad \text{(mod $2^{d+1} - 1$)}$$

from the given congruence relation. Then we have $(-i_5, i_1 - i_5, i_2 - i_5) \equiv (0, i_3 - i_5, i_3 - i_5)$ or $(-1, -1, i_3 - i_5 + 1)$ by [1, VIII, Lemma 4.5(b)]. Hence $(0, i_1, i_2) \equiv (i_3, i_3, i_5)$ or $(i_5 - 1, i_5 - 1, i_3 + 1)$. In the former case, $(i_1, i_2) \equiv (i_3, i_5)$, as $j_1 \neq j_2$. Then $i_3 \equiv 0$ and we have solution (q) in the lemma after suitably permuting $\{i_1, i_2\}$ and $\{i_3, i_4, i_5\}$. In the latter case where $(0, i_1, i_2) \equiv (i_5 - 1, i_5 - 1, i_3 + 1)$, one of i_1, i_2 is $i_5 - 1$ and the other is $i_3 + 1$, as we assumed $j_1 \neq j_2$. In particular, $j_5 = 1$. By replacing i_1 and i_2 if necessarily, we have the last solution (q'). \(\square\)

Proof of Lemma 13. Suppose there exist $1 \leq i < j \leq d$ such that $a_i \neq 0$ and $a_j \neq 0$. Then it follows from Lemma 12 that

$$(\varepsilon - 2^i)(\varepsilon - 1)^{-1} \equiv 2^a \quad \text{and} \quad (\varepsilon - 2^j)(\varepsilon - 1)^{-1} \equiv 2^b \quad \text{(modulo $2^{d+1} - 1$)}$$

for some integers a, b with $0 \leq a, b \leq d$. Notice that $a, b \neq 0$, for otherwise i or j would be 0. By a similar argument, $a \neq b$.

\(\varepsilon - 2^i\)
Now from the above two congruence relations we have \(\varepsilon(2^a - 1) \equiv 2^a - 2^i \) and \(\varepsilon(2^b - 1) \equiv 2^b - 2^j \) modulo \(2^{d+1} - 1 \). Hence we have

\[
(2^a - 2^i)(2^b - 1) \equiv \varepsilon(2^a - 1)(2^b - 1) \equiv (2^b - 2^j)(2^a - 1) \pmod{2^{d+1} - 1}.
\]

Developing both sides of this congruence equation and dividing by \(2^i \), we have

\[
1 + 2^{b-i} + 2^{a+j-i} \equiv 2^b + 2^{a-i} + 2^{j-i} \pmod{2^{d+1} - 1}.
\]

(5)

Notice that \(b \) and \(j - i \) are nonzero integers modulo \(d + 1 \) by the remark above and assumption that \(i < j \).

We apply Lemma 14 with \((i_1, i_2) \equiv (b - i, a + j - i) \) and \((i_3, i_4, i_5) \equiv (b, a - i, j - i) \) to find solutions for Eq. (5). In the following two paragraphs, congruence relations are considered modulo \(d + 1 \). If case (o) in the lemma holds, then the unique possibility is \(a - i \equiv 0, b - i \equiv j - i \), and \(a + j - i \equiv b \), because \(i \neq 0 \). Then we have a solution \(a \equiv i \) and \(b \equiv j \) for Eq. (5).

We show that this is the unique solution for Eq. (5). If case (p) of Lemma 14 holds, we have \(i_1 = b - i \equiv a + j - i = i_2 \) and \((b, a - i, j - i) \equiv (0, i_1, i_1) \). As \(b \neq 0 \) and \(j - i \neq 0 \), we have \(a - i \equiv 0 \) and \(b = j - i \equiv a + j - i \). In particular, we have \(a \equiv 0 \), which contradicts the above remark. If case (q) of Lemma 14 holds, we have \(i_1 = b - i \equiv i_2 = a + j - i \) and three choices for \((b, a - i, j - i) \) to be congruent to \(i_1 + 1 \) (the rest are congruent to \(-1\)). If \(i_1 + 1 \equiv b \) (resp. \(a - i \) or \(j - i \)) then we can verify that \(a \equiv 0 \) (resp. \(i \equiv 0 \) or \(j \equiv 0 \)), which is a contradiction. Since two of \((b, a - i, j - i) \) are nonzero modulo \(d + 1 \), the above congruence relation does not have a solution of type \((q) \) in Lemma 14. If case \((q') \) of Lemma 14 holds, we have in total 6 cases to examine: \((0, i_2) \equiv (b - i, a + j - i) \) or \((a + j - i, b - i) \), and \((1, i_2 - 1, i_1 - 1) \equiv (b, a - i, j - i), (a - i, b, j - i) \) or \((j - i, b, a - i) \), each of which can be deleted by straightforward calculations. Thus there is no solution for Eq. (5) other than \(a \equiv i \) and \(b \equiv j \).

Now we show that \(a \neq i \). Suppose that \(a \equiv i \) modulo \(d + 1 \). Then \(2^a \equiv (\varepsilon - 2^a)(\varepsilon - 1)^{-1} \) from which we have \(\varepsilon(2^a - 1) \equiv 0 \pmod{2^{d+1} - 1} \). This implies that

\[
(x^\varepsilon)^a = x^\varepsilon \quad \text{for all } x \in GF(q),
\]

where \(\sigma \) denotes the Galois automorphism of \(GF(q) \) sending \(y \in GF(q) \) to \(y^{2^a} \in GF(q) \). Thus the subfield \(F \) generated by \(x^\varepsilon \) for all \(x \in GF(q) \) lies in the subfield of \(GF(q) \) fixed by \(\sigma \in Gal(GF(q)/GF(2)) \). Recall that the action of the cyclic group \(S \) on \([V, N] \) is given by the multiplication by elements \(t^k \) \((i \in GF(q)^\times) \) under the identification of \([V, N] \) with \(GF(q) \) (see Lemma 9(2)). Hence the subfield \(F \) of \(GF(q) \) corresponds to the subspace of \([V, N] \) spanned by the \(S \)-orbits on \([V, N]^\times \). However, \(S \) acts on \([V, N] \) irreducibly by Lemma 7. This implies that \(F = GF(q) \), corresponding to \([V, N] \). Hence \(\sigma \) fixes all the elements of \(GF(q) \), whence \(\sigma = id_{GF(q)} \). This contradicts that \(a \equiv i \neq 0 \pmod{d + 1} \). Hence we do not have \(a \equiv i \) (mod \(d + 1 \)).

This eliminates all the solutions for Eq. (5). Thus there are no distinct \(i, j \) in \(\{1, \ldots, d\} \) with \(a_i \neq 0 \) and \(a_j \neq 0 \). \(\square \)

Remark. Observe that the assumption that \(\dim([V, N]) = d + 1 \) is crucial in the last part of the above proof. This is the main reason why we cannot apply the arguments in the proof of Theorem 1 to obtain a similar result in the case \(\dim(V) = 2d + 1 \). In this case, \(\dim([V, N]) = d \), whence \(S \) acts trivially on \([V, N] \). Thus \(\varepsilon = 0 \). Up to Lemma 13, many arguments go through with \(\varepsilon = 0 \). For example, Lemma 12 trivially holds, as \((\varepsilon - \sigma)(\varepsilon - 1)^{-1} = \sigma \). However, we do
not establish the uniqueness of \(i\) with \(1 \leq i \leq d\) and \(a_i \neq 0\), because the field \(F\) in the proof above is just \(GF(2)\) if \(\varepsilon = 0\).

Proof of Theorem 1. Now we can complete the proof of Theorem 1. From Lemma 13, there is exactly one integer \(i\) with \(1 \leq i \leq d\) such that \(a_i \neq 0\). Then we have \(f(X) = X + a_iX^{2^i}\). As \(f(1) = 0\) by Lemma 10, we have \(a_i = 1\). Let \(\sigma = 2^i\), identified with the field automorphism \(GF(q) \ni x \mapsto x^{2^i} \in GF(q)\). Then for each \(t \in GF(q)^\times\) and \(x \in GF(q)\) we have

\[t^\varepsilon f(t^{-1}x) = t^{\varepsilon - 1}x + t^{\varepsilon - \sigma}x^\sigma.\]

Since \((\varepsilon - \sigma)(\varepsilon - 1)^{-1}\) can be considered as a field automorphism of \(GF(q)\) over \(GF(2)\) by Lemma 12, it has the inverse map \(\tau = (\varepsilon - \sigma)^{-1}(\varepsilon - 1)\), lying also in \(Gal(GF(q)/GF(2))\). Setting \(s := t^{\varepsilon - \sigma}\), we have \(t^s f(t^{-1}x) = s^tx + sx^\sigma\). Thus from Eq. (3) we have

\[X^{\delta(t)^{-1}ng(t)} = ((x, t^s f(t^{-1}x)) | x \in GF(q)) = ((x, sx^\sigma + s^tx) | x \in GF(q))\]

for every \(t \in GF(q)^\times\) and \(x \in GF(q)\). This is the presentation of the member \(X(s)\) in the \(d\)-dual hyperoval \(S_{\sigma, \tau}^{d+1}\) (see [3]). As \(X(0) = X\), we have \(S = \{X, X^{\delta(t)^{-1}ng(t)} | t \in GF(q)^\times\} = S_{\sigma, \tau}^{d+1}\) with both \(\sigma\) and \(\tau\) lying in \(Gal(GF(q)/GF(2))\). This establishes Theorem 1. \(\square\)

4. Some classifications

In this section, we prove Theorems 2 and 3. We always assume that \(d\) is a positive integer with \(d \geq 2\). We first give some preliminary remarks.

Let \(S\) be a \(d\)-dual hyperoval over \(GF(2)\) with ambient space \(V\) of dimension \(2d + 1\) or \(2d + 2\). Assume that a subgroup \(G\) of \(Aut(S)\) acts doubly transitively on \(S\). Then \(G = N: G_X\) for the regular normal subgroup \(N\) and the stabilizer \(G_X\) of \(X \in S\). From [4], either \(G_X\) is a subgroup of \(L_1(2^{d+1}) \cong Z_{2d+1}: Z_{d+1}\) acting regularly on \(X^#\) or \(G_X\) contains one of the following groups as a normal subgroup \(L_X\) (here \(H'\) denotes the commutator subgroup of \(H\)):

\[SL_1(r)\text{ for some divisor } l \text{ of } d + 1 \text{ with } l \geq 2 \text{ and } r = 2^{(d+1)/l},\]

\[Sp_{2l}(r)' \text{ for some divisor } 2l \text{ of } d + 1 \text{ with } 2l \geq 4 \text{ and } r = 2^{(d+1)/(2l)},\]

\[G_2(r)' \text{ for some } r = 2^{(d+1)/6}, \text{ where 6 divides } d + 1.\]

Notice that \((l, r) \neq (2, 2)\) if \(L_X \cong SL_1(r)\), as \(d \neq 1\). Thus \(L_X = L'_X\) in each case above. Moreover, if \(L_X \cong Sp_{2l}(r)'\) (resp. \(L_X \cong G_2(r)\)′), it is not isomorphic to \(Sp_{2l}(r)\) (resp. \(G_2(r)\)) if and only if \((d, 2l, r) = (3, 4, 2)\) (resp. \((d, r) = (5, 2))\).

In the proofs of Theorems 2 and 3, the letter \(L_X\) is used to denote the above normal subgroup of \(G_X\).

It follows from the classification of doubly transitive groups of affine type that the action of \(L_X\) on \(X\) is natural. Namely, if \(L_X \cong SL_1(r)\), the action of \(L_X\) on \(X\) is equivalent to the action of the matrix group \(SL_1(r)\) on the row vector space \(GF(r)^1\) given by the matrix multiplication from the right. If \(L_X \cong Sp_{2l}(r)\)' the action of \(L_X\) on \(X\) is equivalent to the action of matrix group \(Sp_{2l}(r)\)' preserving symplectic form \(f(x, y) = \sum_{i=1}^{2l} x_iy_{2l+1-i}\) on \(GF(r)^{2l}\), given by the matrix multiplication from right. In the proofs of Theorems 2 and 3, subspaces of \(X\) corresponding to totally isotropic subspaces of \(GF(r)^{2l}\) with respect to \(f\) are just called totally isotropic subspaces. If \(L_X \cong G_2(r)'\), recall that \(G_2(r)\)' is a subgroup of the 7-dimensional orthogonal group \(SO_7(r)\) preserving orthogonal form \(Q(x) = x_1^2 + \sum_{i=1}^{6} x_ix_{7-i}\) on \(GF(r)^7\). The symplectic form \(f_Q(x, y) = Q(x + y) + Q(x) + Q(y) = \sum_{i=1}^{6} x_iy_{7-i}\) associated with \(Q\).
has the 1-dimensional radical R in $GF(r)^7$, whence the action of $SO_7(r)$ on $GF(r)^7$ induces an action of $SO_7(r)$ on $GF(r)^7/R$. The action of $L_X \cong G_2(r)'$ on X is equivalent to the restriction onto $G_2(r)'$ of this action of $SO_7(r)$ on $GF(r)^7/R$. Remark that $G_2(r)'$ preserves a generalized hexagon consisting of some 1- and 2-dimensional subspaces of $GF(r)^7/R$ which correspond to totally singular subspaces of $GF(r)^7$ with respect to Q. In the proofs of Theorems 2 and 3, subspaces of $X \cong GF(r)^7/R$ corresponding to totally singular subspaces of $GF(r)^7$ with respect to Q are just called totally singular subspaces.

Notice that in each case above, if L_X acts on a vector space W over $GF(2)$ of dimension smaller than $d + 1$, the action of L_X on W is trivial. This observation follows from the existence of a Sylow p-subgroup for a 2-primitive prime divisor p of $2^{d+1} - 1$ or its modification, according as $d \neq 5$ or $d = 5$. See the argument in Lemma 7.

Proof of Theorem 2. Let S be a d-dual hyperoval over $GF(2)$ with ambient space V of dimension $2d + 1$. Assume that a subgroup G of $Aut(S)$ acts doubly transitively on S. Then $G = N : G_X$ for the regular normal subgroup N and the stabilizer G_X of $X \in S$. From [4], either G_X is a group described in the theorem or G_X contains a normal subgroup L_X in the remark above:

Suppose that G_X has the normal subgroup L_X above. Then L_X acts on $[V, N]$, which is of dimension d over $GF(2)$. The last remark previous to the proof shows that L_X acts trivially on $[V, N]$. Let a be a nonzero vector, a nonzero vector, or a nonzero singular vector of X, according as $L_X \cong SL_d(r)$, $Sp_{2d}(r)'$, or $G_2(r)'$. As L_X naturally acts on X, the stabilizer P_a of a in L_X is a parabolic subgroup of L_X and it acts nontrivially on the factor space $X/\langle a \rangle$.

On the other hand, let n be the unique involution of N with $a \in X \cap X^n$. Then P_a centralizes n by the regularity of N on S. Moreover, $P_a (\leq L_X)$ centralizes $[X, n] (\leq [V, N])$. Thus for each $x \in X$ and any $g \in P_a$ we have $x + x^n = (x + x^n)^g = x^g + x^g$, whence $x + x^g = (x + x^g)^n$. This implies that $x + x^g$ lies in $X \cap X^n = \{0, a\}$ for every $x \in X$, or equivalently, $x^g \in x + \langle a \rangle$ for every $x \in X$. Thus P_a acts trivially on $X/\langle a \rangle$, which contradicts the remark in the above paragraph. □

Next we make an observation, which is a refinement of [3, Lemma 4].

Lemma 15. Let S be a d-dual hyperoval over $GF(2)$ on which a group $G = N : G_X$ acts doubly transitively with a regular normal subgroup N. Assume that there is a subgroup P of G_X and a normal subgroup U of P such that P acts transitively on $C_X(U)#$, the set of nonzero vectors of X fixed by all elements of U. Let

$$S(U) := \{ Y \in S \mid Y^u = Y (\forall u \in U) \} \quad \text{and} \quad S[U] := \{ C_Y(U) \mid Y \in S(U) \}.$$

If $C_X(U)$ has a dimension $e + 1$ over $GF(2)$ with $e \geq 1$, then $S[U]$ is an e-dual hyperoval over $GF(2)$ on which $C_N(U) : (P/U)$ acts doubly transitively.

Proof. The argument in [3, Lemma 4] shows that $S[U]$ is an e-dual hyperoval. By construction, U acts trivially on the ambient space of $S[U]$. We show that

$$S(U) \setminus \{X\} = \{ Y \in S \setminus \{X\} \mid X \cap Y \subset C_X(U) \} = \{ X^n \mid n \in C_{N^#}(U) \}.$$

If $X^n (n \in N^#)$ lies in $S(U)$, we have $X^{u^{-1}nu} = X^{nu} = X^n$ for all $u \in U$. By the regularity of N on S, we have $u^{-1}nu = n$ for all $u \in U$. Thus $n \in C_N(U)$. In particular, $X \cap X^n \subset C_X(U)$. Conversely, take any projective point of $C_X(U)$ and write it as $X \cap Y$ for some $Y \in S \setminus \{X\}$. Take $n \in N$ with $Y = X^n$. Then $X \cap X^n = X \cap X^{nu}$ for all $u \in U$, as $X \cap Y \subset C_X(U)$. As three distinct members of S intersect trivially, we have $X^n = X^{nu}$ for all $u \in U$. Thus $Y = X^n \in S(U)$.

From the above description of $S(U)$, it is immediate to see that $C_N(U)$ acts regularly on it. Since $e \geq 1$, then $C_N(U)$ acts regularly on $S[U]$. As P/U is transitive on $C_X(U)^\#$, we conclude that $C_N(U) : (P/U)$ acts doubly transitively on $S[U]$. □

Proof of Theorem 3. Let S be a d-dual hyperoval over $GF(2)$ admitting a doubly transitive group G with ambient space of dimension $2d + 2$. Then $G = N : G_X$ for the regular normal subgroup N and the stabilizer G_X of a member X of S. Then either G_X is a subgroup of $\Gamma L_1(2^{d+1})$ acting regularly on $X^\#$ or G_X has a normal subgroup L_X described in the remarks previous to the proof of Theorem 2.

We will eliminate the latter case, except possibly the cases where either $d = 2, 3, 5$ or $l = 2$ and $L_X \cong SL_2(r)$ with $r = 2^{(d+1)/2}$. These exceptional cases are summarized as cases (2) and (3) in the theorem.

Notice that $L_X \cong Sp_{2l}(r)' \neq Sp_{2l}(r)$ if and only if $l = 2 = r$ and $(d + 1)/2l = 1$. Then we have case (3) in the theorem with $d = 3$ and $G_X \cong Sp_4(2)' \cong A_6$ or S_6. We do not have $G_X \cong M_{10}$, $PGL_2(9)$, or $Aut(A_8)$, for otherwise one of these groups would be a subgroup of $Aut(N) \cong GL_4(2)$. Similarly, if $L_X \cong G_2(r)' \neq G_2(r)$ then $r = 2$ and $(d + 1)/6 = 1$. Then we have case (3) with $d = 5$ and $G_X \cong G_2(2)' = G_2(2)$. Hence in the following we may assume that $L_X \cong SL_l(r)$, $Sp_{2l}(r) = Sp_{2l}'$ or $G_2(r) = G_2(r)'$.

We choose U and P to apply Lemma 15. Recall that the action of L_X on X is natural. If $L_X \cong SL_l(r)$, let P be the stabilizer of an $(l - 1)$-dimensional subspace W of X over $GF(r)$, and let U be the vectorwise stabilizer of W. Then $P/U \cong GL_{l-1}(r)$ acts naturally on $W = C_X(U)$. In particular, P/U is transitive on $C_X(U)^\#$. If $L_X \cong Sp_{2l}(r)$, take P to be the stabilizer of an l-dimensional totally isotropic subspace W of X and U to be the vectorwise stabilizer of W. Then $P/U \cong GL_l(r)$ acts naturally on $W = C_X(U)$. In particular, P/U is transitive on $C_X(U)^\#$. If $L_X \cong G_2(q)$, let P be the stabilizer of a 2-dimensional singular subspace W of X corresponding to a line of the generalized hexagon associated with L_X, and let U be the vectorwise stabilizer of W. Then $P/U \cong GL_2(r)$ acts naturally on $W = C_X(U)$. In particular, P/U is transitive on $C_X(U)^\#$.

We set $e + 1 := \dim_{GF(2)}(C_X(U))$. Then we have $e + 1 = (l - 1) \times (d + 1)/l, l \times (d + 1)/2l$ or $(d + 1)/6$, according as $L_X \cong SL_l(r)$, $Sp_{2l}(r)$ or $G_2(r)$. Notice that P/U contains a cyclic subgroup $S_U \cong Z_{e+1} \otimes GL(C_X(U))$ acting regularly on $C_X(U)^\#$.

We examine the cases where $0 \leq e \leq 2$. If $L_X \cong SL_l(r)$ for a divisor l of $d + 1$ with $l \geq 2$ and $r = 2^{(d+1)/l}$, we have $e + 1 = (l - 1)(d + 1)/l$, or equivalently, $l - 1 = (e + 1)/(d - e)$. If $e = 0, 1$ or 2, we have $l - 1 = (1/d), 2/(d - 1)$ or $3/(d - 2)$, respectively. As $l - 1$ is a positive integer and $d \geq 2$, the possibility $e = 0$ does not occur. Furthermore, $e = 1$ if and only if $(d, l, r) = (2, 3, 2)$ and $L_X \cong SL_3(2)$ or $(d, l, r) = (3, 2, 4)$ and $L_X \cong SL_2(4) \cong A_5$, both of which are contained in case (2) of the theorem. (In the latter case, $G_X \cong A_5$ or S_5.) We have $e = 2$ if and only if $(d, l, r) = (3, 4, 2)$ and $(L_X, P/U) \cong (SL_4(2), SL_3(2))$, or $(d, l, r) = (5, 2, 3)$ and $(L_X, P/U) \cong (SL_2(8), Z_7)$. In the latter case, $G_X \cong SL_2(3) \otimes SL_2(2)^3 \otimes Z_3$, and this case is contained in case (2) of the theorem. Similarly, if $L_X \cong Sp_{2l}(r)$ for a divisor $2l$ of $d + 1$ with $2l \geq 4$ and $r = 2^{(d+1)/2l}$, we have $e + 1 = (d + 1)/2l$. Thus $e = 0$ does not occur, as $d \geq 2$. We have $e = 1$ if and only if $(d, 2l, r) = (3, 4, 2)$, which is contained in case (3). In this case, $L_X \cong Sp_4(2) \cong S_6$ is a normal subgroup of G_X. Notice that $G_X \cong Sp_4(2)$, because none of $\cong M_{10}, PGL_2(9)$ and $Aut(A_6)$ is a subgroup of $Aut(N) \cong SL_4(2) \cong A_8$. We have $e = 2$ if and only if $(d, 2l, r) = (5, 6, 2)$. In this case, $L_X = G_X \cong Sp_6(2)$ and $P/U \cong GL_3(2)$. This is contained in case (3).
Finally, if \(L_X \cong G_2(r) \) for a multiple \(d + 1 \) of 6 and \(r = 2^{(d+1)/6} \), we have \(e + 1 = (d + 1)/3 \). Thus \(e \neq 0 \) and \(e \neq 2 \), as \(d + 1 \) is a multiple of 6. Furthermore, \(e = 1 \) if and only if \((d, r) = (5, 2) \), which is contained in case (3).

Summarizing, we have \(e \geq 1 \) for each case. Furthermore, if \(e = 1 \) or \(e = 2 \), then one of the possibilities in cases (2) and (3) of the theorem holds, except when \(e = 2, (d, l, r) = (3, 4, 2) \) and \((L_X, P/U) \cong (SL_4(2), SL_3(2)) \).

We will remark that the centralizer \(C_{[V,N]}(U) \) of \(U \) in \([V, N] \) is of dimension at most \(e + 1 \) over \(GF(2) \). Fix a nonzero vector \(u \) of \(C_X(U) \), and let \(n := v(u) \) be the unique involution of \(N \) such that \(X \cap X^n = \{0, w\} \). From the regularity of the action of \(N \) on \(S \), we have \(n \in C_N(U) \). As \([X, n] \cong X/C_X(n) = X/(X \cap X^n) \) is of dimension \(d \), the subspace \([X, n] = \{x + x^n \mid x \in X\}\) is a hyperplane of \([V, N]\). Thus in order to show that \(\dim_{GF(2)}(C_{[V,N]}(U)) \leq e + 1 \), it suffices to show that \(\dim_{GF(2)}(C_{[X,n]}(U)) = e \).

Observe that \(C_{[X,n]}(U) \) contains a subspace \(\{x + x^n \mid x \in C_X(U)\} \), which is isomorphic to a space \(C_X(U)/[0, u] \) of dimension \(e \) over \(GF(2) \). Conversely, let \(x \) be an element of \(X \) such that \(U \) centralizes \(x + x^n \). Then \((x + x^n)^u = x + x^n \) for every \(u \in U \), whence \(x + x^n = (x + x^n)^y \) for all \(u \in U \), as \([n, U] = 1 \). Thus \(x + x^n \) lies in \(C_X(n) = \{0, w\} \) for all \(u \in U \). On the other hand, we have \([U] = l^{-1} = 2^{e+1} \) (resp. \(r^{(d+1)/2} = (2^{e+1})^{(d+1)/2} \) and \(r^6 = (2^{e+1})^5/2 \) if \(L_X \cong SL_2(r) \) (resp. \(Sp_{2l}(r) \) and \(G_2(r) \)). As \(e \geq 1 \), we have \([U] \geq 4 \) in any case. Then, using the explicit matrix representation of \(L_X \) on the natural module \(X \), we can verify that for every \(y \in X \setminus C_X(U) \) there are distinct elements \(u \) and \(v \) of \(U \) such that \(y + y^u \) and \(y + y^v \) are distinct nonzero elements of \(X \). As \(x + x^n \in \langle u \rangle \) for every \(u \in U \), this implies that \(x \in C_X(U) \). Thus \(C_{[X,n]}(U) = \{x + x^n \mid x \in C_X(U)\} \) and \(\dim_{GF(2)}(C_{[X,n]}(U)) = e \), as we desired.

We now consider the \(e \)-dual hyperoval \(S[U] \) constructed by Lemma 15 with the above choice of \(U \) and \(P \). From the preceding two paragraphs, the subspace \(C_Y(U) = C_X(U) \oplus C_{[X,N]}(U) \) is of dimension at most \(2(e + 1) \). The ambient space \(A(U) \) of the \(e \)-dual hyperoval \(S[U] \) over \(GF(2) \) lies in \(C_Y(U) \), whence \(\dim_{GF(2)}(A(U)) = 2e + 1 \) or \(2e + 2 \).

As we saw above, we have \(e \geq 1 \). Moreover, the possibilities of \((d, l, r, L_X)\) for \(e = 1 \) are contained in cases (2) and (3) of the theorem. Thus we may assume that \(e \geq 2 \).

If \(\dim_{GF(2)}(A(U)) = 2e + 1 \) for \(e \geq 2 \), the \(e \)-dual hyperoval \(S[U] \) over \(GF(2) \) satisfies the hypotheses of Theorem 2 with doubly transitive automorphism group \(C_N(U) : (P/U) \). Thus it follows from Theorem 2 that \(P/U \) is isomorphic to a subgroup of the metacyclic group \(Z_{2^{d+1}+1} \). Assume that \(L_X \cong G_2(r) \) for a multiple \(d + 1 \) of 6 and \(r = 2^{(d+1)/6} \). In this case, \(e + 1 = (d + 1)/3 \) and \(P/U \cong GL_2(r) \). As \(GL_2(r) \) is metacyclic if and only if \(2 = r = 2^{(d+1)/6} \), we have \(e = 1 \), which is a contradiction. If \(L_X \cong Sp_{2l}(r) \) for a divisor \(2l \) of \(d + 1 \) with \(2l \geq 4 \) and \(r = 2^{(d+1)/2l} \), we have \(e + 1 = (d + 1)/2 \) and \(P/U \cong GL_l(r) \). This is metacyclic if and only if \(l = 2 = r = 2^{(d+1)/2l} \), from which we have \(e = 1 \), a contradiction. If \(L_X \cong SL_l(r) \) for a divisor \(l \) of \(d + 1 \) with \(l \geq 2 \) and \(r = 2^{d+1/l} \), we have \(e + 1 = (l-1)(d+1)/l \) and \(P/U \cong GL_{l-1}(r) \). Thus \(P/U \) is metacyclic if and only if either \(l = 2 \) or \((l, r) = (3, 2) \). In the latter case, we have \(d = 2 \) and \(e = 1 \), which is a contradiction. Summarizing, if \(\dim_{GF(2)}(A(U)) = 2e + 1 \) for \(e \geq 2 \), the only remaining possibility is \(l = 2 \). As this implies that \(d \) is odd and \(r = 2^{(d+1)/2} \), \(L_X \cong SL_2(2^{(d+1)/2}) \), this is contained in case (2) of the theorem.

Hence it remains to treat the case where \(\dim_{GF(2)}(A(U)) = 2e + 2 \) with \(e \geq 2 \). In this case, \(S[U] \) is an \(e \)-dual hyperoval over \(GF(2) \) with ambient space of dimension \(2e + 2 \) (\(e \geq 2 \)), on which \(C_N(U) : (P/U) \) acts doubly transitively. Moreover, as we remarked above, \(P/U \) contains a cyclic subgroup \(S_U \) of order \(2^{e+1} - 1 \) acting regularly on \(C_X(U)^\# \). Thus \(S[U] \) satisfies the hypotheses of Theorem 1. It follows from Theorem 1 that one of the following holds:
(i) \(e = 2 \) and \(\text{Aut}(\mathcal{S}[U]) \cong 2^3 : SL_3(2) \), or
(ii) \(e \geq 3 \) and \(\text{Aut}(\mathcal{S}[U]) \cong 2^{e+1} : (Z_{2^{e+1}-1} : Z_{e+1}) \).

If case (i) occurs, then \(e = 2 \). As we saw above, in this case, either one of the possibilities in case (3) of theorem occurs or \((d, l, r) = (3, 4, 2) \) and \((L_X, P/U) \cong (SL_4(2), SL_3(2)) \). In the exceptional case, \(SL_4(2) \) contains a cyclic subgroup of order 15 acting regularly on \(X^\# \). Then \(\mathcal{S} \) is isomorphic to \(S_{\sigma, r}^e \) and \(\text{Aut}(\mathcal{S}) \cong \text{Aut}(S_{\sigma, r}^e) \) is solvable by Theorem 1. However, this contradicts that \(\text{Aut}(\mathcal{S}) \) involves \(SL_4(2) \). Thus the exceptional case does not occur.

Hence we may assume that the case (ii) holds. In particular, \(P/U \) is metacyclic, as it is a subgroup of \(\text{Aut}(\mathcal{S}[U]) \) for a divisor \(l \) of \(d + 1 \) with \(l \geq 2 \) and \(r = 2^{(d+1)/2} \). Then \(P/U \cong GL_{l-1}(r) \) is metacyclic. This is possible only when \(l = 2 \). In this case, \(G_X \) is a subgroup of \(\text{Aut}(L_X) \cong GL_2(2^{(d+1)/2}) : Z_{d+2} \). Thus we have case (2). Assume that \(L_X \cong Sp_2(r) \) with a divisor \(2l \) of \(d + 1 \) with \(2l \geq 4 \) and \(r = 2^{(d+1)/2l} \). Then \(P/U \cong GL_1(r) \) is metacyclic, which occurs only when \(l = 2 = r \). Then \(d + 1 = 2l = 4 \). But \(e = (d - 1)/2 = 1 \), a contradiction. Finally assume that \(L_X \cong G_2(r) \) with a multiple \(d + 1 \) of 6 and \(r = 2^{(d+1)/6} \). Then \(P/U \cong GL_2(r) \) is metacyclic, which implies that \(r = 2 \) and \(d + 1 = 6 \). But then \(e = (d - 2)/3 = 1 \), a contradiction. We now exhausted all the cases. \(\square \)

Remark 16. In case (2) of Theorem 3, if \(\dim(A(U)) = 2e + 2 \) with \(e \geq 2 \), then we conclude that \(G_X \) does not contain \(GL_2(2^{(d+1)/2}) \).

This is verified as follows. Return to the last paragraph in the proof of Theorem 3. Assume that \(d \) is odd and \(L_X \cong SL_2(2^{(d+1)/2}) \). Suppose that \(G_X \) contains \(GL_2(2^{(d+1)/2}) \). Then \(G_X \) contains a cyclic group of order \(2^{d+1} - 1 \) acting regularly on \(X^\# \), and we can apply Theorem 1 to \(\mathcal{S} \). Then we have either \(d = 2 \) or \(\text{Aut}(\mathcal{S}) \) is solvable. As \(d + 1 \) is even, \(d \neq 2 \). Furthermore, since \(L_X \cong SL_2(2^{(d+1)/2}) \) and \((d + 1)/2 \geq 2 \) for \(d \geq 2 \), the group \(L_X \) involved in \(\text{Aut}(\mathcal{S}) \) is not solvable. This contradiction shows that \(G_X \) does not contain \(GL_2(2^{(d+1)/2}) \).

References