
C
o

X
C

a

A
R
A

K
C
C
C
E
L
S

.

1

p
p
s
a
a
T
f
(

p

1
d

OREView met

nector 
NJAS - Wageningen Journal of Life Sciences 57 (2009) 27–38

Contents lists available at ScienceDirect

NJAS - Wageningen Journal of Life Sciences

journa l homepage: www.e lsev ier .com/ locate /n jas

3 and C4 photosynthesis models: An overview from the perspective
f crop modelling

. Yin ∗, P.C. Struik
entre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, P.O. Box 430, NL-6700 AK Wageningen, The Netherlands

r t i c l e i n f o

rticle history:
eceived 9 December 2008
ccepted 6 July 2009

eywords:
3 photosynthesis
4 photosynthesis
rop modelling
lectron transport pathway
ight use efficiency
imulation

a b s t r a c t

Nearly three decades ago Farquhar, von Caemmerer and Berry published a biochemical model for
C3 photosynthetic rates (the FvCB model). The model predicts net photosynthesis (A) as the mini-
mum of the Rubisco-limited rate of CO2 assimilation (Ac) and the electron transport-limited rate of
CO2 assimilation (Aj). Given its simplicity and the growing availability of the required enzyme kinetic
constants, the FvCB model has been used for a wide range of studies, from analysing underlying C3

leaf biochemistry to predicting photosynthetic fluxes of ecosystems in response to global warming
However, surprisingly, this model has seen limited use in existing crop growth models. Here we high-
light the elegance, simplicity, and robustness of this model. In the light of some uncertainties with
photosynthetic electron transport pathways, a recently extended FvCB model to calculate Aj is sum-
marized.

Applying the FvCB-type model in crop growth models for predicting leaf photosynthesis requires a
stomatal conductance (gs) model to be incorporated, so that intercellular CO2 concentration (Ci) can
be estimated. In recent years great emphasis has been put on the significant drawdown of Rubisco
carboxylation-site CO2 concentration (Cc) relative to Ci . To account for this drawdown, mesophyll con-
ductance (gm) for CO2 transfer can be added. We present an analytical algorithm that incorporates a gs

model and uses gm as a temperature-dependent parameter for calculating A under various environmental
scenarios.

Finally we discuss a C4-equivalent version of the FvCB model. In addition to the algorithms already
elaborated for C3 photosynthesis, most important algorithms for C4 photosynthesis are those that capture

brought to you by Cadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Con
the CO2 concentrating mechanism and the extra ATP requirement by the C4 cycle. Although the current
estimation of the C4 enzyme kinetic constants is less certain, applying FvCB-type models to both C3 and C4

crops is recommended to accurately predict the response of crop photosynthesis to multiple, interactive

y Else

environmental variables.
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. Introduction

Photosynthesis is the primary physiological process that drives
lant growth and crop productivity and influences many other
lant processes. It is also strongly affected by environmental
tresses. Its study becomes increasingly important in the context of
ssessing the impact of climate change on agro-ecosystem function
nd of exploring opportunities for bio-based energy production.
herefore, mechanistic quantification of photosynthesis deserves

urther attention in dynamic simulation models of crop growth
crop growth models hereafter).

Photosynthesis is one of the most studied and best understood
hysiological processes. In the wake of the advent of the systems
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E-mail address: xinyou.yin@wur.nl (X. Yin).

573-5214/$ – see front matter © Published by Elsevier B.V. on behalf of Royal Netherlan
oi:10.1016/j.njas.2009.07.001
vier B.V. on behalf of Royal Netherlands Society for Agricultural Sciences.

biology era, detailed biochemical models of photosynthesis, com-
prising its light reactions, electron and proton transport, enzymatic
reactions, and regulatory functions, have been recently devel-
oped (e.g., [1,2]). These models are very useful for any transient,
kinetic investigation of photosynthesis in response to environmen-
tal variables. Because of their complexity and required short time
resolution, however, these models are unsuitable for use as a leaf-
level model for large-scale modelling of photosynthesis of crop
canopies or vegetation. The biochemical model for C3 photosyn-
thetic CO2 assimilation published by Farquhar, von Caemmerer
and Berry [3] (the FvCB model hereafter) makes no attempt to
model all the processes of photosynthesis from light harvesting

to metabolism but rather simplifies, summarizes and synthesizes
the knowledge of the contributing mechanisms by focusing on a
few key processes. Because of its excellent performance given its
simplicity [4], and the growing availability of the required enzyme
kinetic constants (e.g., [5,6]), the FvCB model has been used for a
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ide range of studies, from analysing underlying C3 leaf biochem-
stry (e.g., [4]) to predicting photosynthetic fluxes of ecosystems in

esponse to global environmental change (e.g., [7,8]). However, this
odel has seen very limited use in crop growth models.
Our objective is to ‘catalyse’ the use of the FvCB model by

he crop modelling community. To this end, we shall (1) high-

Table 1
List of main variables used in the models and their units.

Variable Definition

a1 An empirical coefficient, see Eq. (15a)
A Net photosynthesis rate
Ac Rubisco activity limited net photosynthesis rate
Aj Electron transport limited net photosynthesis ra
b1 An empirical coefficient, see Eq. (15a)
Ca Ambient air CO2 partial pressure
Cc Chloroplast CO2 partial pressure
Ci Intercellular CO2 partial pressure
Ci* Ci-based CO2 compensation point in the absence
Cs Leaf-surface CO2 partial pressure
Cs* Cs-based CO2 compensation point in the absence
D Deactivation energy
E Activation energy
fcyc Fraction of electrons at PSI that follow cyclic tran
fpseudo Fraction of electrons at PSI that follow pseudocy
fQ Fraction of electrons at reduced plastoquinone t
fvpd Factor for describing the effect of leaf-to-air vap
g0 Residual stomatal conductance when irradiance
gb Boundary-layer conductance
gbs Bundle-sheath conductance
gm Mesophyll diffusion conductance
gs Stomatal conductance
h Number of protons required to produce one ATP
Iabs Photon flux density absorbed by leaf photosynth
Iinc Photon flux density incident to leaves
J Rate of e− transport
J2 Rate of all e− transport through PSII
Jmax Maximum value of J under saturated light
J2max Maximum value of J2 under saturated light
kp Initial carboxylation efficiency of the PEP carbox
KmC Michaelis–Menten constant of Rubisco for CO2

KmO Michaelis–Menten constant of Rubisco for O2

L Leak rate of CO2 out of the bundle sheath
O Oxygen partial pressure
Oi Intercellular oxygen partial pressure
Obs Bundle-sheath oxygen partial pressure
Pmax Maximum gross photosynthetic rate under satur
R Universal gas constant (=8.314)
Rd Day respiration (respiratory CO2 release other th
Rm Day respiration in the mesophyll
s A lumped parameter, equal to �2ˇ[1 − fpseudo/(1 −
S Entropy term
Sc/o Relative CO2/O2 specificity factor for Rubisco
T Leaf temperature
Vcmax Maximum rate of Rubisco activity-limited carbo
Vp PEP carboxylation rate
Vp(J2) e− transport-limited PEP carboxylation rate
Vpmax Maximum PEP carboxylation rate
x Fraction of PSII e− transport rate partitioned to t
z A lumped parameter, equal to (2 + fQ − fcyc)/[h(1 −
˛ Fraction of PSII activity in the bundle sheath
˛(LL) Conversion efficiency of absorbed light into J at s
˛2(LL) Quantum efficiency of PSII e− transport under st

combined PSI- and PSII-absorbed light basis
ˇ Absorptance by leaf photosynthetic pigments
� * Half of the reciprocal of Sc/o

�2(LL) Conversion efficiency of incident light into J at st
� Convexity factor for response of J to irradiance
�2 Convexity factor for response of J2 to absorbed li
�2 Proportion of absorbed light partitioned to PSII
˚1(LL) Quantum efficiency of PSI e− flow at the strictly
˚2 Quantum efficiency of PSII e− flow on PSII-absor
˚2(LL) Value of˚2 at the strictly limiting light level
˚CO2(LL) Quantum efficiency of CO2 assimilation at strictl
� Cc- or Ci-based CO2 compensation point in the p
� * Cc-based CO2 compensation point in the absence
nal of Life Sciences 57 (2009) 27–38

light the elegance, simplicity, and robustness of the model, (2)
summarize an extended FvCB model that addresses some uncer-

tainties with photosynthetic electron (e−) transport pathways, and
(3) discuss the mathematical coupling of the FvCB model with
CO2-diffusional conductance models so that the value of A (see
Table 1 for model variable definition) can be modelled for any

Unit

–
�mol CO2 m−2 s−1

�mol CO2 m−2 s−1

te �mol CO2 m−2 s−1

kPa−1

�bar or �mol mol−1

�bar
�bar

of Rd �bar
�bar

of Rd �bar
J mol−1

J mol−1

sport around PSI –
clic transport –
hat follow the Q-cycle –
our difference on gs –
approaches zero mol m−2 s−1 bar−1

mol m−2 s−1 bar−1

mol m−2 s−1 bar−1

mol m−2 s−1 bar−1

mol m−2 s−1 bar−1

mol mol−1

etic pigments �mol photon m−2 s−1

�mol photon m−2 s−1

�mol e− m−2 s−1

�mol e− m−2 s−1

�mol e− m−2 s−1

�mol e− m−2 s−1

ylase mol m−2 s−1 bar−1

�bar
�bar
�mol CO2 m−2 s−1

�bar
�bar
�bar

ated irradiance �mol CO2 m−2 s−1

J K−1 mol−1

an by photorespiration) �mol CO2 m−2 s−1

�mol CO2 m−2 s−1

fcyc)] –
J K−1 mol−1

bar bar−1

◦C
xylation �mol CO2 m−2 s−1

�mol CO2 m−2 s−1

�mol CO2 m−2 s−1

�mol CO2 m−2 s−1

he C4 cycle –
fcyc)] mol mol−1

–
trictly limiting light mol e− (mol photon)−1

rictly limiting light, on the mol e− (mol photon)−1

–
bar bar−1

rictly limiting light mol e− (mol photon)−1

–
ght –

–
limiting light level mol e− (mol photon)−1

bed light basis mol e− (mol photon)−1

mol e− (mol photon)−1

y limiting light mol CO2 (mol photon)−1

resence of Rd �bar
of Rd �bar
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nvironmental scenario. Finally, we shall describe and discuss an
quivalent, combined model for C4 photosynthesis and conduc-
ance, building upon previous C4 photosynthesis models, e.g., as
escribed by von Caemmerer and Furbank [9].

. The Farquhar, von Caemmerer and Berry model

The FvCB model predicts A as the minimum of the Rubisco-
imited rate of CO2 assimilation (Ac) and the electron transport-
imited rate of CO2 assimilation (Aj):

= min(Ac, Aj) (1)

An illustration of the two parts of limitations along the CO2-
esponse curves is given in Fig. 1. Sharkey et al. [10] have drawn
ttention to a third limitation by triose phosphate utilization, which
s not discussed here because it comes into play only occasionally
t very high CO2 levels.

The value of Ac is calculated as a function of the maximum car-
oxylation capacity of Rubisco (Vcmax) by:

c = (Cc −�∗)Vc max

Cc + KmC(1 + O/KmO)
− Rd (2)

here Cc is the CO2 partial pressure at the carboxylating sites of
ubisco, KmC and KmO are Michaelis–Menten constants of Rubisco

or CO2 and O2, respectively, and� * is the CO2 compensation point
n the absence of day respiration (Rd).

In the calculation of Aj, the FvCB model assumes 100% non-
yclic e− transport, thus excluding cyclic e− transport around PSI
CET). There are two widely used forms of the equation for electron
ransport-limited rate of photosynthesis:

j = (Cc −�∗)J
4Cc + 8�∗

− Rd (3a)

j = (Cc −�∗)J
4.5Cc + 10.5�∗

− Rd (3b)

−
The relationship between e transport rate (J) in Eqs. (3a), (3b)
nd irradiance was first described as a rectangular hyperbola [11],
sing quantum yield of e− transport under limiting light (˛(LL)) and
he maximum capacity of e− transport (Jmax). Following Farquhar
nd Wong [12], most applications of the FvCB model, however,

ig. 1. An idealized curve for the response of net CO2 assimilation rate (A) in C3

lants to intercellular CO2 partial pressure (Ci), in which 12 data points are shown.
oints 1–6 locate within the range of the Rubisco-limited rate (Ac) whereas points
–12 are within the range of electron transport-limited rate (Aj). The portions of
ach curve without data points are the extended parts as given by the Ac and Aj

quation, respectively. The minimum of Ac and Aj gives the modelled CO2 response
urve as indicated by the 12 data points.
nal of Life Sciences 57 (2009) 27–38 29

describe J as a non-rectangular hyperbolic function of irradiance
by:

J =

(
˛(LL)Iabs + Jmax−

√
(˛(LL)Iabs + Jmax)2−4�Jmax˛(LL)Iabs

)
2�

(4)

where � is the convexity of the response curve of J to light
absorbed by photosynthetic pigments (Iabs). Equations like Eq. (4)
that describe the light response of e− transport rate mimic well the
photosynthetic down-regulation induced by high light levels via
mechanisms such as non-photochemical quenching and chloro-
plast avoidance movement [13]. The theoretical maximum value
for ˛(LL) is 0.5 mol electron per mol photon absorbed [3] because
one quantum must be absorbed by each of the two photosystems
to move an electron from the level of H2O to that of NADP+. How-
ever, in actual applications (e.g., [14–17]),˛(LL) has been empirically
adjusted to a lower value to agree with a measured quantum effi-
ciency for CO2 uptake that is often lower than that expected from
the theoretical maximum.

The temperature dependence of Rd and kinetic properties of
Rubisco (involving three parameters Vcmax, KmC and KmO) in Eq.
(2) is described by an Arrhenius function normalized with respect
to their values at 25 ◦C:

Parameter = Parameter25e(T−25)E/[298R(T+273)] (5)

where T is leaf temperature; E is the activation energy, defining the
responsiveness of the relevant parameter to temperature; R is the
universal gas constant. A modified Arrhenius function is used to
describe the optimum response of other parameters (e.g., Jmax) to
temperature as [17]:

Parameter = Parameter25e(T−25)E/[298R(T+273)]

× 1 + e(298S−D)/(298R)

1 + e[(T+273)S−D]/[R(T+273)]
(6)

where S is an entropy term; E and D are the energies of activa-
tion and deactivation, defining the responsive shape of the sub-
and supra-optimal ranges, respectively. June et al. [18] described an
alternative, simpler equation for this optimum response. It may be
argued that these response equations lack a mechanistic basis since
parameters such as E are often estimated from fitting to experimen-
tal data [17,19]. However, the equations do provide a flexibility to
accommodate possible variability in the shape of the temperature
response, e.g., among genotypes or species.

The value � * depends on the O2 concentration (O) and the
Rubisco CO2/O2 specificity factor (Sc/o) as follows:

�∗ = 0.5O
Sc/o

(7)

where the factor 0.5 is mol CO2 released when Rubisco catalyses
the reaction with 1 mol O2 in photorespiration [3]. The value of
Sc/o, which also depends on temperature and can be described by
Eq. (5) in which E should be negative to account for a decline of the
Rubisco affinity for CO2 with increasing temperature.

The values of Vcmax and Jmax depend on the concentration of rel-
evant enzymes. For practical purposes, Vcmax25 and Jmax25 increase
linearly with leaf nitrogen content (e.g., [14,20]). Other parame-
ters are assumed constant, and their in vivo estimates are shown in
Table 2.

The basic equations of the FvCB model, Eqs. (1)–(4), capture
the response of C3 photosynthesis to irradiance, CO2 and O2 lev-

els, although the model may not predict often observed increases
in the initial slope of the photosynthetic response curve to CO2
with increased light levels (e.g., [21,22]). Coupled with auxiliary
equations, Eqs. (5)–(7) and the linear relation between leaf nitro-
gen level and Vcmax25 or Jmax25 (e.g., [14,16,23,24]), the model also
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Table 2
Indicative values for constants used in the C3 and C4 photosynthesis models.

Constant Unit C3 C4

Value Reference Value Reference

Sc/o25 bar bar−1 2800 Bernacchi et al. [6] 2590 von Caemmerer [54]
KmC25 �bar 270 Bernacchi et al. [6] 650 von Caemmerer [54]
KmO25 �bar 165000 Bernacchi et al. [6] 450000 von Caemmerer [54]
ESc/o J mol−1 –24460 Bernacchi et al. [6] ?
EVcmax J mol−1 65330 Bernacchi et al. [71] 67300 Massad et al. [53]
EKmC J mol−1 80990 Bernacchi et al. [6] ?
EKmO J mol−1 23720 Bernacchi et al. [6] ?
ERd J mol−1 46390 Bernacchi et al. [71] ?
EJmax J mol−1 26900–94400 Yin et al. [19] 77900 Massad et al. [53]
DJmax J mol−1 200000 Medlyn et al. [17] 192000 Massad et al. [53]
SJmax J K−1 mol−1 650 Harley et al. [14] 630 Massad et al. [53]
EVpmax J mol−1 na 70400 Massad et al. [53]
DVpmax J mol−1 na 118000 Massad et al. [53]
SVpmax J K−1 mol−1 na 380 Massad et al. [53]
Egm J mol−1 49600 Bernacchi et al. [6] na
Dgm J mol−1 437400 Bernacchi et al. [6] na
Sgm J K−1 mol−1 1400 Bernacchi et al. [6] na
kp mol m−2 s−1 bar−1 na 0.7 Collatz et al. [51]
�, or �2 – 0.7 or von Caemmerer [54] 0.7 von Caemmerer [54]

– variable Bernacchi et al. [38]
s – 0.33–0.41 Yin et al. [20] na
˚1(LL) mol mol−1 0.95–1.0 Trissl and Wilhelm [36] 0.95–1.0 Kingston-Smith et al. [72]
˚2(LL) mol mol−1 ≈ 0.75 Yin et al. [20] ≈ 0.75 Assumed as C3 value
ˇ – 0.84 or variable Standard value in Li-Cor, Evans [73] 0.84 Standard value in Li-Cor
h mol mol−1 3, 4, 14/3 Yin et al. [70] 3 or 4 von Caemmerer [54]
x – na 0.4 von Caemmerer [54]
fpseudo – ≈0.1 Yin et al. [35] ≈ 0.1 Laisk and Edwards [59]
fQ – 0–1 von Caemmerer [54] 1 Furbank et al. [56]
a1 – ≈0.85 † ≈ 0.85 †
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b1 kPa−1 ≈0.14 †
: not known to the authors; and their values for C3 leaves are used tentatively here
74].

uantifies the photosynthetic responses to temperature and nitro-
en level. Putting all together, the responses of photosynthesis to
hese environmental variables can be unambiguously predicted

echanistically by the model.
CO2 exchange at the leaf level can now be measured routinely

ith commercially available equipment [25] such as the Li-Cor
400 (Li-Cor Inc., Lincoln, NE, USA). With such measurements,
arameters of the FvCB model can be estimated using nonlin-
ar regression fitting (e.g., [14,17,19,26–28]), especially when CO2
xchange measurements are combined with chlorophyll fluores-
ence measurements [20].

Leaf photosynthesis in crop growth simulation has traditionally
een calculated using a family of empirical equations for its light
esponse curves. Typically these curves are characterized by two
arameters: initial quantum use efficiency of CO2 assimilation at

imiting lights (˚CO2(LL)) and maximum gross CO2 assimilation rate
nder a saturating light (Pmax). Empirical calibration procedures are
eeded if the models are used to predict the effect of environmental
ariables other than light on photosynthesis. According to van Oijen
t al. [29], both˚CO2(LL) and Pmax can be formulated from the FvCB
odel:

CO2(LL) = ˛(LL)(Cc −�∗)
4.5Cc + 10.5�∗

(8)

max = (Cc −�∗)Vc max

Cc + KmC(1 + O/KmO)
(9)
here Eq. (8) holds if Eq. (3b) applies; if Eq. (3a) applies, the coef-
cients 4.5 and 10.5 should be replaced by 4 and 8, respectively.
q. (9) holds in general, but according to the FvCB model, Pmax can
ometimes be determined as (Aj + Rd) rather than (Ac + Rd), as done
y Boote and Pickering [30]. When Eqs. (8) and (9) are used there
≈ 0.20 †
mulation. na: not applicable. (†) Derived here from the data of Morison and Gifford

is no need to conduct empirical model calibrations or corrections
for a change in environmental conditions such as CO2 concentra-
tion. Note that empirical calibrations were implemented in some
crop growth models, e.g., the rice model ORYZA ([31]; see a later
section).

Observed temperature response curves of photosynthesis under
various CO2 or light levels (e.g., [32]) provide strong support for
the FvCB model, although uncertainties may exist for the modelled
response over the range of low temperatures down to 0 ◦C. This
model predicts that at high CO2 levels the rate of photorespiration
is reduced, thereby extending the temperature range where CO2
assimilation rate is positive. The model also predicts an increas-
ing and more pronounced temperature optimum with increasing
either CO2 or light levels (Fig. 2). Such a shift in the temperature
optimum with a change in other environmental factors is critically
important for correctly assessing the impact of climate change [7],
e.g., on crop production and agro-ecosystem functioning. However,
such interactions of temperature with light or CO2 levels cannot be
predicted by any empirical photosynthesis models using a simple
light response equation.

3. An extended model and its use for calibrating the
Farquhar, von Caemmerer and Berry model

There is, however, an ambiguity in the FvCB model for calculat-
ing Aj, as shown by the use of two equations—Eqs. (3a) and (3b). In
applying the FvCB model, some researchers (e.g., [14]) have used Eq.

(3a), whereas others (e.g., [7]) used Eq. (3b), with little explanation
why one form was preferred over the other. Eqs. (3a) and (3b) were
derived by assuming that the noncyclic e− transport was the only
photosynthetic e− transport process active in leaves. This assump-
tion results in two possible outcomes: either the NADPH or the ATP
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Fig. 2. An example of response curves of net CO2 assimilation rate in a C3 plant to
leaf temperature, modelled using the FvCB model, (a) at three levels of irradiance
(�mol m−2 s−1) when Cc was fixed at 245 �bar, and (b) at three levels of Cc (�bar)
w −2 −1
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ical studies. So the lumped parameter s can also be considered as
constant. Substituting Eq. (11) into Eq. (3a) gives:
hen irradiance was fixed at 500 �mol m s . Arrows indicate the position of the
ptimum temperature.

upply will limit overall photosynthesis, applying to Eq. (3a) and
q. (3b), respectively. Furthermore, Eq. (3a) assumes 100% linear
− transport (LET), the noncyclic e− flux used for carbon reduc-
ion and photorespiration. Eq. (3b) implies that in addition to the
ET there is some pseudocyclic e− transport (PET), the noncyclic e−

ux not used for carbon reduction and photorespiration. Compar-
ng Eqs. (3a) and (3b) indicates that ATP production is more limiting
han NADPH supply. Thus, in Eq. (3b), PET is assumed to occur in
ivo to reduce or eliminate the ATP deficit.

Many studies (e.g., [14,15]) in which the FvCB model was applied
alculated e− transport rate (J) using a constant quantum yield of e−

ransport, which is usually corrected empirically for the observed
CO2(LL). In fact, ˚CO2(LL) is a function of excitation partitioning of

bsorbed light between photosystem I (PSI) and photosystem II
PSII), and e− transfer efficiencies of PSI and PSII. Furthermore, any
nvolvement of CET will reduce observed ˚CO2(LL). To account for
he fraction of CET (fcyc) and PET (fpseudo) (Fig. 3) as well as for the
ifference between PSI and PSII e− transport efficiencies under lim-

ting light (˚1(LL) and ˚2(LL), respectively) and for an uncertainty

ith regard to the operation of the Q-cycle (fQ) and the protons

equired for synthesising one mol ATP (h), the FvCB model for Aj
as extended analytically for a generalized stoichiometry ([19,35])
nal of Life Sciences 57 (2009) 27–38 31

by:

Aj = J2
(

1 − fpseudo

1 − fcyc

)
Cc −�∗

4Cc + 8�∗
− Rd (10a)

J2 =

(
˛2(LL)Iabs+J2 max−

√
(˛2(LL)Iabs+J2 max)2−4�2J2 max˛2(LL)Iabs

)
2�2

(10b)

˛2(LL) = ˚2(LL)(1 − fcyc)
˚2(LL)/˚1(LL) + (1 − fcyc)

(10c)

1 − fcyc − fpseudo = (4Cc + 8�∗)(2 + fQ − fcyc)
h(3Cc + 7�∗)

(10d)

where J2 is e− transport rate through PSII while CET is running
simultaneously, �2 is the convexity of the response curve of J2 to
Iabs, and J2max is the maximum capacity of J2 under a saturating Iabs.
Eq. (10d) sets the requirement for the relation between fcyc, fpseudo
and fQ if ATP and NADPH produced in the thylakoid reactions are
to match the requirement by the carbon reduction cycle and pho-
torespiration. As shown by Yin et al. [19], Eqs. (3a) and (3b) of the
FvCB model are special cases of the extended model assuming the
lack of CET (i.e., fcyc = 0) and an h of 3, with either no (Eq. (3b)) or
only a small fraction (Eq. (3a)) of the electrons following the Q-
cycle. Contemporary literature (e.g., [33,34]) indicates an h of 4 or
even higher, coupled with the absolute operation of the Q-cycle
(i.e., fQ = 1).

Yin et al. [35] discussed how the extended model can be used to
theoretically infer the possible range of variation for values of fcyc

and fpseudo based on gas exchange measurements on ˚CO2(LL) and
biophysical measurements on˚1(LL) and˚2(LL). The model can also
calculate theoretically the value of�2, the fraction of absorbed light
partitioned to PSII, conditional to fcyc and PSI and PSII e− transport
efficiencies. Furthermore, parameter˛(LL) in the FvCB model may be
calculated as ˚2(LL)/(1 +˚2(LL)/˚1(LL)), derived from Eq. (10c) for
the case in the absence of CET. This allows˛(LL) in the FvCB model to
be calculated from biophysical measurements for a difference in e−

transport efficiency between PSI and PSII. The absolute maximum
efficiency of PSI e− transport is 0.95 or greater [36]. Chlorophyll
fluorescence measurements showed that the maximum PSII photo-
chemical efficiency for dark-adapted leaves was quite conservative
among plant species, about 0.83 [37]. However, Bernacchi et al.
[38] and Yin et al. [20] have shown that the equivalent efficiency
for leaves adapted to strictly limiting light is somewhat lower, ca.
0.75. Setting ˚1(LL) = 1 and ˚2(LL) = 0.75 gives ˛(LL) in the FvCB
model as ˚2(LL)/(1 +˚2(LL)/˚1(LL)) = 0.43. This potentially avoids
an empirical calibration for parameter ˛(LL) in applying the FvCB
model.

However, the estimation of ˛(LL) for the FvCB model in that way
is correct only if alternative e− transports (PET and CET) do not
occur, which is highly unlikely in leaves. By comparing Eq. (3a)
with Eq. (10a), the following equation can be derived:

J = J2
(

1 − fpseudo

1 − fcyc

)
= �2ˇIinc˚2

(
1 − fpseudo

1 − fcyc

)
= sIinc˚2 (11)

where s = �2ˇ[1 − fpseudo/(1 − fcyc)], withˇbeing the proportion of
incident light absorbed by photosynthetic pigments. Although val-
ues of ˇ, �2, fcyc and fpseudo may be variable, they can be practically
assumed independent of light levels, as done in many physiolog-
Aj = (Cc −�∗)sIinc˚2

4Cc + 8�∗
− Rd (12)



32 X. Yin, P.C. Struik / NJAS - Wageningen Journal of Life Sciences 57 (2009) 27–38

Fig. 3. The Z scheme for photosynthetic thylakoid reactions showing linear (solid arrows), cyclic and pseudocyclic (dashed arrows) electron transport routes. From reduced
ferredoxin, a fraction, fcyc, of the electrons follows the cyclic mode around PSI. Another fraction, fpseudo, of the electrons that have passed PSI follows the pseudocyclic mode
for supporting processes such as the water–water cycle (WWC, see [69]), or nitrite reduction, or other minor metabolic processes. The remaining fraction, 1 − fcyc − fpseudo,
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to Cc (e.g., [16]). In recent years, mesophyll conductance (gm) for
CO2 transfer has increasingly been found to be small enough for
the existence of a significant drawdown of Cc relative to Ci (see the
review of [39]). As it is the level of Cc rather than Ci that together
s transferred to NADP+—the terminal acceptor of the linear electron transport for g
ynthesis along the chain depends on the operation of the Q-cycle. The scheme sh
oncerted action of the Rieske FeS and b6 of the cytochrome b6f complex, and the rem
�, photons absorbed either by PSI or by PSII. Redrawn from Yin et al. [70].

Combined measurements of CO2 exchange and chlorophyll flu-
rescence over the range (e.g., low light and high CO2 levels) where
is limited by Aj, could be used to determine the value of s, that is,

s the slope of linear regression, based on Eq. (12), between A and
inc˚2/4, obtained under the non-photorespiratory condition (low

2 and/or high CO2), at which� * can be practically set to zero [20].
If parameter s is known, the efficiency for converting Iinc into

ET under the strictly limiting light condition, �2(LL), is given by:

2(LL) = s˚2(LL) (13)

In analogy to Eq. (4), the equation for calculating J but as a func-
ion of incident irradiance can then be established as:

=

(
�2(LL)Iinc+Jmax−

√
(�2(LL)Iinc+Jmax)2−4�Jmax�2(LL)Iinc

)
2�

(14)

Then, Aj could still be calculated by Eq. (3a), with J being
iven by Eq. (14). This way of calibration accounts for any occur-
ence of alternative e− transport. An advantage of using Eq. (14)
ith parameter �2(LL) over Eq. (4) is that parameter �2(LL) can be
etermined from combined measurements of gas exchange and
hlorophyll fluorescence without the necessity to measure param-
ter ˇ, which is very hard to measure and is often approximated
y total leaf absorptance (note that there is probably significant
bsorptance by non-photosynthetic pigments in leaves). With this
alibration procedure, only a single lumped parameter �2(LL) is
eeded, obviating the need for knowing individual underlying
arameters ˇ, �2, fcyc and fpseudo, which would need more detailed
easurements to estimate specifically. Yin et al. [20] showed for
heat leaves, that �2(LL) can be related to leaf nitrogen (N) content

in g m−2) as: �2(LL) = 0.2048 + 0.0435N. So, if no chlorophyll fluores-
ence or non-photorespiratory measurements were conducted for
erforming the aforementioned calibration procedure, �2(LL) can be
rst derived practically using this equation.
. Coupled modelling of C3 photosynthesis and diffusional
onductance

The FvCB-type models, in principle, require Cc to be known a
riori, although Farquhar et al. [3] initially used the intercellular
ting NADPH in support of CO2 reduction or photorespiration. The efficiency of ATP
at a fraction, fQ, of the electrons followed the Q-cycle (dotted arrow) through the
g fraction, 1 − fQ, is transferred directly towards plastocyanin (Pc). Chl, chlorophyll;

CO2 level (Ci) in places of Cc of Eqs. (2) and (3a), (3b). Diffusional
conductance (including boundary-layer, stomatal and mesophyll
components) is involved along the path of transfer from ambient
CO2 level (Ca) to Cc (Fig. 4). The first two components determine
the drawdown of Ci relative to Ca. Of the three components, stom-
atal conductance (gs) was formerly considered as most important,
so in applying the FvCB model, C was then being treated as equal
Fig. 4. Micrograph of the abaxial surface of a typical leaf, illustrating the pathway
of CO2 transfer from ambient air (Ca) through leaf surface (Cs) and intercellular air
spaces (Ci) to the Rubisco carboxylation-sites in chloroplasts (Cc). Boundary-layer
conductance (gb), stomatal conductance (gs), and mesophyll conductance (gm) are
indicated. Revised from Flexas et al. [39].
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where kp is the initial carboxylation efficiency of the PEP carboxy-
lase, and Vpmax is the maximum rate of PEP carboxylation at the
saturated Ci, the temperature response of which can be described
by Eq. (6) [53]. Use of Eq. (20c) simplifies the model solution, but the

Fig. 5. Scheme of the C4 photosynthesis model based on von Caemmerer and Fur-
bank [9]. After passing the stomatal conductance (gs) and entering the mesophyll
cell, CO2 is fixed by phosphoenolpyruvate (PEP) carboxylase at the rate of Vp. The
formed C4 acid crosses a bundle-sheath conductance (gbs) and is decarboxylated at
X. Yin, P.C. Struik / NJAS - Wageninge

ith the oxygen level determines the relative Rubisco activity for
O2 fixation, gm has to be incorporated into the FvCB model. A num-
er of methods have been developed to estimate gm [40–42]. The
stimated gm appears to respond to temperature [6,43,44] and this
esponse may be described by Eq. (6) [6]. It has been shown recently
hat gm may also vary with CO2 and irradiance [45,39,20], but this
ariation is not yet completely certain (see review of [41] and ref-
rences therein). Thus, we currently assume that gm does not vary
ith CO2 or with irradiance.

A coupled modelling of leaf photosynthesis and stomatal con-
uctance has been reported frequently in the literature (e.g.,
16,46]). Few whole-plant modelling studies have considered gm

s a necessary term of the photosynthesis models [39]. Here we
ncorporate gb (boundary-layer conductance), gs and gm into our

odelling framework. First, on the basis of several existing models,
e propose the following phenomenological sub-model for gs:

s = g0 + A+ Rd

Ci − Ci∗
fvpd (15)

here g0 is the residual stomatal conductance if the irradiance
pproaches zero, Ci* is the Ci-based CO2 compensation point in the
bsence of Rd (by definition C i∗ = �∗ − Rd/gm), and fvpd is the func-
ion for the effect of leaf-to-air vapour pressure difference (VPD),
hich is not yet understood sufficiently and may be described

mpirically as:

vpd = 1
[1/(a1 − b1VPD) − 1]

(15a)

here a1 and b1 are empirical constants. Eq. (15) is consistent with
he finding that stomata may sense Ci [47]. Furthermore, unlike
he model of Leuning et al. [16], Eq. (15) uses (A + Rd) instead of A
o avoid a possible negative gs below the light compensation point.
nlike the model of Dewar [48], Eq. (15) predicts a non-zero gs if
i = Ci*. It also differs from the model of Tuzet et al. [46] in that
here is no need to calculate�—the CO2 compensation point in the
resence of Rd.

The following equations can be written, according to Fick’s first
aw of diffusion for CO2 transfer along the path from Ca to Cc:

i = Ca − A
(

1
gb

+ 1
gs

)
(16)

c = Ci − A

gm
(17)

The Rubisco-limited (Ac) and e− transport-limited (Aj) parts of
he FvCB model can be written in a single equation as:

= (Cc −�∗)x1

Cc + x2
− Rd (18)

here for the Rubisco-limited part x1 = Vcmax and
2 = KmC(1 + O/KmO), and for the e− transport-limited part x1 = J/4
nd x2 = 2� *.

Solving A from Eqs. (15)–(18) is commonly done by a numer-
cal iteration approach (e.g., [16]). From applications in a large
imulation framework such as for crop growth modelling, a faster
pproach is preferred. Here, an analytical approach is applied by
ombining and manipulating Eqs. (15)–(18) into the form of a stan-
ard cubic equation for A:

3 + pA2 + qA+ r = 0 (19)
The analytical solution for a general cubic equation is given in
ppendix A. Lumped coefficients p, q, and r in Eq. (19) are given in
ppendix B. The root A1 in Appendix A was found to be suitable

or calculating either Ac or Aj under any combinations of Ca, Iinc,
emperature, and VPD. The minimum of Ac or Aj gives A according
o Eq. (1).
nal of Life Sciences 57 (2009) 27–38 33

5. The C4 model

In C4 plants, CO2 is fixed initially in the mesophyll by phos-
phoenolpyruvate (PEP) carboxylase into C4 acids that are then
decarboxylated to supply CO2 to Rubisco, which is localized in the
bundle-sheath chloroplasts (Fig. 5). The well co-ordinated function-
ing of mesophyll and bundle-sheath cells, accomplished through
specialized leaf anatomy, produces a high CO2 concentration in the
bundle sheath, strongly inhibiting photorespiration. However, the
elevated CO2 in the bundle-sheath cells is sustained at the cost of
extra ATP, required for the regeneration of PEP.

The conductance for CO2 transfer from intercellular air spaces to
mesophyll cells may be large enough in C4 leaves [49]. However, the
bundle-sheath conductance (gbs) is a major factor that determines
the rate of CO2 leakage from the bundle sheath to the mesophyll
(L), and gbs should be small enough for concentrating CO2 in the
bundle sheath. Following the model of von Caemmerer and Fur-
bank [9], which was built upon several earlier models (e.g., [50]),
the following two equations specific for C4 photosynthesis can be
written:

L = gbs(Cc − Ci) (20a)

A = Vp − L − Rm (20b)

where Vp is the rate of PEP carboxylation, and Rm is the mitochon-
drial respiration occurring in the mesophyll, which for practical
purposes can be set to 0.5Rd. Vp can be limited either by the
activity of PEP carboxylase or by the rate of e− transport. For
the enzyme-limited case, von Caemmerer and Furbank [9] used a
Michaelis–Menten equation to describe Vp. In order to find an ana-
lytical solution when combined with a gs model, we use the version
of Collatz et al. [51] and He and Edwards [52]:

Vp = min(kpCi, Vp max) (20c)
the same rate Vp. The released CO2 either leaks back to the mesophyll cell (L) or can
be fixed at the bundle-sheath cell by Rubisco at the rate Vc in the photosynthetic
carbon reduction cycle (PCR – the normal C3 cycle). Part of the CO2 is again released
by the photosynthetic carbon oxidation (PCO) cycle at half the rate of Rubisco oxy-
genation (Vo). CO2 can also be released in the mesophyll and bundle sheath from
mitochondrial respiration (Rm and Rs), which together make the total day respiration
rate Rd.
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odelled CO2 response curve may reach saturation a little sooner
han that given by using a Michaelis–Menten equation.

For the e− transport-limited Vp, we use a generalized form
unpublished):

p(J2) = xJ2(2 + fQ − fcyc)
2h(1 − fcyc)

= xJ2z

2
(20d)

here z = (2 + fQ − fcyc)/[h(1 − fcyc)]; x represents the fraction of
he total PSII e− transport rate (J2) partitioned to the mesophyll
eactions, so (1 − x) is the fraction of J2 partitioned to the bundle-
heath reactions; the definition of the other variables in Eq. (20d)
s the same as used for the C3 generalized model, Eqs. (10a)–(10d).

Eqs. (20a) and (20b) can be combined to result in:

c = Ci + Vp − A− Rm

gbs
(21)

Incorporating algorithms from Eqs. (20c) and (20d), Eq. (21) can
ave different forms, depending on how Vp is calculated:

c = aCi + b− A− Rm

gbs
(22)

here a =
{

1 + kp/gbs if Vp = kpCi
1 if Vp = Vpmax or Vp(J2)

ndb =
{

0 if Vp = kpCi
Vp max if Vp = Vp max

Vp(J2) if Vp = Vp(J2)
.

As in C3 photosynthesis, the rate of CO2 fixation by Rubisco in
4 photosynthesis can be limited either by the Rubisco activity (see
q. (2)) or by the e− transport. In combination, the net rate of CO2
ssimilation can be expressed as:

= (Cc − �∗Obs)x1

Cc + x2Obs + x3
− Rd (23)

here Obs is the O2 concentration in the bundle-sheath cell;
* = 0.5/Sc/o; x1 = Vcmax, x2 = KmC/KmO, x3 = KmC for the enzyme

Rubisco)-limited rate, and x1 = (1 − x)J2z/3, x2 = 7�*/3 and x3 = 0
or the e− transport-limited rate (unpublished). This form of the
− transport-limited rate implicitly assumes that it is the ATP
upply rather than the NADPH supply that causes the e− trans-
ort limitation in C4 photosynthesis as a whole. This assumption
olds because there is no net NADPH requirement by the C4 cycle

tself although in NADP-ME C4 subtype, NADPH consumed in the
roduction of malate is released in the bundle sheath during decar-
oxylation. However, there is the additional cost of 2 mol of ATP for
he regeneration of 1 mol of PEP from pyruvate in the mesophyll
9].

In addition, PSII activity and O2 evolution in the bundle sheath
ary widely amongst the C4 species. This has implications for the
teady-state O2 partial pressure of the bundle sheath. Following
on Caemmerer and Furbank [9], a relation between intercellular
ir-space O2 partial pressure (Oi) and the bundle-sheath O2 partial
ressure (Obs) is described as:

bs = ˛A

0.047gbs
+ Oi (24)

here ˛ is the fraction of O2 evolution occurring in the bundle
heath, and 0.047 accounts for the diffusivities for O2 and CO2

n water and their respective Henry constants [9]. For maize and
orghum, ˛ will be zero whereas it will approach or even exceed
.5 in other cases [54].

CO2 transfer along the path from Ca to Ci is the same as in Eq.
16) for C3 photosynthesis. However, to permit finding an analyti-
nal of Life Sciences 57 (2009) 27–38

cal solution for A in C4 photosynthesis, we use a slightly different
phenomenological equation as a gs model:

gs = g0 + A+ Rd

Cs − Cs∗
fvpd (25)

where Cs is the CO2 level at leaf surface, and Cs* is the Cs-based CO2
compensation point in the absence of Rd. By definition, Cs* and Ci*
differ by Cs∗ = Ci∗ − Rd/gs,Ci∗ , where gs,Ci∗ is the stomatal conduc-
tance at Ci*. The value of Ci* can be solved from Eqs. (21) and (24)
with Cc = �∗Obs, Vp = kpCi∗ and A = −Rd:

Ci∗ = gbs�∗Oi − (1 + �∗˛/0.047)Rd + Rm

gbs + kp
(26)

Combining Eqs. (16) and (22)–(25) and manipulating them can
yield a form of cubic equation, Eq. (19), in which its coefficients are
given in Appendix C. The root A3 in Appendix A was found to be suit-
able for calculating A under any combination of Ca, Iinc, temperature,
and VPD. As either the enzyme activity or the e− transport can limit
both Rubisco and PEP-carboxylase reactions, in theory four types
of combinations of rate limitations are possible. The minimum of
the four rates gives the prediction of A.

There is not published a simple calibration procedure as yet to
account for alternative e− transports and other uncertain factors
as done for C3 photosynthesis, see Eqs. (11)–(13). For C4 photo-
synthesis, however, it is certain that the ATP supply causes the
e− transport limitation. Although non-chloroplastic processes (e.g.,
oxidative phosphorylation in mitochondria) could provide addi-
tional ATP in the PCK C4 subtype, it is most likely that the high
ATP requirement is largely met within the chloroplasts in the main
C4 crop species (maize and sorghum), since the respiration cost in
C4 leaves is generally not higher than in C3 leaves [55]. An equation
equivalent to Eq. (10d) for C3 photosynthesis, can be derived for C4
photosynthesis (unpublished):

1 − fcyc − fpseudo = (4Cc + 8�∗Obs)(2 + fQ − fcyc)(1 − x)
h(3Cc + 7�∗Obs)

(27)

Comparing Eq. (27) with Eq. (10d) shows that if fQ and h were
the same for C3 and C4 photosynthesis, the fraction for LET, i.e.,
(1 − fcyc − fpseudo) (see Fig. 3), would need to be decreased in C4
photosynthesis by a factor (1 − x). To meet the high demand for
ATP in C4 photosynthesis, however, the Q-cycle, an efficient proton-
pumping routine along the LET chain (Fig. 3), is obligatory [56]. So
fQ is set to 1. As there are minor physiological processes simulta-
neously occurring with CO2 fixation that consume e− or reductants
from the chloroplasts [57,58], the value of fpseudo can be practi-
cally assigned, e.g., ca. 0.1 for both C3 [35] and C4 plants [59], but
with caution as the exact value of fpseudo is unknown. These minor
physiological processes are beyond the scope of modelling photo-
synthesis in this paper and are not described in detail. Assuming
photorespiration is negligible in C4 leaves, the required fcyc can be
solved from Eq. (27) as:

fcyc = 1 − 4(1 − x)(1 + fQ) + 3hfpseudo

3h− 4(1 − x) (28)

where x may be set at 0.4, based on an optimization analysis for
a wide range of conditions ([9]; and references therein). There is
uncertainty about the value of parameter h (3, 4 or 14/3), which
has been debated for C3 photosynthesis [35,54]. Eq. (28) predicts
that fcyc is 0.136, 0.375 and 0.466 if h is 3, 4 and 14/3, respectively.
When fcyc is known, the required J2, see Eqs. (20d) and (23), can be
calculated using Eqs. (10b) and (10c). Although simulation shows

that Cc can be low enough (Fig. 6) for small photorespiration to
occur at limiting light levels, simulated values for ˚CO2(LL) using
the above assumptions agree with the range of measured ˚CO2(LL)
for C4 species [37,60,61], with h = 3 giving˚CO2(LL) at the upper side
and h = 14/3 giving a value at the lower side of the range. However,
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he reported interspecific difference in˚CO2(LL) could be due to the
ariation in other parameters (e.g., gbs). Furthermore, it is unclear
hether the chloroplasts are flexible enough (e.g., via state transi-

ion) to support CET with a high fcyc close to or even above 0.4. Thus,
or the following section we use the conservative value for h (i.e.,
), which was previously assumed to assess quantum requirement
f C4 photosynthesis (e.g., [50,56]), but with the caution that h is
ikely to be 4.

. Simulation highlights and some remarks from the
erspective of crop modelling

Some constants characterizing temperature response of enzyme
inetics are not yet well quantified for C4 photosynthesis (Table 2).
owever, in addition to those for C3 photosynthesis, the most

mportant algorithms for C4 photosynthesis are the ones that
apture the CO2 concentrating mechanism and the extra ATP
equirement by the PEP regeneration. Fig. 6 compares the level of
he simulated Cc in C3 and C4 leaves as a function of irradiance.
t high light levels, Cc of C4 leaves is 8–10 times that of C3 leaves,
hich largely explains why there is virtually no photorespiration

n C4 leaves. At low light levels, the difference is smaller, due to a
igher fraction of leakage of CO2 back to the mesophyll cell. As a
esult, the predicted light response curve saturates at a much higher
ight level, the predicted CO2 response curve saturates at a much
ower CO2 level, and the predicted temperature response curve
as a higher temperature optimum in C4 than C3 photosynthe-
is (Fig. 7), whereas the predicted difference in the photosynthetic
uantum efficiency ˚CO2(LL) at a reference 25 ◦C is relatively small
Fig. 8). We emphasize that the modelled differences in response

urves and values of ˚CO2(LL) between C3 and C4 cases should not
e considered as absolute as we only used default parameter val-
es to illustrate general trends. Overall, C4 photosynthesis response
urves are very similar to those for C3 photosynthesis measured
nder low O2 or/and high CO2 conditions (which can suppress

ig. 6. Comparison of simulated CO2 partial pressure at the Rubisco carboxylation
ite between C3 and C4 leaves. For this simulation, Ca = 360 �bar, T = 25 ◦C, VPD =
.1 kPa, Oi = 210,000 �bar, Vcmax25 = 120 �mol m−2 s−1, Jmax25 = 230 �mol m−2 s−1,
d25 = 0.01 Vcmax25, gb = 1.5 mol m−2 s−1 bar−1, g0 = 0.01 mol m−2 s−1 bar−1, a1 =
.9, b1 = 0.15 kPa−1. For C3: gm = 0.4 mol m−2 s−1 bar−1; for C4: ˛ = 0.1; gbs = 0.003
ol m−2 s−1 bar−1. For C4 simulation, the small difference between Cs* and Ci* was

ssumed negligible; furthermore, Vpmax was tentatively assumed not limiting on Vp

ecause how it scales quantitatively with Vcmax or with Jmax is not yet very clear;
ut this assumption has very little impact on the general conclusions of this and
ubsequent simulations because with increasing Ci , Vp(J2) will soon replace kpCi to
ecome limiting on Vp.

Fig. 7. Simulated curves of C3 and C4 gross photosynthesis in response to irradiance
where Ca = 360 �bar and T = 25 ◦C (a), to ambient CO2 where Iinc = 1000 �mol m−2 s−1
and T = 25 ◦C (b), and to temperatures where Iinc = 1000 �mol m−2 s−1 and
Ca = 360 �bar (c). Model constants used for this simulation are shown in Table 2;
for other parameters see Fig. 6.

photorespiration), except that ˚CO2(LL) in C4 leaves is significantly
lower than ˚CO2(LL) in C3 leaves under the non-photorespiratory
condition, the latter having a value of 0.09–0.11 [37,62].

As stated earlier, ˚CO2(LL) is an important parameter for the
photosynthetic light response curve in many crop growth mod-
els. Our model algorithms predict that at a Ca of 360 �bar,˚CO2(LL)

decreases sharply with increasing temperature in C3 plants but
remains virtually insensitive to temperature in C4 plants (Fig. 9a),
consistent with experimental evidence [60,61]. The predicted sen-
sitivity of ˚CO2(LL) to temperature for C3 plants at a doubled CO2
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Fig. 8. Illustration of the calculation of photosynthetic quantum efficiency at limit-
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Fig. 9. Temperature response of photosynthetic quantum efficiency under limiting
lights ˚CO2(LL), simulated by the C3 and C4 models described here (a), or by the
empirical multiplicative Eq. (29) as used in the ORYZA model [31] (b). For the C3
ng light levels (˚CO2(LL)) using simulated gross CO2 assimilation rates A + Rd (points).
a = 360 �bar and T = 25 ◦C. The slope of the linear regression through the origin is
CO2(LL). Model constants used for this simulation are shown in Table 2; for other

arameters see Fig. 6.

evel is reduced, compared with the response under the ambient
O2 condition (Fig. 9a). This is supported by the experimental mea-
urement of Ku and Edwards [63] that the sensitivity of˚CO2(LL) to
emperature in wheat is reduced by a reduced O2 level. To quan-
ify the interaction between the effect of temperature, f(T), and the
ffect of Ca, g(Ca), on ˚CO2(LL), the rice growth model ORYZA [31]
ses the following empirical, multiplicative expression:

CO2(LL) = ˚CO2(LL)reff (T)g(Ca) (29)

here˚CO2(LL)ref is˚CO2(LL) at a reference temperature and Ca; and
(T) and g(Ca) were established from separate experimental data.
his model predicts an increased temperature sensitivity of˚CO2(LL)
nder the elevated CO2 condition (Fig. 9b). The earlier version of
he ORYZA model was used to assess the impact of global warm-
ng on the Asian rice production [64]. It is clear that its simulation
esults should receive a critical reservation because the underly-
ng sub-model for photosynthesis does not predict correctly (1)
he temperature optimum shift and the temperature range (within
hich A is positive) at elevated CO2 (Fig. 2) and (2) the direction

f interaction between temperature and elevated CO2 on ˚CO2(LL)
Fig. 9).

Multiplicative models like Eq. (29) have often been used by crop
odellers as a standard method to describe how physiological pro-

esses respond to two or more interacting variables. The example
hown in Fig. 9 means that this form can be incorrect. Algorithms in
ajor crop growth models have been updated little since the late

980s, indicating “a sense of arrogance and complacency” [65]. To
ace new challenges in crop science, crop modellers should be will-
ng to utilize the rich knowledge at a lower scale, such as elegant
et simple FvCB-type photosynthesis models already available for
ears. A common view of crop modellers is that parameterization of
he FvCB model for different crops is difficult and time-consuming
66]. Given the increasing availability of a wealth of information

or the key enzyme constants (Table 2), which are believed to be
onservative among C3 or C4 species, the task of parameterization
an focus on a few key parameters, estimated by curve fitting to
eadily available gas exchange measurements (e.g., [17,19]). The
ersion of C3 and C4 photosynthesis models presented here has just
case in both panels, two levels of Ca (360 and 720 �bar) were considered, whereas
for the C4 case shown in panel (a), Ca = 360 �bar. Model constants used for simulation
shown in panel (a) are given in Table 2; for other parameters see Fig. 6.

been incorporated into a relatively new crop growth model GECROS
[24]. This model allows one to objectively examine a number of
important research questions, such as exploring options for bio-
energy production and assessing impacts of global warming and
transformation of C4 routine into C3 crops on season-long canopy
photosynthesis and crop grain yields. Crop modelling has been by
and large reliant on simple approaches; however, in the words
attributed to Albert Einstein, “Everything should be made as simple
as possible, but not simpler”.

Appendix A. Analytical solution of a cubic equation—Eq.
(19)

The solution of the standard form of a cubic equation like Eq.
(19) is taken from Press et al. [67]; see also Collatz et al. [51] and
Baldocchi [68]. Three roots for the equation are:

A1 = −2
√
Q cos

(
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)
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3
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√
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3 = −2
√
Q cos

(
 + 4�

3

)
− p
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here Q = (p2 − 3q)/9;  = arccos(U/
√
Q3);

= (2p3 − 9pq + 27r)/54.

ppendix B. Lumped coefficients in Eq. (19) for the coupled
3 photosynthesis and diffusional conductance model

The coefficients p, q and r of Eq. (19) for C3 photosynthesis are:

= − [d+ (x1 − Rd)/gm + a(1/gm + 1/gb) + (g0/gm + fvpd)c]
m

= [d(x1 − Rd) + ac + (g0/gm + fvpd)b]
m

= −ab
m

here the coefficients a, b, c, d and m are expressed as:

= g0(x2 +�∗) +
(
g0

gm
+ fvpd

)
(x1 − Rd)

= Ca(x1 − Rd) −�∗x1 − Rdx2

= Ca + x2 +
(

1
gm

+ 1
gb

)
(x1 − Rd)

= x2 +�∗ + (x1 − Rd)
gm

= 1
gm

+
(
g0

gm
+ fvpd

)(
1
gm

+ 1
gb

)
here x1 and x2 are defined in the texts following Eq. (18).

ppendix C. Lumped coefficients in Eq. (19) for the coupled
4 photosynthesis and diffusional conductance model

The coefficients p, q and r of Eq. (19) for C4 photosynthesis are:

= [j − (h− lRd)]
l

= (i+ jRd − g)
l

= − (f − iRd)
l

here the coefficients f, g, h, i, j and l are expressed as:

= (b− Rm − �∗Oigbs)x1d+ agbsx1Cad

= (b− Rm − �∗Oigbs)x1m−
(
˛�∗

0.047
+ 1

)
x1d
+ agbsx1

[
Cam− d

gb
− (Ca − Cs∗)

]

= −
[(

˛�∗
0.047

+ 1
)
x1m+ agbsx1(m− 1)

gb

]

= (b− Rm + gbsx3 + x2gbsOi)d+ agbsCad

[

[
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j = (b− Rm + gbsx3 + x2gbsOi)m+
(
˛x2

0.047
− 1

)
d

+ agbs

[
Cam− d

gb
− (Ca − Cs∗)

]

l =
(
˛x2

0.047
− 1

)
m− agbs(m− 1)

gb

where x1, x2 and x3 are defined in the texts following Eq. (23), a
and b are defined in the equations below Eq. (22), and d and m are
defined as:

d = g0Ca − g0Cs∗ + fvpdRd

m = fvpd − g0

gb
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