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Abstract

Finite dimensional matrices with more columns than rows have no left inverses while those with more
rows than columns have no right inverses. We give generalizations of these simple facts to bi-infinite matrices.
Our results are then used to obtain density results for p-frames of time–frequency molecules in modulation
spaces and identifiability results for operators with bandlimited Kohn–Nirenberg symbols.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Matrices in Cm×n are not invertible if m /= n. To generalize this basic fact from finite dimen-
sional linear algebra to bi-infinite matrices, we first associate the quadratic shape � of M ∈
Cn×n to bi-infinite matrices decaying away from their diagonals, more precisely, by matrices
M = (mj ′j )j ′,j∈Zd with mj ′j small for |‖j ′‖∞ − ‖j‖∞| large. The rectangular shape �� of
M ∈ Cm×n, m < n, is then taken to correspond to bi-infinite matrices decaying off those wedges
that are situated between two slanted diagonals of slope less than one and which are open “to
the left and to the right”. In short, for λ > 1 we assume mj ′j small for λ‖j ′‖∞ − ‖j‖∞ positive

and large. In this case, we use the symbol ��. Similarly, the case ��, that is, M ∈ Cm×n, m > n,
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corresponds to those bi-infinite matrices that are adjoints of the �� matrices described above.

That is, the bi-infinite case �� is described by: for λ < 1 assume mj ′j small for −λ‖j ′‖∞ + ‖j‖∞
positive and large. In both cases, λ /= 1 corresponds to n

m
/= 1 in the theory of finite dimensional

matrices.
Throughout, we consider bi-infinite matrices that act on weighted lp spaces, 1 	 p 	 ∞. To

illustrate our main result we shall first state its simplest case.

Theorem 1.1. Let M = (mj ′j ) : l2(Z) −→ l2(Z) and let w : R+
0 −→ R+

0 satisfy w(x) =
o(x−1−δ), δ > 0.

1. If |mj ′j | < w(λ|j ′| − |j |) for λ|j ′| − |j | > 0 and λ > 1, then M has no bounded left
inverses.

2. If |mj ′j | < w(−λ|j ′| + |j |) for −λ|j ′| + |j | > 0 and λ < 1, then M has no bounded right
inverses.

Note that slanted matrices as covered in [1] and in the wavelets literature [2,3,4,5] are de-
fined through their decay off slanted diagonals, that is, |mj ′,j | is small for ‖λj ′ − j‖∞ large.
Since ‖λj ′ − j‖∞ 
 | λ‖j ′‖∞ − ‖j‖∞|, our results in Section 2 apply to slanted matrices as
well.

After stating and proving our main results as Theorems 2.1 and 2.2 in Section 2, we shall
illustrate their usefulness in Section 3 by giving applications of these results in the area of time–
frequency analysis. First, Theorem 2.2 is used to obtain elementary proofs of density theorems
for Banach frames of time–frequency molecules, in particular of Gabor systems, in so-called
modulation spaces [6,7]. Second, we discuss how Theorem 2.1 has been used to obtain neces-
sary conditions on the identifiability of pseudodifferential operators that are characterized by a
band-limitation of the operators’ Kohn–Nirenberg symbols [8,9,10]. The background on time–
frequency analysis that is used in Section 3 is given in Section 3.1.

2. Non-invertibility of “rectangular” bi-infinite matrices

Let l
p
s (Zd), 1 	 p 	 ∞, s ∈ R, be the weighted lp-space with norm ‖{xj }‖l

p
s

= ‖{(1 +
‖j‖∞)sxj }‖lp , where ‖{xj }‖p =

(∑
j |xj |p

) 1
p

for p < ∞ and ‖{xj }‖∞ = supj {|xj |}.

Theorem 2.1. Let 1 	 p1, q1, p2 	 ∞, 1
p1

+ 1
q1

= 1, and M = (mj ′j ) : lp1(Zd) → lp2(Zd). If

a function w : R+
0 → R+

0 exists with w(x) = o

(
x

−( 1
q1

+ 1
p2

)d−r1−r2−δ
)

and

|mj ′j | 	 w(λ‖j ′‖∞ − ‖j‖∞)(1 + ‖j‖∞)r1(1 + ‖j ′‖∞)r2 , λ‖j ′‖∞ − ‖j‖∞ > K0,

for some constants λ, K0, r1, r2, δ with λ, K0 > 1, δ 
 0, r1 + δ > 0, and d
p2

+ r1 + r2 + δ > 0,

then M has no bounded left inverses.

Theorem 2.1 is easily generalized:

Theorem 2.2. Let 1 	 p1, p2, q1, q2 	 ∞, 1
p1

+ 1
q1

= 1, 1
p2

+ 1
q2

= 1, r1, r2, s1, s2 ∈ R, and

M = (mj ′j ) : l
p1
s1 (Zd) → l

p2
s2 (Zd).
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1. If there is a δ 
 0 with r1 − s1 + δ > 0 and d
p2

+ r1 + r2 − s1 + s2 + δ > 0, and if λ >

1, K0 >0,and a functionw : R+
0 −→R+

0 exist withw(x)=o

(
x

−
(

1
q1

+ 1
p2

)
d−r1−r2+s1−s2−δ

)
and

|mj ′j | 	 w(λ‖j ′‖∞ − ‖j‖∞)(1 + ‖j‖∞)r1(1 + ‖j ′‖∞)r2 , λ‖j ′‖∞ − ‖j‖∞ > K0,

then M has no bounded left inverses.
2. If there is a δ 
 0 with r2 − s2 + δ > 0 and d

p1
+ r1 + r2 + s1 − s2 + δ > 0 and if 0 < λ <

1, K0 > 0 and a functionw : R+
0 −→R+

0 exist withw(x)=o

(
x

−
(

1
p1

+ 1
q2

)
d−r1−r2−s1+s2+δ

)
and

|mj ′j | 	 w(−λ‖j ′‖∞ + ‖j‖∞)(1 + ‖j‖∞)r1(1 + ‖j ′‖∞)r2 , −λ‖j ′‖∞ + ‖j‖∞ > K0,

λ, K0 > 0, then M has no bounded right inverses.

Clearly, Theorem 1.1 is equal to Theorem 2.2 for r1 = r2 = s1 = s2 = 0, p1 = q1 = p2 =
q2 = 2, and d = 1.

Proof of Theorem 2.1. We begin with the case p1 > 1 and p2 < ∞ and show that if w : R+
0 →

R+
0 satisfies w(x) = o

(
x

−
(

1
q1

+ 1
p2

)
d−r1−r2−δ

)
, δ 
 0, r1 + δ > 0, and d

p2
+ r1 + r2 + δ > 0,

then

AK1 = K
p2r1
1

∑
K
K1

Kp2r2+d−1

⎛⎝∑
k
K

kd−1w(k)q1

⎞⎠
p2
q1

→ 0 as K1 → ∞. (1)

To this end, we set w̃(x) = supy	x w(y) ∈ o

(
x

−
(

1
q1

+ 1
p2

)
d−r1−r2−δ

)
and choose v ∈ C0(R

+)

with w̃(x) 	 v(x)x
−
(

1
q1

+ 1
p2

)
d−r1−r2−δ

. Then

∑
K
K1+2

Kp2r2+d−1

⎛⎝∑
k
K

kd−1w(k)q1

⎞⎠
p2
q1

	
∑

K
K1+1

Kp2r2+d−1

⎛⎝ ∑
k
K+1

kd−1w̃(k)q1

⎞⎠
p2
q1

	
∫ ∞

K1

xp2r2+d−1
(∫ ∞

x

yd−1w̃(y)q1 dy

) p2
q1

dx

	
∫ ∞

K1

xp2r2+d−1
(∫ ∞

x

v(y)q1y
−1− q1

p2
d−q1r2−q1r1−q1δdy

) p2
q1

dx
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	 ‖v|[K1,∞)‖p2∞
q1
p2

d + q1r2 + q1r1 + q1δ

∫ ∞

K1

xp2r2+d−1x−d−p2r2−p2r1−p2δdx

	 ‖v|[K1,∞)‖p2∞
(r1 + δ)(q1d + p2q1r2 + p2q1r1 + p2q1δ)

K
−p2r1−p2δ

1 = o(K
−p2r1
1 ),

since ‖v|[K1,∞)‖∞ → 0 as K1 → ∞ and (1) follows.

To show that infx∈l0(Zd )

{ ‖Mx‖lp2
‖x‖lp1

}
= 0 we fix ε > 0 and note that (1) provides us with a

K1 > K0 satisfying AK1 	 (2dd)
− p2

q1
−1

2−p2r2

(
λ−1
λ

)p2r1
εp2 .

SetN =
⌈

λ(K1+1)
λ−1

⌉
and Ñ = ⌈

N
λ

⌉+ K1. Then λ(K1+1)
λ−1 	 N 	 λ(K1+2)

λ−1 impliesλN 
 λK1 +
λ + N and N 
 K1 + N

λ
+ 1 > K1 + ⌈

N
λ

⌉ = Ñ . Therefore, (2Ñ + 1)d < (2N + 1)d and the

matrix M̃ = (mj ′j )‖j ′‖∞	Ñ,‖j‖	N : C(2N+1)d −→ C(2Ñ+1)d has a nontrivial kernel. We now

choose x̃ ∈ C(2N+1)d with ‖x̃‖p1 = 1 and M̃x̃ = 0. We define x ∈ l0(Z
2) according to xj = x̃j

if ‖j‖∞ 	 N and xj = 0 otherwise.
By construction we have ‖x‖lp1 = 1 and (Mx)j ′ = 0 for ‖j ′‖∞ 	 Ñ . To estimate (Mx)j ′ for

‖j ′‖∞ > Ñ , we fix K > K1 and one of the 2d(2(
⌈

N
λ

⌉+ K))d−1 indices j ′ ∈ Zd with ‖j ′‖∞ =

N

λ
� + K . We have ‖λj ′‖∞ 
 N + Kλ and λ‖j ′‖∞ − ‖j‖∞ 
 Kλ 
 K for all j ∈ Zd with

‖j‖∞ 	 N . Therefore,

|(Mx)j ′ |q1 =
∣∣∣∣∣∣
∑

‖j‖∞	N

mj ′j xj

∣∣∣∣∣∣
q1

	 ‖x‖q1
p1

∑
‖j‖∞	N

|mj ′j |q1

	 (1 + ‖j ′‖∞)q1r2
∑

‖j‖∞	N

(1 + ‖j‖∞)q1r1w(λ‖j ′‖∞ − ‖j‖∞)q1

	 (1 + ‖j ′‖∞)q1r2(N+1)q1r1
∑

‖j‖∞
K

w(‖j‖∞)q1

= 2dd(1 + ‖j ′‖∞)q1r2(N+1)q1r1
∑
k
K

kd−1w(k)q1 .

Finally, we compute

‖Mx‖p2
lp2 =

∑
j ′∈Zd

|(Mx)j ′ |p2 =
∑

‖j ′‖∞

 N
λ

�+K1

|(Mx)j ′ |p2

	 (2dd)
p2
q1

∑
‖j ′‖∞

 N

λ
�+K1

(1 + ‖j ′‖∞)p2r2(N+1)p2r1

⎛⎝ ∑
k
‖j ′‖∞

kd−1w(k)q1

⎞⎠
p2
q1

	 (2dd)
p2
q1 (N+1)p2r1

∑
K

 N

λ
�+K1

2d(2K)d−1(K + 1)p2r2

⎛⎝∑
k
K

kd−1w(k)q1

⎞⎠
p2
q1

	 (2dd)
p2
q1

+1
2p2r2

(
λ(K1 + 2)

λ − 1
+ 1

)p2r1



G.E. Pfander / Linear Algebra and its Applications 429 (2008) 331–345 335

×
∑

K

 N
λ

�+K1

Kp2r2+d−1

⎛⎝∑
k
K

kd−1w(k)q1

⎞⎠
p2
q1

	 (2dd)
p2
q1

+1
2p2r2

(
λ

λ − 1

)p2r1

(K1 + 3)p2r1

×
∑

K

 N
λ

�+K1

Kp2r2+d−1

⎛⎝∑
k
K

kd−1w(k)q1

⎞⎠
p2
q1

	 εp2 ,

that is, ‖Mx‖lp2 	 ε. Since ε was chosen arbitrarily and ‖x‖lp1 = 1, we have

infx∈l0(Z2)

{ ‖Mx‖lp2
‖x‖lp1

}
= 0. Consequently, M is not bounded below and M has no bounded left

inverses.
The cases p1 = 1 and/or p2 = ∞ are proven similarly. �

Proof of Theorem 2.2. Part 1. Let M = (mj ′j ) : l
p1
s1 (Zd) → l

p2
s2 (Zd) satisfy the hypothesis of

Theorem 2.2, part 1. Suppose that M = (mj ′j ) : l
p1
s1 (Zd) → l

p2
s2 (Zd) has a bounded left inverse.

This clearly implies that

M̃ = (m̃j ′j ) = (mj ′j (1 + ‖j ′‖∞)s2(1 + ‖j‖∞)−s1) : lp1(Zd) → lp2(Zd)

has a bounded left inverse. But this contradicts Theorem 2.1 because for λ‖j ′‖∞ − ‖j‖∞ > K0
we have

|m̃j ′j | = |mj ′j (1 + ‖j ′‖∞)s2(1 + ‖j‖∞)−s1)|
	 w(λ‖j ′‖∞ − ‖j‖∞)(1 + ‖j‖∞)r1−s1(1 + ‖j ′‖∞)r2+s2

with δ 
 0, r1 − s1 + δ > 0, d
p2

+ r1 + r2 − s1 + s2 + δ > 0, and w(x) =
o

(
x

−
(

1
q1

+ 1
p2

)
d−r1−r2+s1−s2−δ

)
.

Part 2. The matrix M : l
p1
s1 (Zd) → l

p2
s2 (Zd) has a bounded right inverse if and only if its adjoint

M∗ : l
p2
s2 (Zd) → l

p1
s1 (Zd) has a bounded left inverse. The conditions on M in Theorem 2.2, part

2, are equivalent to the conditions on M∗ in Theorem 2.2, part 1. The result follows. �

3. Applications

Before formulating applications of Theorems 2.1 and 2.2, we give a brief account of the
concepts from time–frequency analysis that are relevant to this section. For additional background
on time–frequency analysis and, in particular, Gabor frames see [11].

3.1. Time–frequency analysis and Gabor frames

The Fourier transform of a function f ∈ L1(Rd) is given by f̂ (γ ) = ∫
f (x)e−2π ix·γ dx, γ ∈

R̂
d
, where R̂

d
is the dual group of Rd . Aside from notation, R̂

d = Rd . The Fourier transform
can be extended to act unitarily on L2(Rd) and isomorphically on the dual space of the Frechet
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space consisting of Schwarz class functions S(Rd), that is, on the space of tempered distributions
S′(Rd) ⊃ S(Rd).

The translation operator Ty : S(Rd) −→ S(Rd), y ∈ Rd , is given by (Tyf )(x) = f (x −
y), x ∈ Rd , and the modulation operator Mξ : S(Rd) −→ S(Rd) is given by (Mξf )(x) =
e2π ixξ f (x), x ∈ Rd . Both extend isomorphically to S′(Rd) and so does their composition, the

so-called time–frequency shift operator π(z) = π(y, ξ) = TyMξ , z = (y, ξ) ∈ Rd × R̂
d
. Note

that the adjoint operator π(z)∗ of π(z) = π(y, ξ) is π(z)∗ = e2π iyξπ(−z).
The short-time Fourier transform Vgf of f ∈ L2(Rd) ⊆ S′(Rd) with respect to a window

function g ∈ L2(Rd) \ {0} is given by

Vgf (z) = 〈f, π(z)g〉 =
∫

Rd
f (x)g(x − y)e−2π i(x−y)·ξ dx, z = (y, ξ) ∈ Rd×R̂

d
.

We have Vgf ∈ L2(Rd×R̂
d
) and ‖Vgf ‖L2 = ‖f ‖L2‖g‖L2 .

A central goal in Gabor analysis is to find g ∈ L2(Rd) and full rank lattices � = AZ2d ⊂
Rd×R̂

d
, A ∈ R2d×2d full rank, which allow the discretization of the formula ‖Vgf ‖L2 =

‖f ‖L2‖g‖L2 . That is, for which g ∈ L2(Rd) and for which full rank lattices � does A, B > 0
exist with

A‖f ‖2
L2 	

∑
z∈�

|Vgf (z)|2 	 B‖f ‖2
L2 , f ∈ L2(Rd)? (2)

If (2) is satisfied, then (g, �) = {π(z)g}z∈� is called Gabor frame for the Hilbert space L2(Rd).
More recently, the question posed above has also been considered for less structured or even

unstructured sequences � in Rd × R̂
d

in place of full rank lattice � [12–17].
To generalize the Hilbert space frame concept (2) to Banach spaces, we adopt the definition

of p-frames from [18].

Definition 3.1. The Banach space valued sequence {gj }j∈Zd ⊆ X′, d ∈ N, is an l
p
s -frame for

the Banach space X, 1 	 p 	 ∞, s ∈ R, if the analysis operator CF : X −→ l
p
s (Zd), f �→

{〈f, gj 〉}j , is bounded and bounded below, that is, if A, B > 0 exist with

A‖f ‖X 	 ‖{〈f, gj 〉}‖l
p
s

	 B‖f ‖X, f ∈ X. (3)

Note that in the Hilbert space setting X = L2(Rd) and l
p
s (Z2d) = l2(Z2d) discussed above,

(2) necessitates that CF has a bounded left inverse, while in Banach spaces condition (3) alone
does not guarantee the existence of a bounded left inverse. Therefore, the existence of a bounded
left inverse of CF is included in the definition of the standard generalization of frames to Banach
frames in Banach spaces [19,20,21].

Analogous to Definition 3.1 we state a generalization of the Riesz basis concept in the Banach
space setting.

Definition 3.2. A sequence {gj }j∈Zd ⊆ X, d ∈ N, is called l
p
s -Riesz basis in the Banach space

X, 1 	 p 	 ∞, s ∈ R, if the synthesis operator D{gj }j : l
p
s (Z2d) −→ X, {cj }j �→ ∑

j cj gj , is
bounded and bounded below, that is, if A, B > 0 exist with

A‖{cj }j‖l
p
s

	

∥∥∥∥∥∥
∑
j

cj gj

∥∥∥∥∥∥
X

	 B‖{cj }j‖l
p
s
, {cj }j ∈ l

p
s (Zd). (4)
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Note that for any 1 	 p 	 ∞, s ∈ R, lps -Riesz bases form unconditional bases for their closed
linear span. This follows directly from (4) and Definition 12.3.1 and Lemma 12.3.6 in [11].

The Banach spaces of interest to us are so-called modulation spaces which we shall describe
now (see also [11,22,23]).

Clearly, Vgf (z) = 〈f, π(z)g〉, z ∈ Rd×R̂
d
, is well defined whenever g ∈ S(Rd) and f ∈

S′(Rd) (or vice versa). This together with ‖Vgf ‖L2 = ‖g‖L2‖f ‖L2 in the L2-case motivates

the following. We let g = g ∈ S(Rd) be an L2-normalized Gaussian, that is, g(x) = 2
d
4 e−π‖x‖2

2 ,
x ∈ Rd , and define the modulation space M

p
s (Rd), s ∈ R, 1 	 p 	 ∞, by

M
p
s (Rd) = {f ∈ S′(Rd) : Vgf ∈ L

p
s (Rd × R̂

d
)}.

We equip M
p
s (Rd) with the Banach space norm

‖f ‖M
p
s

= ‖Vgf ‖L
p
s

=
(∫

|(1 + ‖z‖)sVgf (z)|pdz

) 1
p

< ∞, 1 	 p < ∞,

with the usual adjustment for p = ∞. The discussion above shows that M2
0 (Rd) = L2(Rd) with

identical norms.

Example 3.3. For λ < 1, (g, λZ2d) is an l2-frame for L2(Rd) [24,25]. Since g ∈ S(Rd) ⊂
M1

t (Rd) for all t 
 0, Theorem 20 in [17] implies that (g, λZ2d) is an l
p
s -frames for M

p
s (Rd) for

s ∈ R and 1 	 p 	 ∞. The so-called Wexler–Raz identity implies that for λ > 1, (g, λZ2d) is
an l2-Riesz basis in L2(Rd) [11,26]. Hence, D(g,λZ2d ) : l2(Z2d) −→ L2(Rd) has a bounded left

inverse of the form C(g̃,λZ2d ) where the so-called dual function g̃ of g satisfies g̃ ∈ S(Rd) [27]. The

operator C(g̃,λZ2d ) is a bounded operator mapping M
p
s (Rd) to l

p
s (Z2d). This implies that D(g,λZ2d )

has a left inverse and (g, λZ2d) is an l
p
s -Riesz basis in M

p
s (Rd) for any s ∈ R and 1 	 p 	 ∞.

3.2. Density results for Gabor type l
p
s -frames in modulation spaces

One of the central results in Gabor analysis is the fact that (g, �), g ∈ L2(Rd), cannot be a
frame for L2(Rd) if the measure of a fundamental domain of the full rank lattice � is larger than
1 (see [28] and references within, in particular [29,30]). This result was first generalized to less

structured or even unstructured sequences � in Rd × R̂
d

in [12,13,14]. They require an alternative
definition of density [15,28,31].

Definition 3.4. Let QR = [−R, R]2d ⊆ Rd × R̂
d

and let � be a sequence of points in Rd × R̂
d
.

Then

D−(�) = lim inf
R→∞ inf

z∈Rd×R̂
d

|� ∩ QR+z|
(2R)2d

and D+(�) = lim sup
R→∞

sup
z∈Rd×R̂

d

|� ∩ QR+z|
(2R)2d

are called lower and upper Beurling density of �. If D+(�) = D−(�), then � is said to have
uniform density D(�) = D+(�) = D−(�).

Remark 3.5. The density of a sequence � does not always equal the density of its range set. For
example, the density of the sequence

{. . . ,−2, −2, −1, −1, 0, 0, 1, 1, 2, 2, 3, 3, . . .}
in R is 2, while the density of the range of the sequence, namely of Z, is 1.
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Fig. 1. Sketch of the proof of Theorem 3.6. We choose λ > 1 so that (g, λZ2d ) is an l
p
s -Riesz basis in M

p
s (Rd ).

Consequently, D
(g,λZ2d )

is bounded below. Theorem 2.2 applied to M = C(g,�) ◦ D
(g,λZ2d )

shows that M is not bounded
below. This implies that C(g,�) is not bounded below and, therefore, does not have a bounded left inverse.

In [32], it was shown that if (g, �), g ∈ L2(Rd) and � ⊆ Rd × R̂
d
, is an l2-frame for L2(Rd) =

M2
0 (Rd), then 1 	 D−(�) 	 D+(�) < ∞, a result that has recently been refined by Theorems

3 and 5 in [16]. For l
p
s -frames for M

p
s (Rd), Theorem 2.2 implies the following:

Theorem 3.6. Let 1 	 p 	 ∞, s ∈ R, and g ∈ M∞
2d if s < 0 and p /= ∞ and g ∈ M∞

2d+δ, δ >

s, 0, else. If (g, �) is an l
p
s -frame for M

p
s (Rd), then D+(�) 
 1.

Proof. See Fig. 1 for an illustration of the following arguments. Let � be given with D+(�) < 1.
We choose λ > 1 with 1 > λ−4d > D+(�) and R0 > 0 with

|� ∩ QR| < sup
z∈Rd×R̂

d

|� ∩ QR+z| < λ−4d(2R)2d , R > R0.

Since D+(�) < ∞, the sequence � has no accumulation points and we can enumerate the
sequence � by Z2d so that ‖γj ′ ‖∞ 
 ‖γ

j
′′ ‖∞ implies ‖j ′‖∞ 
 ‖j ′′ ‖∞ for j ′, j ′′ ∈ Z2d .

Now observe that if γj ′ ∈ QR for R > R0, then γ
j

′′ ∈ QR for all j
′′

with ‖j ′′ ‖∞ < ‖j ′‖∞, a

condition which is satisfied by (2(‖j ′‖∞ − 1) + 1)2d = (2‖j ′‖∞ − 1)2d indices. As QR contains
at most λ−4d(2R)2d points, we conclude that

γj ′ /∈ QR if (2‖j ′‖∞ − 1)2d 
 λ−4d(2R)2d , R > R0. (5)

Solving the inequality in (5) for R, we obtain in particular that

γj ′ /∈ Q
λ2‖j ′‖∞− λ2

2
for λ2‖j ′‖∞ − λ2

2
> R0. (6)

We have

C(g,�) ◦ D(g,λZ2d ) : l
p
s (Z2d) −→ l

p
s (Z2d),

{cj }j �→
⎧⎨⎩∑

j

cj 〈π(λj)h, π(γj ′)g〉
⎫⎬⎭ = M{cj }j ,

with M = (mj ′j ) and |mj ′j | = |〈π(λj)h, π(γj ′)g〉| = |Vgh(γj ′ − λj)|.
Using (6) we observe that for ‖j ′‖∞ >

R0
λ2 + 1

2 ,

‖γj ′ − λj‖∞ 
 λ2‖j ′‖∞ − λ2

2
− ‖λj‖∞ = λ

(
λ‖j ′‖∞ − ‖j‖∞ − λ

2

)
,
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and so

|mj ′j | = |〈π(λj)g, π(γj ′)g〉| = |Vgg(γj ′ − λj)| 	 w(λ‖j ′‖∞ − ‖j‖∞),

where

w(‖z‖) = (1 + ‖z‖)−2d−δ sup
z̃

((1 + ‖z̃‖)2d+δ|Vgg(z̃)|), z ∈ Rd × R̂
d
.

Theorem 2.2 now implies that C(g,�) ◦ D(g,λZ2d ) is not bounded below. Since D(g,λZ2d ) is bounded
below, we conclude that C(g,�) is not bounded below. This completes the proof. �

Note that the last lines in the proof of Theorem 3.6 can be modified to apply to time–frequency
molecules which we shall consider in the following.

Definition 3.7. A sequence {gj ′ }j ′ of functions consists of time–frequency molecules that are
(v, r1, r2)-localized at � = {γj ′ }j ′ if

|Vggj ′(z)| 	 (1 + ‖z‖∞)r1(1 + ‖j ′‖∞)r2w(‖z − γj ′ ‖∞), w = o(x−v).

If r1 = r2 = 0, then we simply speak of time–frequency molecules that are v-localized at �.

Note that if {gj ′ }j ′ ⊆ (M
p
s (Rd))′ is (v, r1, r2)-localized, then, by definition, {gj ′ }j ′ ⊆

M∞
v−r1

(Rd), and, consequently, if v − r1 > 2d we have {gj ′ }j ′ ⊆ M1(Rd), a fact which we take
into consideration when stating the hypotheses of Theorems 3.8 and 3.9

Related concepts of localization were introduced in [1,17,15,16] to obtain density results and
to describe the time–frequency localization of dual frames of irregular Gabor frames, see also
Remark 3.11.

Theorem 3.8. If {gj ′ }j ′ ⊆ (M
p
s (Rd))′ ∩ M∞

v−r1
, 1 	 p 	 ∞, s ∈ R, is an l

p
s -frame for M

p
s (Rd)

which is (v, r1, r2)-localized at � = {γj ′ }j ′ with δ − s, v − r1 − r2 − 2d − δ, r1 + 2d
p

+ δ > 0,

and δ 
 0, then D+(�) 
 1.

Note that Theorem 9 in [16] states that if {gj ′ } is an l2-frame for L2(Rd) which consists of
time–frequency molecules d + δ-localized at �, δ > 0, then necessarily 1 	 D−(�). Below, we
show that the heuristics underlying the proof of Theorem 2.1 can be used to obtain some of the
density results given above with D+(�) being replaced by the less restrictive D−(�).

Theorem 3.9. If {gj ′ }j ′ ⊆ M1(Rd) is an lp-frame for Mp(Rd), 1 	 p 	 ∞, which is 2d + δ-
localized at � = {γj ′ }j ′ with D+(�) < ∞ and δ > 0, then D−(�) 
 1.

Proof. Suppose that {gj ′ }j ′ is an l
p
s -frame for Mp(Rd) which is 2d + δ-localized at � = {γj ′ }j ′ ,

D−(�) < 1. For z0 ∈ R2d and 0 < α3 < 1 chosen below, we shall consider the Gabor system
{π(α−1

3 j + z0)g}j∈Z2d which is an lp-Riesz basis for Mp(Rd) (see Example 3.3). We shall show
that {gj ′ } is not an lp-frame by arguing that

inf
x∈lp(Zd )

‖C{gj ′ } ◦ D{π(α−1
3 j+z0)g}x‖lp

‖x‖lp
= 0.

To this end, fix ε > 0. We first assume 1 < p < ∞.
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Since D+(�) < ∞, there exist α1 
 1 and R̃0 
 1 with ∞ > α2d
1 > D+(�) 
 0 and

|� ∩ QR+z| 	 α2d
1 (2R)2d , z ∈ Rd × R̂

d
, R 
 R̃0.

Further, we can pick α2, α3 > 1
2 with D−(�) < α2d

2 < α2d
3 < 1, and select n0 ∈ N with

α2 + α1

((
1 + 1

n0

)2d

− 1

)−2d

< α3

(
1 − 1

2n0

)2d

.

We now choose a monotonically decreasing function w with w(x) = o(x−2d−δ) and |Vggj ′(z)| 	
w(‖z − γj ′ ‖∞). As demonstrated in the proof of Theorem 2.1, w(x) = o(x−2d−δ), δ > 0, allows
us to pick K̃2 such that for all K2 
 K̃2

(22d2d)
p
q
+1

∑
K
K2

K2d−1

⎛⎜⎝ ∑
k
 α3

2α1
K

k2d−1w(k)q

⎞⎟⎠
p
q

< εp.

Also, there exist R0, N0 = 
α3R0� such that

• there exists z0 ∈ Rd × R̂
d
with|QR0+z0 ∩ �| 	 α2d

2 (2R0)
2d ;

• R0 
 R̃0n0; N0 
 n0,
α1
α2

R̃0;

• (5α1
α3

R0)
2dw(

R0
n0

− 2) < ε;
• K1 = N0 − 1 − 
α2N0� > 1;
• K2 = 2(α1

α3
N0 − 
α2N0�) 
 K̃2, K1.

The sequence � has no accumulation point since D+(�) < ∞. This implies that we can choose
an enumeration of the sequence � by Z2d with ‖j ′‖∞ 	 ‖j ′′‖∞ if ‖γj ′ − z0‖∞ 	 ‖γ

j
′′ − z0‖∞,

j ′, j ′′ ∈ Z2d . As mentioned earlier, we set gj = π(α−1
3 j + z0)g for j ∈ Z2d and M = (mj ′j ) =

(〈gj ′ , gj 〉).
The matrix M̃ = (mj ′j )‖j ′‖∞	N0−1,‖j‖	N0 : C(2N0+1)d → C(2N0−1)d has a nontrivial kernel,

so we may choose x̃ ∈ C(2N0+1)d with ‖x̃‖p = 1 and M̃x̃ = 0. Define as before x ∈ l0(Z
2) accord-

ing to xj = x̃j if ‖j‖∞ 	 N0 and xj = 0 otherwise.
To estimate the contributions of each |(Mx)j ′ |, j ′ ∈ Z2d , to ‖Mx‖lp , we consider three

cases.

Case 1. ‖j ′‖∞ 	 
α2N0� + K1 = N0 − 1. This implies (Mx)j ′ = 0 by construction.
Case 2. 
α2N0� + K1 < ‖j ′‖∞ 	 
α2N0� + K2. Observe that the set Q

R0+ R0
n0

+ z0 \ QR0 +
z0 consists of a finite number of hypercubes of width R0

n0

 R̃0. This allows us to estimate

|Q
R0+ R0

n0

+ z0 ∩ �| 	 α2d
2 (2R0)

2d + α2d
1

((
2

(
R0 + R0

n0

))2d

− (2R0)
2d

)

	 (2R0)
2d

(
α2d

2 + α2d
1

((
1 + 1

n0

)2d

− 1

))
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	 (2α−1
3 N0)

2dα2d
3

(
1 − 1

2n0

)2d

	
(

2N0 − 2N0

2n0

)2d

	 (2N0 − 1)2d .

As in the proof of Theorem 3.6 we conclude that for any j ′ with‖j ′‖∞ 
 N0 = 
α2N0� + K1 + 1,
we have γ ′

j /∈ Q
R0+ R0

n0

+z0 and, therefore, for ‖j‖∞ 	 N0 = 
α3R0� we have

‖α−1
3 j + z0 − γj ′ ‖∞ = ‖(γj ′ − z0) − α−1

3 j‖∞ 
 R0 + R0

n0
− α−1

3 
α3R0�


 R0

n0
− α−1

3 
 R0

n0
− 2.

Hence,

|mj ′j | = |〈gj ′ , gj 〉| = |Vggj ′(α−1
3 j + z0)| 	 w(‖α−1

3 j + z0 − γj ′ ‖∞) 	 w

(
R0

n0
− 2

)
.

This gives

‖Mx|{j ′:
α2N0�+K1<‖j ′‖∞	
α2N0�+K2}‖p
p

=
∑


α2N0�+K1<‖j ′‖∞	
α2N0�+K2

∣∣∣∣∣∣
∑

‖j‖∞	N0

mj ′j xj

∣∣∣∣∣∣
p

	
∑


α2N0�+K1<‖j ′‖∞	
α2N0�+K2

⎛⎝ ∑
‖j‖∞	N0

|mj ′j |q
⎞⎠

p
q

‖x̃‖p
p

	 w

(
R0

n0
− 2

)p ∑

α2N0�+K1<‖j ′‖∞	
α2N0�+K2

(2N0 + 1)
2d

p
q

∑
‖j‖∞	N0

|xj |p

	 w

(
R0

n0
− 2

)p

(2 · 2
α1

α3
N0 + 1)2d(2N0 + 1)

2d
p
q

	 w

(
R0

n0
− 2

)p

(5
α1

α3
R0)

2d(1+ p
q
) 	 εp. (7)

Case 3. 
α2N0� + K2 < ‖j ′‖∞. We setN = ‖j ′‖∞ and obtainα−1
1 (N − 1

2 ) 
 α−1
1 (
α2N0� +

K2 + 1 − 1
2 ) 
 α2

α1
N0 
 R̃0, and, hence,

|� ∩ Q
α−1

1 (N− 1
2 )

+ z0| 	 α2d
1 (2α−1

1 (N − 1

2
))2d = (2N − 1)2d .

As seen in the proof of Theorem 3.6, this implies γj ′ /∈ Q
α−1

1 (‖j ′‖∞− 1
2 )

+ z0. Similarly as in Case

2., we fix j ′, K with ‖j ′‖∞ = 
α2N0� + K , K > K2, and conclude that for ‖j‖∞ 	 N0,

‖α−1
3 j + z0 − γj ′ ‖∞ = ‖(γj ′ − z0) − α−1

3 j‖∞ 
 α−1
1 (‖j ′‖∞ − 1

2
) − α−1

3 ‖j‖∞


 α3

α1
‖j ′‖∞ − ‖j‖∞ − α3

2α1
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 α3

α1

α2N0� + 2

α3

2α1
K − N0 − α3

2α1


 α3

2α1

(
K − 2

(
α1

α3
N0 − 
α2N0�

)
− 1

)
+ α3

2α1
K 
 α3

2α1
K.

Therefore,

|(Mx)j ′ |q =
∣∣∣∣∣∣
∑

‖j‖∞	N0

mj ′j xj

∣∣∣∣∣∣
q

	 ‖x‖q
p

∑
‖j‖∞	N0

|mj ′j |q

	
∑

‖j‖∞	N0

w

(
α3

α1
‖j ′‖∞ − ‖j‖∞ − α3

2α1

)q

	
∑

‖j‖∞
 α3
2α1

K

w(‖j‖∞)q =
∑

k
 α3
2α1

K

2(2d)(2k)2d−1w(k)q

= 22d2d
∑

k
 α3
2α1

K

k2d−1w(k)q .

Finally, we compute∑
‖j ′‖∞>
α2N0�+K2

|(Mx)j ′ |p

	 (22d2d)
p
q

∑
‖j ′‖∞

α2N0�+K2

⎛⎜⎝ ∑
k
 α3

2α1
‖j ′‖∞

k2d−1w(k)q

⎞⎟⎠
p
q

	 (22d2d)
p
q

∑
K

α2N0�+K2

2(2d)(2K)2d−1

⎛⎜⎝ ∑
k
 α3

2α1
K

k2d−1w(k)q

⎞⎟⎠
p
q

	 (22d2d)
p
q
+1

∑
K

α2N0�+K2

K2d−1

⎛⎜⎝ ∑
k
 α3

2α1
K

k2d−1w(k)q2

⎞⎟⎠
p
q

	 εp (8)

by hypothesis. Clearly, (7) and (8) give‖Mx‖lp 	 2
1
p ε which completes the proof for 1 < p < ∞.

The cases p = 1 and p = ∞ are proven similarly. �

Remark 3.10. If {gj } = (g, �) and the analysis operator C(g,�) is bounded, then D+(�) < ∞
follows [32]. If {gj } is only assumed to consist of � localized time–frequency molecules, then
boundedness of C{gj } does not imply D+(�) < ∞. For example, consider {gj } = {2−jg}j∈N.

Remark 3.11. Theorem 9 in [16] implies that time–frequency molecules {gj } which are v-local-
ized at � = {γj }, v > d , and which generate an l2-frame for L2(R) satisfy 1 	 D−(�) 	 D+(�).
Further, Theorem 22 in [17] states that if v > d is replaced by v > 2d + s, then being an l2-frame
for L2(Rd) is equivalent to being an l

p
s -frame for M

p
s (Rd) for all 1 	 p 	 ∞ and all s 
 0. This
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result alone implies neither Theorem 3.8 nor Theorem 3.9 as these only assume that {gj } is an
l
p
s -frame for M

p
s (Rd) for some p and s. Under stronger conditions on v, [1] fills this gap. Namely,

Theorem 3.1 and Example 3.1 in [1] show that if v > (2d + 1)2 + 2d and if {gj } is for one p,
1 	 p 	 ∞, an lp-frame for Mp(Rd) which is v-localized at � = {γj }, then {gj } is an lp frame
for Mp(Rd) for all p and, therefore, also for the well-studied case p = 2 [16]. This result implies
Theorem 3.9 for v > (2d + 1)2 + 2d .

3.3. Identification of operators with bandlimited Kohn–Nirenberg symbols

A central goal in applied sciences is to identify a partially known operator H from a single
input–output pair (g, Hg). We refer to an operator class H as identifiable, if there exists an
element g in the domain of all H ∈ H that induces a map �g : H −→ Y , H �→ Hg, which is
bounded and bounded below as a map between Banach spaces.

In [8,9], special cases of Theorem 2.2 played crucial roles in showing that classes of pseudodif-
ferential operators with Kohn–Nirenberg symbols bandlimited to a rectangular domain

[− a
2 , a

2

]×[− b
2 , b

2

]
are not identifiable if ab > 1. The bandlimitation of a Kohn–Nirenberg symbol to a

rectangular domain
[− a

2 , a
2

]× [− b
2 , b

2

]
can be expressed by a corresponding support condition

on the operators’ so-called spreading function ηH .1 Analogously, we consider here operators
H : D −→ M

p
s (R), D ⊆ M∞(R), included in

H
p
s

([
− a

2
,
a

2

]
×
[
−b

2
,
b

2

])
=
{

H =
∫
[− a

2 , a
2

]×[− b
2 , b

2

] ηH (z)π(z)dz, ηH ∈ M
p
s (R × R̂)

}
(9)

and with norm ‖H‖Hp
s

= ‖ηH ‖M
p
s

. The integral in (9) is defined weakly using 〈Hf, h〉 =
〈ηH , Vhf 〉 2 [9]. In [8] the following was shown.

Theorem 3.12. There is g ∈ M∞(R) with �g : H2
0

([− a
2 , a

2

]× [− b
2 , b

2

]) −→ M2
0 (R) bounded

and bounded below if and only if ab 	 1.

Note that H1
0

([− a
2 , a

2

]× [− b
2 , b

2

])
consists of Hilbert–Schmidt operators and the norm ‖ ·

‖H2
0

is equivalent to the Hilbert–Schmidt space norm.
The main result in [9] is the following:

Theorem 3.13. If ab < 1, then there is g ∈ M∞(R) with �g : H∞
0

([− a
2 , a

2

]× [− b
2 , b

2

]) −→
M∞

0 (R) bounded and bounded below, while if ab > 1 then no such g ∈ M∞(R) exists.

Here, we use the generality of Theorem 2.2 to obtain:

Theorem 3.14. Let 1 	 p 	 ∞ and s ∈ R. For ab > 1, no g ∈ M∞(R) exists with �g :
H

p
s

([− a
2 , a

2

]× [− b
2 , b

2

]) −→ M
p
s (R) bounded and bounded below.

1 In fact, the spreading function of an operator is the symplectic Fourier transform of the operator’s Kohn–Nirenberg
symbol [8,10].

2 Here, 〈·, ·〉 is taken to be linear in the first component and conjugate linear in the second.
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a a

Fig. 2. Sketch of the proof of Theorem 3.14. We choose a structured operator family {Pj } ⊆ H
p
s so that the corresponding

synthesis map D{Pj } : {cj } −→ ∑
cj Pj has a bounded left inverse. Recall that C

(g,λZ2d )
has a bounded left inverse for

λ < 1 as well. We then use Theorem 2.2 to show that for any g ∈ M∞(R), the composition M = C
(g,λZ2d )

◦ φg ◦ D{Pj }
has no bounded left inverses. This implies that φg : Hp

s −→ M
p
s (R) also has no bounded left inverses.

Sketch of proof. We assume a = b and a2 > 1. The general case ab > 1 follows similarly.
The goal is to show that for any g ∈ M∞(R) which induces a bounded operator �g:

H
p
s

([− a
2 , a

2

]2) −→ M
p
s (R), the operator �g is not bounded below (see Fig. 2).

To see this, we pickλ>1 with 1<λ4 < a2 and define a prototype operatorP ∈ H
p
s

([− a
2 , a

2

]2)
via its spreading function ηP (t, ν) = η(t)η(ν) where η is smooth, takes values in [0,1], and
satisfies η(t) = 1 for |t − a/2| 	 a/2λ and η(t) = 0 for |t − a/2| 
 a/2.

The collection of functions {Mλ
a
jηP }j∈Z2 corresponds to the operator family

{π(λ
a
j)Pπ(λ

a
j)∗}j∈Z2 [9]. Further, it forms a Riesz basis for its closed linear span in L2(R × R̂)

and, for c > 0 sufficiently large, the collection {π(λ
a
j, 1

c
k)ηP }j,k∈Z2 is a frame for L2(R2)

[11,33]. Arguing as in Example 3.3, we obtain a bounded left inverse of D{M λ
a j

ηP } : l
p
s (Z2) −→

M
p
s (R × R̂), thereby showing that D{M λ

a j
ηP } and also the corresponding operator synthesis map

D{Pj } : l
p
s (Z2) −→ H

p
s (R × R̂) with Pj = π(λ

a
j)Pπ(λ

a
j)∗, j ∈ Z2, are bounded below.

For any fixed g ∈ M∞(R) which induces a bounded map �g : Hp
s ([− a

2 , a
2 ]2) −→ M

p
s (R)

we consider the operator

M = (mjj ′) = C
(g, λ2

a
)
◦ �g ◦ D{Pj }: lps (Z2) −→ l

p
s (Z2).

We have |mjj ′ | = |〈π(λ
a
j)Pπ(λ

a
j)∗g, π(λ2

a
j ′)g〉| = |VgPπ(λ

a
j)∗g(λ

a
(λj ′ − j))|. In [8] it is shown

that smoothness and compact support of ηP implies that there exist nonnegative functions d1 and
d2 on R, decaying rapidly at infinity, such that for all g ∈ M∞(R), |Pg(x)| 	 ‖g‖M∞d1(x)

and |P̂g(ξ)| 	 ‖g‖M∞d2(ξ). This implies that VgPπ(λ
a
j)∗g decays rapidly and independently

of j , a fact that allows us to apply Theorem 2.2 to show that M is not bounded below. Since
λ2

a
< 1, Example 3.3 implies that C

(g, λ2
a

)
is bounded below. Also, D{Pj } is bounded below,

implying that �g cannot be bounded below. Since g ∈ M∞(R) was chosen arbitrarily, the proof is
complete. �
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