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a b s t r a c t

In this paper, we consider the existence of solution to the following fractional boundary
value problem d

dx
(p 0D−β

x (u′(x)) + q xD
−β

1 (u′(x))) + f (x, u(x)) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,

where the constants β ∈ (0, 1), 0D
−β
x and xD

−β

1 denote left and right Riemann–Liouville
fractional integrals of order β respectively, 0 < p = 1 − q < 1 and f : [0, 1] × R → R is
continuous. Due to the general assumption on the constants p and q, the problem does not
have a variational structure. Despite that, herewe study it performing variationalmethods,
combining with an iterative technique, and give an existence criteria of solution for the
problem under suitable assumptions. The results extend the results in [F. Jiao, Y. Zhou,
Existence of solutions for a class of fractional boundary value problems via critical point
theory, Comput. Math. Appl. 62 (2011) 1181–1199].

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus have applications in many areas including fluid flow, electrical networks, probability and statistics,
viscoelasticity, chemical physics and signal processing, and so on; see [1–8] and references therein. Fractional differential
operators have got attention from many researchers which is mainly due to its application as a model for physical
phenomena exhibiting anomalous diffusion.

In this paper, we investigate the solvability of the following fractional boundary value problem d
dx


p 0D−β

x (u′(x)) + q xD
−β

1 (u′(x))


+ f (x, u(x)) = 0, x ∈ (0, 1),
u(0) = u(1) = 0,

(1.1)

where the constant β ∈ (0, 1), 0 < p = 1 − q < 1, f : [0, 1] × R → R is continuous, 0D
−β
x and xD

−β

1 denote left and right
Riemann–Liouville fractional integrals of order β respectively and are defined by

0D−β
x u =

1
Γ (β)

 x

0
(x − s)β−1u(s)ds, xD

−β

1 u =
1

Γ (β)

 1

x
(s − x)β−1u(s)ds.
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Our interest in studying problem (1.1) comes from the fractional advection–dispersion equation, it describes nonsymmetric
transition and can be a steady state for advection and nonsymmetric fractional dispersion equation; see [2,3,9].

Very recently in [10], in the special case of p = q =
1
2 , for problem (1.1), Jiao and Zhou study the existence of the problem

by establishing corresponding variational structure in some suitable fractional space and applying the least action principle
and Mountain Pass theorem.

For problem (1.1), since the appearance of left and right Riemann–Liouville fractional integral, it is difficult to find the
equivalent integral equation corresponding to (1.1), so it seems that fixed point theorems could not be applied to this
problem. Due to the general assumption 0 < p = 1 − q < 1 on the constant p and q, problem (1.1) is not variational, we
cannot find some functional such that its critical point is the solution corresponding to problem (1.1), so the well-developed
critical point theory is of no avail for, at least, a direct attack to problem (1.1) above.

In recent years, De Figueiredo et al. [11] (see also [12]) considered the existence of solution for semilinear elliptic equation
with the nonlinearity depending on the gradient of the solution. The approach used in these papers consists of associating
with the problem a family of semilinear elliptic problems with no dependence of the gradient of the solution. This family
of problems is variational, by applying Mountain Pass theorem, they obtained a sequence of solutions and proved that the
weak limit of the sequence is a solution of the problem.

Motivated by the papers [11,12], in this paper, we attempt to useMountain Pass theorem and iterative technique to study
the existence of solution of problem (1.1). In order to use variational methods, we consider a family of fractional boundary
value problem with variational structure, that is, for each w ∈ Hα

0 (0, 1) (which will be defined in Section 2), we discuss the
following problem d

dx
(q 0D−β

x (u′(x)) + q xD
−β

1 (u′(x))) + (p − q) 0D−β
x (w′(x)) + f (x, u(x)) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

so we can solve problem (1.2) by variational methods. Then, for every w ∈ Hα
0 (0, 1), we find a solution uw ∈ Hα

0 (0, 1) with
some bounds. Next, by iterative technique, we get the existence of solution of (1.1) under suitable assumption.

This paper is organized as follows. In Section 2, some preliminaries are presented, the assumption on the problem and
the main result are listed. Section 3 is devoted to give the proof of our main result.

2. Preliminaries and main result

To apply critical point theory to study the existence of solutions for problem (1.1), we shall state some basic notations
and results which will be used in the proof of our main results.

For α > 0, we define the space JαL,0(0, 1) or J
α
R,0(0, 1) [9, Defintion 2.5] as the completion of C∞

0 ((0, 1)) under the norm

∥u∥JαL
=

 1

0
|u(x)|2dx +

 1

0
|0Dα

x u|
2dx
 1

2

,

or

∥u∥JαR
=

 1

0
|u(x)|2dx +

 1

0
|xDα

1u|
2dx
 1

2

,

where 0Dα
x u and xDα

1u denote left and right Riemann–Liouville fractional derivative of order α respectively and are defined
by

0Dα
x u =

dn

dxn 0
Dα−n
x u and xDα

1u = (−1)n
dn

dxn xDα−n
1 u,

where n = [α] + 1 if α ∉ N, n = α, if α ∈ N. For more properties of fractional operators, we refer to [6,7].
For 0 < α < 1, the fractional Sobolev space Hα

0 (0, 1) defines as the completion of C∞

0 ((0, 1)) under the norm

∥u∥ =

 1

0
|u(x)|2dx +

 1

0

 1

0

|u(x) − u(y)|2

|x − y|1+2α
dxdy

 1
2

.

For 1
2 < α < 1, by embedding theorem, we know Hα

0 (0, 1) ↩→ C([0, 1]) is compact and if u ∈ Hα
0 (0, 1), then u(0) =

u(1) = 0.
From [9, Theorem 2.13], we know for α > 0, if α −

1
2 ∉ N, then the spaces JαL,0(0, 1), J

α
R,0(0, 1) and Hα

0 (0, 1) are equal and
have equivalent norms. In view of the definition of JαL,0(0, 1), we know that JαL,0(0, 1) is reflexive, thus H

α
0 (0, 1) is a reflexive

space.
For the space JαL,0(0, 1), we have the following results.

Lemma 2.1. If u ∈ JαL,0(0, 1), then 0Dα
x u exists a.e. in [0, 1].
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Proof. Assume um ∈ C∞

0 ((0, 1)) and ∥um − u∥JαL
→ 0 as m → ∞. We let n denote the smallest integer which is greater

than or equal to α.
Since 0Dα−n

x is a bounded linear operator from L2(0, 1) to L2(0, 1) [6] (see also [10]), in view of um → u in L2(0, 1) as
m → ∞, we know 0Dα−n

x um →0 Dα−n
x u asm → ∞, from ∥um−ul∥JαL

→ 0 asm, l → ∞, we get ∥0Dα−n
x (um−ul)∥Hn(0,1) → 0

as m, l → ∞, so there exists v ∈ Hn(0, 1) such that 0Dα−n
x um → v in Hn(0, 1). Hence 0Dα−n

x u = v, and so 0Dα
x u exists a.e.

in (0, 1). �

Lemma 2.2. If 1
2 < α < 1 and u ∈ Hα

0 (0, 1), then we have

∥u∥∞ ≤
1

Γ (α)(2α − 1)
1
2
∥0Dα

x u∥L2 , (2.1)

∥u∥L2 ≤
1

Γ (α + 1)
∥0Dα

x u∥L2 , (2.2)

| cos(πα)| ∥0Dα
x u∥

2
L2 ≤ −

 1

0
0Dα

x u · xDα
1udx ≤

1
| cos(πα)|

∥0Dα
x u∥

2
L2 , (2.3) 1

0
|xDα

1u|
2dx ≤

1
| cos(πα)|2

∥0Dα
x u∥

2
L2 . (2.4)

Proof. For u ∈ C∞

0 ((0, 1)), by a similar proof of Propositions 3.2 and 4.1 in [10], we know the inequalities (2.1)–(2.4) hold.
By density, we know the conclusions are satisfied. �

From (2.2), we know the space Hα
0 (0, 1) has an equivalent norm ∥0Dα

x u∥L2 . So, hereafter, we denote

∥u∥α = ∥0Dα
x u∥L2

as a norm in Hα
0 (0, 1).

Definition 2.3. Let α = 1 −
β

2 . A function u ∈ Hα
0 (0, 1) is called a weak solution of (1.1) if

p
 1

0
0Dα

x u · xDα
1vdx + q

 1

0
0Dα

x v · xDα
1udx +

 1

0
f (x, u)vdx = 0, (2.5)

for every v ∈ Hα
0 (0, 1).

Definition 2.4. Let α = 1 −
β

2 . A function u ∈ Hα
0 (0, 1) is called a solution of (1.1) if p0D2α−1

x u − qxD2α−1
1 u is derivable in

x ∈ (0, 1) and

d
dx

(p 0D2α−1
x u − q xD2α−1

1 u) + f (x, u) = 0, x ∈ (0, 1).

Remark 2.5. From Lemma 2.1, we know if u ∈ Hα
0 (0, 1), then 0Dα

x u and xDα
1u exist a.e. in (0, 1) and belong to L2(0, 1). Hence,

0D2α−1
x u and xD2α−1

1 u exist a.e. in (0, 1).

For given w ∈ Hα
0 (0, 1), we define functional Iw on Hα

0 (0, 1) as

Iw(u) = −q
 1

0
0Dα

x u · xDα
1udx −

 1

0
F(x, u)dx − (p − q)

 1

0
0Dα

x w · xDα
1udx, u ∈ Hα

0 (0, 1),

where F(x, u) =
 u
0 f (x, s)ds. Clearly, by the continuous assumption on f , we have Iw ∈ C1(Hα

0 (0, 1), R) and

I ′w(u)v = −q
 1

0
(0Dα

x u · xDα
1v +0 Dα

x v · xDα
1u)dx −

 1

0
f (x, u)vdx − (p − q)

 1

0
0Dα

x w · xDα
1vdx, (2.6)

for u, v ∈ Hα
0 (0, 1).

Lemma 2.6. If u ∈ Hα
0 (0, 1) is a weak solution of (1.1), then u is a solution of (1.1).

Proof. We can take v ∈ C∞

0 ((0, 1)) in (2.5), similar to the argument of Theorem 4.2 in [10], we obtain 1

0


p 0D2α−1

x u − q xD2α−1
1 u +

 x

0
f (s, u(s))ds


v′(x)dx = 0,
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for every v ∈ C∞

0 ((0, 1)). So, there exist constant C , such that

p 0D2α−1
x u − q xD2α−1

1 u +

 x

0
f (s, u(s))ds = C,

and then
d
dx

(p 0D2α−1
x u − q xD2α−1

1 u) + f (x, u) = 0, x ∈ (0, 1). �

We impose f the following condition.

(H1) For every R > 0, there isM(R) > 0 such that

|f (x, ξ1) − f (x, ξ2)| ≤ M(R)|ξ1 − ξ2| for all x ∈ [0, 1], ξ1, ξ2 ∈ R;

(H2) limξ→0
f (x,ξ)

ξ
= 0 uniformly with respect to x ∈ [0, 1];

(H3) there exist µ > 2 andM ≥ 0 such that

0 < µF(x, ξ) ≤ ξ f (x, ξ), x ∈ [0, 1], ξ ∈ R, |ξ | ≥ M,

where F(x, ξ) =
 ξ

0 f (x, s)ds;
(H4) there are positive constant c and s > 1 such that

|f (x, ξ)| ≤ c(1 + |ξ |
s), x ∈ [0, 1], ξ ∈ R.

We note that (H3) implies there are c0 ≥ 0, c1, c2 > 0 such that

F(x, ξ) ≤
1
µ
f (x, ξ)ξ + c0 for x ∈ [0, 1], ξ ∈ R, (2.7)

F(x, ξ) ≥ c1|ξ |
µ

− c2 for x ∈ [0, 1], ξ ∈ R, (2.8)

and assumptions (H2) and (H4) yield that for any δ > 0, there exists c3(δ) > 0 such that

|F(x, ξ)| ≤ δ|ξ |
2
+ c3(δ)|ξ |

s+1. (2.9)

In the following, for R > 0, we denote by LR as

LR = sup


|f (x, ξ1) − f (x, ξ2)|
|ξ1 − ξ2|

, t ∈ [0, 1], |ξi| ≤ R, i = 1, 2, ξ1 ≠ ξ2


. (2.10)

For problem (1.1), since the symmetric position of the constants p and q lie in, without loss of generality, we can assume
that p ≥ q.

For convenience, hereafter, we denote α = 1 −
β

2 ,

a =
q(µ − 2)

µ
| cos(πα)|, b =

(p − q)(µ − 1)
µ| cos(πα)|

, (2.11)

where µ is given in (H3). Assume that a2 > b2 + b, we take

ε1 =
a −


a2 − b(b + 1)
2(1 + b)

, ε2 =
a +


a2 − b(b + 1)
2(1 + b)

. (2.12)

Let us fix a function ϕ ∈ Hα
0 (0, 1) with ∥ϕ∥α = 1, for ε ∈ (ε1, ε2), we define

t̄ = t̄(ε) =


2

c1µ∥ϕ∥
µ

Lµ


q

| cos(πα)|
+

(p − q)2

4ε| cos(πα)|2

 1
µ−2

,

C(ε) =


q

| cos(πα)|
+

(p − q)2

4ε| cos(πα)|2


t̄2 − c1∥ϕ∥

µ

Lµ t̄
µ

+ c2 + c0, (2.13)

R1 = R1(ε) =


4εC(ε)

4aε − 4(b + 1)ε2 − b

 1
2

, R2 = R2(ε) =
R1

Γ (α)(2α − 1)
1
2
, (2.14)

where c0, c1, c2 are given in (2.7) and (2.8).
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The main result of this paper is the following.

Theorem 2.7. Assume that (H1)–(H4) hold and p ≥ q, a2 > b2 + b. If there exist δ ∈


0, q| cos(πα)|(Γ (α+1))2

2


and ε ∈ (ε1, ε2)

such that
2(p − q)R1

q| cos(πα)|2

s−1

<
(Γ (α)(2α − 1)

1
2 )s+1

c3(δ)


q| cos(πα)|

2
−

δ

(Γ (α + 1))2


, (2.15)

and

LR2 <


2q| cos(πα)| −

p − q
| cos(πα)|


(Γ (α + 1))2, (2.16)

then problem (1.1) has a nontrivial solution.

3. The proof of main result

In this section, we give the proof of Theorem 2.7 by Mountain Pass theorem [13,14] and iterative technique.

Proof of Theorem 2.7. Let R1 be as in (2.14). Let us fix w ∈ Hα
0 (0, 1) with ∥w∥α ≤ R1.

In order to prove Theorem 2.7, we proceed by three steps.
Step 1: For given w ∈ Hα

0 (0, 1) with ∥w∥α ≤ R1, we prove that Iw has a nontrivial critical point in Hα
0 (0, 1) by the Mountain

Pass theorem.
In order to apply Mountain Pass theorem, we first show that there exist ρ, β1 > 0 such that Iw(u) ≥ β1 for u ∈ {u ∈

Hα
0 (0, 1) : ∥u∥α = ρ}.
In fact, by (2.9), Hölder’s inequality, (2.3), (2.2), (2.1) and (2.4), we have

Iw(u) = −q
 1

0
0Dα

x u · xDα
1udx −

 1

0
F(x, u)dx − (p − q)

 1

0
0Dα

x w · xDα
1udx

≥ −q
 1

0
0Dα

x u · xDα
1udx − δ

 1

0
|u|2dx − c3(δ)

 1

0
|u|s+1dx − (p − q)∥0Dα

x w∥L2 · ∥x D
α
1u∥L2

≥


q| cos(πα)| −

δ

(Γ (α + 1))2


∥u∥2

α −
c3(δ)∥u∥s+1

α

(Γ (α)(2α − 1)
1
2 )s+1

−
(p − q)R1

| cos(πα)|
∥u∥α

=


q| cos(πα)|

2
−

δ

(Γ (α + 1))2
−

c3(δ)∥u∥s−1
α

(Γ (α)(2α − 1)
1
2 )s+1


∥u∥2

α +


q| cos(πα)|

2
∥u∥α −

(p − q)R1

| cos(πα)|


∥u∥α.

By the assumption (2.15), we can choose ρ > 0 such that

q| cos(πα)|

2
−

δ

(Γ (α + 1))2
>

c3(δ)

(Γ (α)(2α − 1)
1
2 )s+1

ρs−1

and
q| cos(πα)|

2
ρ >

(p − q)R1

| cos(πα)|
.

Hence, now, let u ∈ Hα
0 (0, 1) with ∥u∥α = ρ, we know that there exists β1 > 0 such that for ∥u∥α = ρ, Iw(u) ≥ β1

uniformly for w ∈ Hα
0 (0, 1) with ∥w∥ ≤ R1.

For given ϕ ∈ Hα
0 (0, 1) with ∥ϕ∥α = 1, by (2.3), (2.4) and (2.8), for t > 0, we obtain that

Iw(tϕ) = −qt2
 1

0
0Dα

x ϕ · xDα
1ϕdx −

 1

0
F(x, tϕ)dx − (p − q)t

 1

0
0Dα

x w · xDα
1ϕdx

≤
qt2

| cos(πα)|
− c1tµ

 1

0
|ϕ|

µdx + c2 + t(p − q)∥w∥α ∥x D
α
1ϕ∥L2

≤
qt2

| cos(πα)|
− c1tµ

 1

0
|ϕ|

µdx +
t(p − q)

| cos(πα)|
∥w∥α + c2

→ −∞, as t → ∞.

Thus, there exists t0 > 0 such that e = t0ϕ ∈ Hα
0 (0, 1) satisfies ∥e∥α > ρ and Iw(e) < 0.

In order to apply Mountain Pass theorem to derive Iw has a critical point in Hα
0 (0, 1), now it suffice to show Iw satisfies

P.S. condition.
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In fact, let {un} ⊂ Hα
0 (0, 1), such that |Iw(un)| ≤ K for some positive constant K and I ′w(un) → 0 as n → ∞. Then, using

the condition (H3) and (2.6), we have

K ≥ Iw(un)

= −q
 1

0
0Dα

x un · xDα
1undx −

 1

0
F(x, un)dx − (p − q)

 1

0
0Dα

x w · xDα
1undx

≥ −q
 1

0
0Dα

x un · xDα
1undx −

1
µ

 1

0
unf (x, un)dx − c0 − (p − q)

 1

0
0Dα

x w · xDα
1undx

=


2
µ

− 1

q
 1

0
0Dα

x un · xDα
1undx +

1
µ
I ′w(un)un +


1
µ

− 1


(p − q)
 1

0
0Dα

x w · xDα
1undx − c0

≥
q(µ − 2)

µ
| cos(πα)|∥un∥

2
α −

1
µ

∥I ′w(un)∥∥un∥α −
(µ − 1)(p − q)
µ| cos(πα)|

∥un∥α∥w∥α − c0.

Combining with I ′w(un) → 0 as n → ∞, we have {un} is bounded in Hα
0 (0, 1). Therefore, without loss of generality, we can

assume that un ⇀ u in Hα
0 (0, 1) and un → u in C([0, 1]).

It follows from (H1) that 1

0
(f (x, un) − f (x, u))(un − u)dx → 0 as n → ∞,

and observe that

2q| cos(πα)|∥un − u∥2
α ≤ −2q

 1

0
0Dα

x (un − u) · xDα
1 (un − u)dx

= (I ′w(un) − I ′w(u))(un − u) +

 1

0
(f (x, un) − f (x, u))(un − u)dx,

(I ′w(un) − I ′w(u))(un − u) → 0 as n → ∞.

Hence, un → u in Hα
0 (0, 1).

Therefore, by Mountain Pass theorem, Iw has a nontrivial critical point uw in Hα
0 (0, 1) with

Iw(uw) = inf
g∈Γ

max
u∈g([0,1])

Iw(u) ≥ β1 > 0,

where Γ = {g ∈ C([0, 1],Hα
0 )|g(0) = 0, g(1) = e}.

Step 2: We construct iterative sequence {un} and estimate its norm in Hα
0 (0, 1).

For u1 ≡ 0, by Step 1, we know Iu1 has a nontrivial critical point u2. If we can prove ∥u2∥α ≤ R1, then, by Step 1, we get Iu2
has a critical point u3. So, in order to obtain iterative sequence {un}, we need prove that if we assume that for ∥un−1∥α ≤ R1,
then un, the nontrivial critical point of Iun−1 obtained by Step 1, satisfies ∥un∥α ≤ R1.

Indeed, by the Mountain Pass characterization of the critical level, (2.3) and (2.4) and Cauchy’s inequality with positive
constant ε, we obtain

|Iun−1(un)| ≤ max
t∈[0,∞)

Iun−1(tϕ)

≤
qt2

| cos(πα)|
− c1tµ

 1

0
|ϕ|

µdx + c2 + t(p − q)∥un−1∥α∥xDα
1ϕ∥L2

≤
qt2

| cos(πα)|
− c1∥ϕ∥

µ

Lµ t
µ

+
t(p − q)

| cos(πα)|
∥un−1∥α + c2

≤


q

| cos(πα)|
+

(p − q)2

4ε| cos(πα)|2


t2 − c1∥ϕ∥

µ

Lµ t
µ

+ ε∥un−1∥
2
α + c2.

If we take

g(t) =


q

| cos(πα)|
+

(p − q)2

4ε| cos(πα)|2


t2 − c1∥ϕ∥

µ

Lµ t
µ

+ ε∥un−1∥
2
α + c2,

then by simple calculation, we get g(t) has a maximum at t = t̄ , where

t̄ =


2

c1µ∥ϕ∥
µ

Lµ


q

| cos(πα)|
+

(p − q)2

4ε| cos(πα)|2

 1
µ−2

.
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Hence, using (2.7) and I ′un−1
(un)un = 0, we have

g(t̄) ≥ Iun−1(un)

= −q
 1

0
0Dα

x un · xDα
1undx −

 1

0
F(x, un)dx − (p − q)

 1

0
0Dα

x un−1 · xDα
1undx

≥ −q
 1

0
0Dα

x un · xDα
1undx −

1
µ

 1

0
unf (x, un)dx − c0 − (p − q)

 1

0
0Dα

x un−1 · xDα
1undx

=


2
µ

− 1

q
 1

0
0Dα

x un · xDα
1undx +

1
µ
I ′un−1

(un)un −
(p − q)(µ − 1)

µ

 1

0
0Dα

x un−1 · xDα
1undx − c0

≥
q(µ − 2)

µ
| cos(πα)|∥un∥

2
α −

(p − q)(µ − 1)
µ

 1

0
0Dα

x un−1 · xDα
1undx − c0.

So,

q(µ − 2)
µ

| cos(πα)|∥un∥
2
α ≤ g(t̄) +

(p − q)(µ − 1)
µ

 1

0
|0Dα

x un−1 · xDα
1un|dx + c0

≤ g(t̄) +
(p − q)(µ − 1)

µ
∥0Dα

x un−1∥L2∥xDα
1un∥L2 + c0

≤ g(t̄) +
(p − q)(µ − 1)
µ| cos(πα)|

∥un−1∥α∥un∥α + c0

= ε∥un−1∥
2
α +

(p − q)(µ − 1)
µ| cos(πα)|

∥un−1∥α∥un∥α + C(ε)

≤ ε∥un−1∥
2
α +

(p − q)(µ − 1)
µ| cos(πα)|


ε∥un∥

2
α +

1
4ε

∥un−1∥
2
α


+ C(ε),

where C(ε) is given in (2.13). Therefore, it follows from the definitions of a and b given in (2.11) that

(a − bε)∥un∥
2
α ≤


ε +

b
4ε


∥un−1∥

2
α + C(ε).

When ε ∈ (ε1, ε2), where ε1, ε2 are given in (2.12), we have

ε +
b
4ε

< a − bε.

Then, we obtain

∥un∥
2
α ≤

ε +
b
4ε

a − bε
∥un−1∥

2
α +

C(ε)

a − bε

≤


ε +

b
4ε

a − bε

n−1

∥u1∥
2
α +

C(ε)

a − bε

n−2
k=0


ε +

b
4ε

a − bε

k

≤ ∥u1∥
2
α +

4εC(ε)

4aε − 4(b + 1)ε2 − b
.

Therefore, if we take u1 ≡ 0 and let un be a nontrivial critical point of Iun−1 for n = 2, 3, . . . , then, from the above
argument, we get ∥un∥α ≤ R1 and Iun−1(un) ≥ β1 > 0 for n = 2, 3, . . . .
Step 3: We show the iterative sequence {un} constructed in Step 2 is convergent to a nontrivial solution of (1.1).

We intend to prove {un} is a Cauchy sequence in Hα
0 (0, 1).

Indeed, since ∥un∥α ≤ R1, in view of (2.1) and the definition of R2, ∥un∥∞ ≤ R2. So by (2.3) and (2.6), I ′un(un+1)(un+1 −

un) = 0, I ′un−1
(un)(un+1 − un) = 0, (H2), (2.2), we get

2q| cos(πα)|∥un+1 − un∥
2
α ≤ −2q

 1

0
0Dα

x (un+1 − un) · xDα
1 (un+1 − un)dx

= (I ′un(un+1) − I ′un−1
(un))(un+1 − un) +

 1

0
(f (x, un+1) − f (x, un))(un+1 − un)dx
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+ (p − q)
 1

0
0Dα

x (un − un−1) · xDα
1 (un+1 − un)dx

≤
LR2

(Γ (α + 1))2
∥un+1 − un∥

2
α +

p − q
| cos(πα)|

∥un − un−1∥α∥un+1 − un∥α.

Hence,
2q| cos(πα)| −

LR2
(Γ (α + 1))2


∥un+1 − un∥α ≤

p − q
| cos(πα)|

∥un − un−1∥α.

By the assumption (2.16), we know

p − q
| cos(πα)|

< 2q| cos(πα)| −
LR2

(Γ (α + 1))2

and therefore {un} is a Cauchy sequence in Hα
0 (0, 1). So, we can assume that un → u in Hα

0 (0, 1). In view of the definition of
{un}, we know u is aweak solution and then by Lemma 2.6, it is a solution of (1.1). Since Iun−1(un) ≥ β1 > 0 for n = 2, 3, . . . ,
and the positive number β1 does not depend on n, we know u is a nontrivial solution of (1.1). �
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