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The group SL(n,Z) admits a smooth faithful action on Sn−1, induced from its linear action
on Rn . We show that, if m < n − 1 and n > 2, any smooth action of SL(n,Z) on a mod 2
homology m-sphere, and in particular on the sphere Sm , is trivial.
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1. Introduction

By [13] any smooth action of SL(n,Z) on the torus T m is trivial if m < n (whereas it acts linearly and faithfully on
T n = R

n/Z
n). Also, by [5] any continuous action of SL(n,Z) on a closed surface is trivial for sufficiently large values of n

(depending on the genus of the surface). Our main result is the following analogue for smooth actions of SL(n,Z) on mod 2
homology spheres:

Theorem 1. Let n > 2 and m < n − 1. Any smooth1 action of SL(n,Z) on a mod 2 homology m-sphere, and in particular on Sm, is
trivial.

We note that the group SL(n,Z) admits a smooth faithful action on Sn−1 (induced from its linear action on R
n). Theo-

rem 1 was conjectured by Parwani [12] who proved that, if m < n − 1 and n > 2, any smooth1 action of SL(n,Z) on a mod 2
homology m-sphere factors through the action of a finite group. The main point of the proof in [12] is an application of
the Margulis finiteness theorem which implies that, for n > 2, SL(n,Z) is almost simple that is every normal subgroup is
either finite and central, or of finite index. Considering the subgroup (Z2)

n−1 of diagonal matrices with all diagonal entries
equal to ±1, Smith fixed point theory implies that some non-central element of SL(n,Z) has to act trivially on the mod 2
homology m-sphere if m < n − 1, and hence by Margulis’ theorem the kernel of the action has finite index. By the result
in [12], Theorem 1 is then a consequence of the following result to be proved in Section 2.

Theorem 2. Let n > 2 and m < n − 1. Any smooth action of a finite quotient of SL(n,Z) on a mod 2 homology m-sphere is trivial.

We note that Theorem 1 is proved in [12] for actions of SL(n,Z) on S1 and S2. For the case of S1, Witte [14] has shown
that every continuous action of a subgroup of finite index in SL(n,Z) on the circle S1 factors through a finite group action.
In the context of the Zimmer program for actions of irreducible lattices in semisimple Lie groups of R-rank at least two [15],
it has been conjectured by Farb and Shalen [6] that any smooth action of a finite-index subgroup of SL(n,Z), n > 2, on a
compact m-manifold factors through the action of a finite group if m < n − 1; however this remains still open for actions
e.g. on spheres (since the proof in [12] relies heavily on the existence of certain elements of finite order in SL(n,Z) which
has torsion-free subgroups of finite index, it does not apply to this more general situation).
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In general, it is not easy to decide whether a given finite group admits a faithful action on a homology m-sphere, for
smaller values of m. For example, Theorem 2 implies that the simple groups of type PSL(n,Z/pZ), p prime, do not act
faithfully on a mod 2 homology m-sphere whenever m < n − 1 and n > 2; however, the following remains open:

Question. What is the minimal dimension of an integer (a mod 2) homology sphere which admits a faithful action of

(i) PSL(n,Z/pZ)?
(ii) The alternating group An?

In the context of Theorem 1, the group SL(n,Z) has a finite subgroup isomorphic to the alternating group An+1, and it
is easy to see that, if the subgroup An+1 does not act faithfully, then the whole group SL(n,Z) has to act trivially (cf. the
arguments in [2, Proposition 1 and Lemma 3]). We believe that, with the exception of A5, the minimal dimension of an
integer homology sphere on which the alternating group An+1 acts faithfully coincides with the bound n − 1 in Theorem 1
(which is also the minimal dimension of a linear faithful action of An+1 on a sphere); if so, this gives an independent proof
of Theorem 1 for integer homology spheres. This is indeed the case for various small values of n; we note, however, that
A6 acts faithfully on a mod 2 homology 3-sphere [16] but not on an integer one (whereas e.g. for A8 the two minimal
dimensions coincide). Finite simple groups which admit actions on low-dimensional homology spheres are considered in
[8,10] (dimension three) and [9] (dimension four), see also the survey [17].

2. Proof of Theorem 2

We consider a faithful action of a finite quotient G of SL(n,Z) on a mod 2 homology m-sphere M , with m < n − 1
and n > 2, and have to show that G is trivial. We denote by U the kernel of the projection from SL(n,Z) to G , with
SL(n,Z)/U ∼= G . We consider also the action of SL(n,Z) on M induced by the action of G , with U acting trivially. Since
SL(n,Z) is perfect for n > 2 also G is perfect (does not admit a surjection onto a non-trivial abelian group), in particular
G and SL(n,Z) act orientation-preservingly on M . Arguing by contradiction, we will assume in the following that G is
non-trivial and hence non-solvable.

Since U is a finite-index subgroup of SL(n,Z) and n > 2, by the congruence subgroup property (see [7] or [1]) U contains
a congruence subgroup C(k), for some positive integer k; so C(k) is the kernel of the canonical homomorphism SL(n,Z) →
SL(n,Z/kZ) which is surjective (see e.g. [11, II.21]), and we have an exact sequence

1 → C(k) → SL(n,Z) → SL(n,Z/kZ) → 1.

In particular, there is a surjection from the finite group SL(n,Z)/C(k) ∼= SL(n,Z/kZ) to SL(n,Z)/U ∼= G which we denote by
� : SL(n,Z/kZ) → G .

If k = pr1
1 . . . prs

s is the prime decomposition, then it is well known that

SL(n,Z/kZ) ∼= SL
(
n,Z/pr1

1 Z
) × · · · × SL

(
n,Z/prs

s Z
)

(see [11, Theorem VII.11] or [4, Proof of Lemma 3.5.5.1]). Now the restriction of � : SL(n,Z/kZ) → G to some factor
SL(n,Z/pri

i Z) = SL(n,Z/pr
Z) has to be non-trivial and induces a surjection �0 : SL(n,Z/pr

Z) → G0 onto a perfect non-
solvable subgroup G0 of G; we denote by U0 the kernel of �0 (the elements of SL(n,Z/pr

Z) acting trivially on M).
Let K denote the kernel of the canonical surjection SL(n,Z/pr

Z) → SL(n,Z/pZ), so K consists of all matrices in
SL(n,Z/pr

Z) which are congruent to the identity matrix I = In when entries are taken mod p. By performing the bino-
mial expansion of (I + p A)pr−1

one checks that K is a p-group, in particular K is solvable (and the only non-abelian factor
in a composition series of SL(n,Z/pr

Z) is the simple group PSL(n,Z/pZ)).
Let K0 denote the kernel of the surjection from SL(n,Z/pr

Z) to the central quotient PSL(n,Z/pZ) of SL(n,Z/pZ); also
K0 is solvable and, since n > 2, PSL(n,Z/pZ) is a non-abelian simple group. We will show that there exists some element
u in SL(n,Z/pr

Z) which acts trivially on M (i.e., u ∈ U0) and projects to a non-central element in SL(n,Z/pZ). Then u
projects non-trivially also to the central quotient PSL(n,Z/pZ) and hence the normal subgroup U0 of SL(n,Z/pr

Z) surjects
onto the simple group PSL(n,Z/pZ). Considering the two exact sequences

1 → K0 → SL
(
n,Z/pr

Z
) → PSL(n,Z/pZ) → 1,

1 → U0 ∩ K0 → U0 → PSL(n,Z/pZ) → 1

and quotienting the first by the second one concludes that SL(n,Z/pr
Z)/U0 ∼= G0 is isomorphic to the solvable group

K0/U0 ∩ K0. This is a contradiction, and hence G has to be trivial.
In order to find the element u, we distinguish the cases p > 2 and p = 2.

2.1. Suppose first that p > 2.

Suppose that n is odd. The subgroup A of all diagonal matrices in SL(n,Z/pr
Z) with all diagonal entries equal to ±1 is

isomorphic to (Z2)
n−1 and does not contain the central involution −I; note that this subgroup injects under the canonical
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projection into SL(n,Z/pZ) and hence also into its central quotient group PSL(n,Z/pZ) which is a non-abelian simple
group. By general Smith fixed point theory the group (Z2)

n−1 does not act faithfully and orientation-preservingly on a
mod 2 homology sphere M of dimension m < n − 1 (see [12, Theorem 3.3]), so some involution u in A acts trivially on M .

If n is even then A contains the central involution −I . If the central involution acts non-trivially on M then some other
involution in A has to act trivially and we are done. There remains the case that the central involution −I acts trivially
on M . In this case we appeal to [12] where it is shown in the proof of Theorem 1.1 that there exists some non-central
involution represented by a diagonal matrix with diagonal entries ±1 which acts trivially on M .

2.2. Now suppose that p = 2.

Denote by Ei, j the (n × n)-matrix with all entries zero except for the (i, j)-entry which is equal to one. Let A be the
subgroup of SL(n,Z/2r

Z) generated by the elementary matrices I + E1,2, I + E1,3, . . . , I + E1,n . These matrices have order 2r

and commute, so A is isomorphic to (Z2r )n−1. Again by Smith theory (see [12, Theorem 3.3]), the subgroup (Z2)
n−1 of A

does not act faithfully on M . It follows easily that there is an element u of order 2r in A which acts trivially on M . Under
the canonical projection from SL(n,Z/2r

Z) onto the simple group SL(n,Z/2Z) = PSL(n,Z/2Z), the element u is mapped
non-trivially.

This finishes the proof of Theorem 2.

Note (June 2008). Parwani’s result in [12] as well as the main result in a preliminary version of the present paper (pub-
lished in April 2006 in arXiv:math) are formulated for continuous actions. Recently (March 2008) a paper of Bridson and
Vogtmann [3] appeared in arXiv:math, pointing out some gap in Parwani’s paper for the case of continuous actions (see
Remarks 4.16 and 4.17 of the paper of Bridson and Vogtmann). Since Parwani’s arguments remain valid for smooth actions,
we replaced continuous actions by smooth ones in the present paper (and refer to the paper of Bridson and Vogtmann for
the case of continuous actions).
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