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1. Introduction

Most of the problems collected below were presented at the Open Problems session held at the Conference on Ram-
sey Theory and Topological Algebra in honor of Neil Hindman. In addition we have included some problems which were
submitted by those friends and admirers of Neil Hindman who were not able to attend the conference. The problems are
diverse and address quite a wide variety of topics. Rather than attempting to arrange the problems thematically we decided
to list them alphabetically by name of presenter. Practically all of the problems are of the type Neil Hindman would like
to see advanced. We wish our friend and collaborator Neil Hindman many more productive years of doing, teaching, and
disseminating mathematics.

2. Vitaly Bergelson

Minimal idempotents and multiple recurrence

Let E ⊆ N be a set of positive upper density d̄(E) = lim sup |E∩{1,2,...,N}|
N . The ergodic proof of Szemerédi’s theorem [47]

due to Furstenberg [24] not only establishes the existence of arbitrarily long arithmetic progressions in E , but actually
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implies that for every k ∈ N the set
{

d ∈ Z: ∃a:
{

a,a + d, . . . ,a + (k − 1)d
} ⊆ E

}

is syndetic (that is, has bounded gaps). As far as we know, this result has no purely combinatorial proof. In ergodic language
this fact can be formulated thusly: If (X, B,μ, T ) is an invertible probability measure preserving system, then for any A ∈ B
with μ(A) > 0, the set

R A = {
n ∈ Z: μ

(
A ∩ T −n A ∩ · · · ∩ T −(k−1)n A

)
> 0

}

is syndetic.
One is naturally interested in knowing whether the family of sets of the form R A , where μ(A) > 0, has the filter property

and whether the fact that the sets of multiple returns are large holds true for measure preserving actions of general groups.
It was proved in [26] that the above set R A is actually an IP∗-set. That is, it has a non-trivial intersection with every set of
the form FS(xi)

∞
i=1, where (xi)

∞
i=1 is an increasing sequence of integers, and

FS(xi)
∞
i=1 = {xi1 + xi2 + · · · + xin : n ∈ N and i1 < i2 < · · · < in}.

By utilizing Hindman’s finite sums theorem [30] it is not hard to see that the intersection of any finite family of IP∗-sets
is an IP∗-set. This, in turn, implies that the family of sets of the form R A has the filter property. Actually, the results
obtained in [26] apply to general (countable, discrete) abelian groups. In particular, it is proved in [26] that if T1, . . . , Tk
are commuting invertible measure preserving transformations of the probability space (X, B,μ) then for any A ∈ B with
μ(A) > 0 there exists a constant c > 0 such that the set

{
n ∈ Z: μ

(
A ∩ T n

1 A ∩ T n
2 A ∩ · · · ∩ T n

k A
)
> c

}

is IP∗ .
Suppose now that G is a countable discrete group and that (T (1)

g )g∈G , . . . , (T (k)
g )g∈G are k commuting measure preserving

actions of G on a probability measure space (X, B,μ). “Commuting” here means that for any i �= j, i, j ∈ {1, . . . ,k}, and any
h, g ∈ G one has T (i)

g T ( j)
h = T (i)

h T ( j)
g . The sets

RG,k,A = {
g ∈ G: μ

(
A ∩ T (1)

g A ∩ T (1)
g T (2)

g A ∩ · · · ∩ T (1)
g T (2)

g · · · T (k)
g A

)
> 0

}

form the analogue of the sets of multiple recurrence R A considered above (the lack of space does not allow us to explain
here why it is these sets rather than sets of the form {g ∈ G: μ(A ∩ T (1)

g A ∩ T (2)
g A ∩ · · · ∩ T (k)

g A) > 0} that naturally form
the “non-commutative” version of sets R A ).

Conjecture 2.1. Let G be a countable group, let (X, B,μ) be a probability space, let k ∈ N and suppose that (T (1)
g )g∈G , . . . , (T (k)

g )g∈G

are μ-preserving actions of G which commute in the sense that for i �= j and any g,h ∈ G one has T (i)
g T ( j)

h = T (i)
h T ( j)

g . Then for any
A ∈ B with μ(A) > 0, there exists λ > 0 such that the set

RG,k,A = {
g ∈ G: μ

(
A ∩ T (1)

g A ∩ T (1)
g T (2)

g A ∩ · · · ∩ T (1)
g T (2)

g · · · T (k)
g A

)
> λ

}

is a member of any minimal idempotent in βG.

Remarks. 1. The first non-trivial case of this conjecture, corresponding to k = 2, was recently established in [12].
2. As it was mentioned above, when G is abelian the sets RG,k,A are IP∗-sets (see [26]). It is not hard to see that this is

equivalent to the fact that RG,k,A is a member of any idempotent in βG . There are, however, some good reasons to believe
that for non-commutative G this is not always the case. See [7] and the discussion at the end of Section 3 in [12].

3. See [8] and [10] for results (and counterexamples) addressing the issues of multiple recurrence for possibly non-
commuting Z-actions.

Non-commutative Rado theory

In his paper on the equation xm + ym ≡ zm mod p, I. Schur [44] has shown that for any finite coloring N = ⋃r
i=1 Ci one

of the Ci contains a triple x, y, z such that x + y = z. This fact has many proofs some of which, including the original proof
in [44], are totally elementary. (See for example [28,25,3].)

Schur’s result as well as van der Waerden’s theorem are special cases of a general theorem due to Rado [43], which
establishes the necessary and sufficient conditions for partition regularity of systems of linear equations over Z. (For various
“abelian” extensions of Rado theory see [5,6], and [36, Ch. 15].)

Suppose now that we are given a (countable, discrete) group G , and let G = ⋃r
i=1 Ci be a finite coloring. Assuming

that G is sufficiently non-commutative one would like to know if one of the Ci contains x, y, z1, z2 such that xy �= yx and
xy = z1, yx = z2. “Sufficiently non-commutative” here means that there are negligibly few elements which commute with
many elements of G . This can be formalized as follows. Let C(g) denote the centralizer of G and let H be the subgroup of G
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consisting of all elements of G such that [G : C(g)] < ∞. (See [11, Theorem 3] for a proof that it is indeed a subgroup.) We
will say that G has property SNC (for Sufficiently Non-Commutative) if [G : H] = ∞.

Plenty of countable groups have property SNC, for example the Heisenberg group or the group of finite permutations
of N.

Question 2.2. Is it true that a countable group G has property SNC if and only if it has no abelian subgroups of finite index?

It was proved in [11] that if G is an amenable group with property SNC, then for any finite coloring G = ⋃r
i=1 Ci one

of the Ci contains x, y, z1, z2 such that xy �= yx and xy = z1, yx = z2. Somewhat surprisingly, the proof of this fact utilizes
a non-trivial ergodic theorem obtained in [13] and, moreover, does not extend to non-amenable groups.

Conjecture 2.3. If G is a countable abelian group with property SNC then for any finite partition G = ⋃r
i=1 Ci one of the Ci contains

x, y, z1 , z2 such that xy �= yx and xy = z1 , yx = z2 .

Remarks. 1. Besides the above mentioned “amenable” result proved in [11], very little is known about the validity of this
conjecture. For example it is not known whether it holds true in the case when G is a free group.

2. If true, the above conjecture could form a starting point for development of a non-commutative Rado theory. For
a result in this direction in the framework of nilpotent groups see [9, Theorem 5.5].

3. Andreas Blass1

Consider the torus T = R2/Z2. For any irrational number α, the line in R2 with equation y = αx projects to a curve L(α)

dense in T . Topologize L(α) as a subspace of T . Under what conditions on α and β are L(α) and L(β) homeomorphic?
An easy sufficient condition is that α = aβ+b

cβ+d for some integer matrix
( a b

c d

)
of determinant ±1. In this case L(α) and

L(β) are related by an auto-homeomorphism of T .
I do not know any counterexample to the idea that this sufficient condition is also necessary. On the other hand, I do

not know any counterexample to the idea that all the spaces L(α), for all irrational α, are homeomorphic.

4. W.W. Comfort2

Conventions. (1) All groups here are infinite and abelian. (2) S(G) is the set of point-separating subgroups of Hom(G,T).
(3) The topology induced by A ∈ S(G) on G is denoted T A . (4) The symbol G# abbreviates (G, THom(G,T)). (5) The expression
X =top Y indicates that X and Y are homeomorphic topological spaces.

It is easily seen for each group G that Hom(G,T) itself separates points of G (i.e., Hom(G,T) ∈ S(G)), so G# is a Haus-
dorff topological group. Observing that, van Douwen [22] asked this bold and beautiful question: Given groups G and H
with |G| = |H|, must G# =top H#? That question was answered in the negative, independently and approximately simulta-
neously, by Kunen [37] and by Dikranjan and Watson [21]. (The examples may take the form G = ⊕

κ Z(2), H = ⊕
κ Z(3),

with κ = ω in [37], κ > 22c

in [21].) But there are results in the positive direction, such as these two.

(1) Quite early, Trigos-Arrieta [48] showed that for every infinite κ there exist non-isomorphic G and H for which
|G| = |H| = κ and G# =top H#, a result later strengthened and substantially extended by J.E. Hart and Kunen [29].

(2) Q# =top ((Q/Z) × Z)# = (Q/Z)# × Z# [18].

These results and others (see the references below, and the many papers cited by those authors) stimulated by van Douwen’s
paper leave many specific questions unresolved. Of these the following, cited with other questions in such works as [17,18,
20,27], is in this author’s opinion the most tantalizing and the most elegant in its apparent simplicity.

Question 4.1. Are the topological spaces Z# and (Z × Z)# = Z# × Z# homeomorphic?

(a) It is clear for each G and each A ∈ S(G) that the evaluation isomorphism e A : G → TA (defined by (e A(x))h = h(x) ∈ T
for x ∈ G , h ∈ A) is an isomorphism of G onto (G, T A) ⊆ TA , an inclusion of topological groups. Thus topologically and
algebraically one has

Z# ⊆ THom(Z,T) = Tc and (Z × Z)# ⊆ THom(Z×Z,T) = Tc,

relations which apparently afford many tools for establishing or refuting the (possible) homeomorphism Z# =top (Z × Z)#.

1 Mathematics Department, University of Michigan, Ann Arbor, MI 48109-1043, USA. Partially supported by NSF grant DMS-0653696.
ablass@umich.edu.

2 Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA. wcomfort@wesleyan.edu.
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(b) The groups Z and Z × Z do admit many pairwise homeomorphic non-discrete group topologies. It is known [19]
for each A ∈ S(G) that w(G, T A) = |A| and that the elements of A are exactly the T A -continuous homomorphisms from G
to T, so distinct elements of S(G) induce distinct group topologies on G . When |G| = ω and A ∈ S(G) is countable, the
space (G, T A) is a countably infinite metrizable space without isolated points, hence according to a familiar theorem of Sier-
piński [45] is homeomorphic to Q in its usual topology. Thus both G = Z and G = Z × Z admit c-many distinct metrizable
topological group topologies (of the form T A ) [15], each satisfying (G, T A) =top Q.

(c) The observations in (a) and (b) shed no direct light on the question asked above, since when |G| = ω the space G# is
a separable space with weight w(G#) = |Hom(G,T)| = c, hence is not metrizable.

Remark 4.2. For a list and discussion of many fresh questions which have arisen after the solution [37,21] of van Douwen’s
general question [22], see §6 of [20]. See also Trigos-Arrieta [49] for a proof, answering related questions of Markov [38]
and van Douwen [22], of this theorem: When |G| > ω, the topological space G# is not normal.

5. Alexander Fish3

The following question is well known (see for example [4, Question 11]) and seems to be wide open.
Is it true that for a finite partition of N = ⋃k

i=1 Ci there exists 1 � i � k such that Ci contains a Pythagorean triple, i.e.,
{x, y, z} such that x2 + y2 = z2?

Recall that a set S ⊂ N is called normal if 1S ∈ {0,1}N is a normal infinite binary sequence, i.e., every finite binary word v
appears in 1S with the frequency 1

2|v| , where |v| denotes the length of v .
The following problem is motivated by the above question but hopefully is easier.

Question 5.1. Is it true that for any normal set S ⊂ N there exists a Pythagorean triple which lies in S , i.e., there exist
x, y, z ∈ S such that x2 + y2 = z2?

Remark. It was shown in [23] that for any normal set S ⊂ N there exist x, y ∈ S such that x2 + y2 is a square.

6. Neil Hindman4

The following theorem was proved by Dona Strauss in [46], answering a question of Eric van Douwen.

Theorem 6.1. If φ :βN → N∗ is a continuous homomorphism, then φ[βN] is finite and |φ[N∗]| = 1.

This raised the following natural question, which has been open ever since.

Question 6.2. Is there any non-trivial continuous homomorphism from βN to N∗?

By [36, Corollary 10.20], the above question is equivalent to each of the following two questions.

Question 6.3. Do there exist p �= q in N∗ such that p + q = q + p = p + p = q + q = q?

Question 6.4. Is there a finite subsemigroup of (N∗,+) whose members are not all idempotent?

Switching to a Ramsey theoretic question we have:

Problem 6.5. Prove that whenever N is finitely colored there exist arbitrarily large finite sequences with all of their finite
sums and finite products in one color.

This is stated as a problem rather than a question, because I am certain that it is a fact. The reader may recall that fact
has only been proved (by Ron Graham in [31]) for sequences of length two and then only for two colors. But I am absolutely
certain that it is a fact.

3 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA. afish@math.ohio-state.edu.
4 Department of Mathematics, Howard University, Washington, DC 20059, USA. nhindman@aol.com.
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7. Bruce Landman5

Let w(s, t) be the 2-color van der Waerden number, i.e., w(s, t) is the least positive integer n such that every (red,blue)-
coloring of {1,2, . . . ,n} admits either an s-term red arithmetic progression or a t-term blue arithmetic progression.

Problem 7.1. Prove that for all s � t � 2, w(s, t) � w(s + 1, t − 1).

Or, a slightly weaker result:

Problem 7.2. Prove that for all positive integers m,

max
{

w(s, t): s + t = 2m
} = w(m,m).

Or, more generally (using r colors rather than 2)

Problem 7.3. Prove that over the hyperplane x1 +x2 +· · ·+xk = b, the maximum of w(x1, x2, . . . , xr) occurs when |xi −x j | � 1
for all i and j.

Another related question:

Question 7.4. For a 2-coloring f : {1,2, . . . ,n} → {red,blue}, denote by R and B , the set of red members and blue members
of {1,2, . . . ,n} respectively. Is it true that for all positive integers s, there is a 2-coloring of {1,2, . . . , w(s, s) − 1} with
no monochromatic s-term arithmetic progression and such that ||R| − |B|| � 1? (In other words for every s, is there is
a “balanced” coloring of {1,2, . . . , w(s, s) − 1} that avoids s-term monochromatic arithmetic progressions?)

8. Imre Leader6

Singletons and pairs without Hindman’s theorem

Suppose that we colour the natural numbers with finitely many colours. Must there exist a sequence x1, x2, . . . such that
all the xi and all the xi + x j (i �= j) are the same colour? The answer is, of course, yes, by Hindman’s theorem. But is there
a proof of this assertion that does not go via Hindman’s theorem?

To make this a well-posed question, let us write as usual F S(x1, x2, . . .) for the set of all finite sums (without repetition)
of x1, x2, . . . , and F S�2(x1, x2, . . .) for the set of all sums (without repetition) of at most two of the xi .

Question 8.1. Does there exist a set S of natural numbers such that whenever S is finitely coloured there is a monochromatic
set of the form F S�2(x1, x2, . . .), and yet S contains no set of the form F S(y1, y2, . . .)?

Note that if we have such a set S then to show that it has the required partition property we would have to have
a proof of the form mentioned at the start. This question, with some variants, first appeared in [33]. Interestingly, a more
general question appears in [39], with a conjectured answer of ‘yes’, and another more general question appears in [32],
with a conjectured answer of ‘no’!

Infinite sums of Ramsey games

The Ramsey game is played on the edges of a K N (a complete graph on N vertices). Two players take it in turn to claim
edges, and the first player to complete a Ks wins the game. If the game ends with neither player having a Ks , then the
game is a draw. By Ramsey’s theorem, this game cannot end in a draw if N is large enough (say N is at least the Ramsey
number R(s, s)), and in that case it is easy to check (by ‘strategy-stealing’) that the game must be a first-player win.

Now, what happens if we play not on one copy of KN but on two disjoint copies? Again, this cannot end in a draw
(for N at least R(s, s)), and so this too is a first-player win. Of course, the same applies to any finite disjoint union of copies
of KN . But what happens for infinitely many copies?

Question 8.2. Is the Ramsey game played on an infinite disjoint union of copies of K N a first-player win (for N sufficiently
large)?

5 Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA. landman@westga.edu.
6 Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK.

I.Leader@dpmms.cam.ac.uk.



V. Bergelson, B. Rothschild / Topology and its Applications 156 (2009) 2674–2681 2679
Note that if at the end of the game (‘at time ω’) neither player has occupied a Ks , then the game is a draw – there are
no ‘transfinite’ moves.

It seems impossible that the second player could ‘slow down’ the first player by playing in more and more copies
of KN , but proving this seems remarkably elusive. A similar question is asked in [2], where we play on an infinite complete
board Kω – the question above is designed to be a ‘locally finite’ version of that question.

9. Amir Maleki7

References for the background material presented here are [14] and [36].
Let l∞ be the space of all complex valued and bounded functions defined on the set of natural numbers N. Then l∞ is

a commutative Banach algebra with identity.
Let βN be the set of all nonzero multiplicative linear functionals on l∞ . It is well known that βN with the Gelfand topol-

ogy is a compact Hausdorff space and is a model for the Stone–Čech compactification of the discrete space N. Furthermore
for each n in N the mapping n̂ : l∞ → C defined by n̂(x) = x(n) is the imbedding of N into βN. Now let B(l∞) be the set of
all bounded linear operators from l∞ to itself. So B(l∞) is the complex Banach algebra of all bounded linear operators with
operator norm.

For each ξ ∈ βN define Tξ : l∞ → l∞ by (Tξ x)(n) = ξ(Lnx), x ∈ l∞ , n ∈ N, where Ln is a mapping from l∞ to itself
defined by (Lnx)(t) = x(n + t). One can show that for each ξ in βN, Tξ is in B(l∞) and Tn̂ = Ln . Also one can show that
the mapping ψ defined from βN into B(l∞) given by ψ(ξ) = Tξ is one-to-one. Now for ξ and η in βN define ξ + η by
(ξ +η)(x) = ξ(Tηx). Then ξ +η is in βN. In particular n̂+m̂ = n̂ + m where n and m are in N. Furthermore (βN,+) becomes
a compact right topological semigroup and the mapping ψ is an algebraic imbedding of βN into the Banach algebra B(l∞).

Now let ξ be in βN such that ξ + ξ �= ξ and for all n in N, ξ �= n̂. The spectrum of Tξ denoted by σ(Tξ ) is the set of all
complex numbers λ such that the operator λI − Tξ , where I is the identity mapping, has no inverse in B(l∞).

Question 9.1. What is the spectrum of Tξ ?

10. Igor Protasov8

Question 10.1. Let G be a group and let G = A1 ∪ · · · ∪ An be a finite partition of G . Do there exist a subset K ⊆ G , |K | � n,
and i ∈ {1,2, . . . ,n} such that G = K Ai A−1

i ?

This is so if either G is amenable or n = 2 [1, Theorems 12.7 and 12.8].
A subset S of a group G is called very thick if, for every subset F ⊆ G , |F | < |G|, there exists g ∈ G such that g F ⊆ S . Every

infinite group G of regular cardinality can be partitioned in |G| very thick subsets [42, Theorem 5.3.6], [16, Theorem 2.4].

Question 10.2. Can every group of singular cardinality be partitioned into at least two very thick subsets?

Let G be a group and let κ be a cardinal. A subset S of G is called κ-large if there exists a subset F ⊆ G , |F | < κ , such
that G = F S = S F . By [1, Theorem 3.12], every infinite group G can be partitioned into countably many ℵ0-large subsets.

Question 10.3. Let G be an infinite group and let κ be an infinite cardinal such that κ � |G|. Can G be partitioned into κ
κ-large subsets?

This is so if G is abelian [41, Theorem 9.3.4].

Question 10.4. Let G be a free abelian group of rank ℵ2. Can G be partitioned into ℵ2 ℵ1-large subsets?

Let G be an infinite group and let κ be an infinite cardinal such that κ � |G|. A subset S of G is called κ-small if S \ F S F
is κ-large for each F ⊆ G such that |F | < κ . By [40, Theorem 3.1], for every uncountable abelian group G , there exists a
|G|-small subset which is not ℵ0-small.

Question 10.5. Let G be an infinite abelian group and let κ and κ ′ be infinite cardinals such that κ < κ ′ � |G|. Does there
exist a κ ′-small but not κ-small subset of G?

7 Department of Mathematics, Howard University, Washington, DC 20059, USA. amaleki@howard.edu.
8 Department of Cybernetics, Kiev University, Volodimirska 64, Kiev 01033, Ukraine. i.v.protasov@gmail.com.
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11. Dona Strauss9

At the conference in Oxford, I mentioned some open problems about the algebra of βN which sound tantalizingly simple,
but have remained open for several decades.

Question 11.1. Is there an element p ∈ (βN,+) which is not idempotent, but for which p + p is idempotent?

This is equivalent to asking whether βN contains any element p which generates a finite subsemigroup of βN containing
more than one element. We know, because of Zelenyuk’s theorem [36, Theorem 7.17], that βN contains no non-trivial finite
groups; but we do not know whether it contains any finite semigroups whose elements are not all idempotent.

Question 11.2. Is there a strictly increasing sequence of principal left ideals in βN?

Mary Ellen Rudin formulated this question in the 1970’s and it has remained unanswered. It is not hard to construct
infinite decreasing chains of principal left ideals or of idempotents in βN; but no one has succeeded in constructing infinite
increasing chains of either kind. This situation is reminiscent of a property of the ordinals; namely, that infinite chains
obviously exist in one direction, but do not exist in the other.

Question 11.3. Is there a minimal idempotent in βN which is also maximal?

(The ordering of idempotents is defined by stating that p � q if pq = qp = p.)

Question 11.4. Is there a ZFC proof that left maximal idempotents exist in βN?

There is a MA proof that they exist [34, Theorem 4.1]. But there is no known proof in ZFC.

12. Yevhen Zelenyuk10

The semigroup H is defined as a closed subsemigroup of βN by

H =
⋂

n∈N

c�βN2nN.

In [35], it was shown that the structure group of K (H) contains copies of the free group on 22ω
generators. (All maximal

groups in the smallest ideal of a compact right topological semigroup are isomorphic. Any copy of this group is called the
structure group of the smallest ideal.)

Question 12.1. Is the structure group of K (H) itself a free semigroup?

A semigroup Q in N∗ is left saturated if for every p ∈ βN\ Q , (p + Q )∩ Q = ∅. Every finite left saturated semigroup in N∗
is a projective in the category F of finite semigroups, and under Martin’s Axiom, every projective in F has a left saturated
copy in N∗ [51]. Projectives in F have been characterized in [50]. These are certain chains of rectangular semigroups. In [51],
it was shown that every finite chain of idempotents has a left saturated ZFC-copy in N∗ .

Question 12.2. Which projectives in F have left saturated ZFC-copies in N∗? Is there anything different from chains of
idempotents among such semigroups in N∗?

Let κ > ω and let G = ⊕
κ Z2. For every α < κ , let

Aα = {
x ∈ G \ {0}: min supp(x) > α

}
and Bα = {

x ∈ G \ {0}: α /∈ supp(x)
}
.

Define the semigroups H and T in βG by

H =
⋂

α<κ

c�βG Aα and T =
⋂

α<κ

c�βG Bα.

In [52], it was shown that finite groups in H are trivial.
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Question 12.3. Is there any non-trivial finite group in T?

Let bZ denote the Bohr compactification of the discrete group Z of integer numbers and let T be the topology on the
additive semigroup N of natural numbers induced from bZ.

Question 12.4. Is the largest semigroup compactification of (N, T ) different from bZ?

Question 12.5. Can every compact Hausdorff right topological semigroup be topologically and algebraically embedded into
a compact Hausdorff right topological semigroup with a dense topological center?
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