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The lower bounds on the cardinality of the maximum matchings of regular muStfgraphs are 
established in terms of the number of vertices, the degree of vertices and the edge-connectivity 
of a multigraph. The bounds are attained by infinitely many multigraphs, so are best possible. 

1. Introdawtion 

We consider multigraphs (no loops are allowed but more than one edge can 
join two vertices; these are called multiple edges), :and briefly consider pseudo- 
graphs (both loops and multiple edges are permitted). A multigraph with no 
multiple edges is called a simple graph. We simply use ‘graph’ if such a distincticn 
is unnecessary. G = (V, E) denotes a graph ‘&MI vertex set V and edge s’et J?. 
Throughout this note p denotes the number of vertices of G, i.e., p = 1 VI. A 

matching of a graph is a set of nonadjacent edges, and a maximum matching, 
denoted by M(G), of G is one of maximum cardinality. n(G) denotes the number 
of umaturated vertices (i.e., vertices with which no edge of a matching is incident) 
in M(G). Therefore 

For a subset S of V, we denote by o(G, S) the number of odd connected 
components (i.e., components with an odd number of vertices) of the graph G - S 
(which is obtained from G by the removal of all the $crtices in S). Then it is 
known [2,3J that 

n(G) = max{o(G, S)- ISI I S c V}. 

The degree d&) of a vertex< ZJ in G is the number of edges with v as an 
endvertex each loop being counted twice. A ;;raph G is said to be regular of 
degree r if d&v) = r for every 11 E V; such graph: b are also called r-regular. G is A- 
edge-connected if any removal of less than A edges results neither in a discon- 
nected graph nor in a trivial graph. G is A.-odd-connected if any removal o! less 
than A edges results neither in a disconnected graph with ;mn odd connected 
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component nor in a trivial graph. Note that A-edge-connected iml)lies A-odd- 
connected, and that a h-odd-connected r-regular graph is (A + 1)-odld-connected 

if A :# r (mod 2). 
Using a linear polynomial of p, we expressed lower bounds on the cardinality of 

the maximum matching for various classes of graphs: planar simple graphs, 
4-connected gra>hs, trees, and arbitrary simple graphs [6,7,9]. On the other 
hand? Weinstein obtained other lower bounds for arbitrary simple graphs which 
are strong essentially for regular simple graphs [lZ]. (We independently found the 
same results only for regular simple graphs [6, S].) In this note we give lower 
bounds for regular multigraphs which are best possible in the sense that infinitely 
many regular multigraphs attain the bounds. Note that the underlying simple 
graphs of a regular multigraph is no longer regular, although the cardinality of the 
maximum matchings of a multigraph is identical to that of the underlying simple 
graph. Therefore bounds for regular multigraphs obtained ii1 this note are often 
sharper than Weinstein’s bound applied to the underlying simple graphs. 

2. Maim results 

[X J means the greatest integer s X, and 1x1 the least integer 2 X. 

Th~ormtn 1. Let G = (V, E) he an r-regular A-odd-connected multigraph with p 

vertices, and let r 3 3, A 2 1, and r = A (mod 2). Then 

min{b/% k+Ah-d(3r+A)]}, if r is euen; 

bf(G)l~ 

F(r+APp/(3r+A)], otherwise. 

Rexn4uk 1. When rf A (mod 2), G is (A + l)-odd-connected. Therefore we cqn 
obtain a bound for such a case simply by replacing A by A + 1 in the above 
equation. 

Remark 2. From Theorem 1 and Kemark 1 we immediately obtain the following 
fact [3, 101: if G is r-regular and (r - 1)-edge-connected, then (M(G)1 = [p/2]. 

emark 3. Vizing has shown that a multigraph G can be edge-coloured with ?i 
most A( t rnCi colours, where AG is the ma.uimum degree, and tnG is the 
multiplicity of G (i.e., the maximum number or edges joiriing two vertices) [Ill. 
This fact yields a bound for r-regular multigraphs: 

Note that the bound in Theorem I is sharper than this when 

m, >r(r-A))/2(r+A). 

,C, part of Theorem 1 is slightly improved as follows. 
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Theorem 2. If G is a connected r-regular m&graph, and r 3 3 and odd, th!en 

MG)P [(’ 
2-r-l)p-(r-1) 

r(3r 5) - l* 

Both the bound in Theorem 1 for the case of A 2 2 and the 
2 are best possible in tht: j.z.nse that neither the coefficient of 
term can be improved as shown in the following section. 

3. @snstmctions 

boumd in Theorem 
p nor the constant 

In this section we construct infinitely many r-regular A-edge-connected graphs 
G(r, A, h) (h = 1,2,. . .) which attain the bound in Theorem 1 for the case of A 2 2 
or the bound in Theorem 2. 

3.1. Construction of G(r, A, h) for Theorem 1 

Let ra3 , 2 s X -G r - 2 and r = A (mod 2). Resembling Weinstein’s construction 
[ 12, p. 15841, we firsk define a bipartite graph B(r, A, h) = (X U Y, E) with IXi = rh 
and lYl= Ah, where each edge in E has one endvertex in X and the other in Y. 
Take XU Y the set of nonnegative integers < (r +A)h and take Y the set of the 
even nonnegative integers < 2Ah. Let B(r, A, h) contain edges of the following two 
kinds: 

(i) (y,yBl@2k), ye Y and O<k<A, where @ means 
(ii) (x, yj where x 32Ah, y E Y and $y = x (mod h). 

Clearly B (r, A, h) is A -edge-connected, and dg (v) = A if 
v E Y. 

H(r, A) denotes a multigraph containing exactly three 
degree r, r and r-A. 

addition (mod 2Ah); 

VEX, or dg(v)=r if 

vertices of respective 

G(r, A, h) is constructed through a B(r, A, h) = (T< U Y, E) and H(r, A )‘s as 
follows: for tiach x E X, let H,(r, A) be a copy of H(r, A) such that H,(r, A) has no 
vertex common with B(r, A, h) or with any &, x’ # x; let C;(r, A, h) be the graph 
obtained from a B(r, A, h) and H,(r, A)‘s (x EX) by identifying each x E X with 
the vertex of degree r -A in H,(r, A), (We depict G(4,2,2) in Fig. 1.) 

Clearly G(r, A, h ) constructed as above is an r-regular A-edge-connected graph 
with p = (3r + A)!z vertices, and n(G(r, A, h)) = (r-A)h. (Take S = Y in (2).) 
Therefore n(G(r, A, h)) = (r - A)pl(3r + A). Hence G(r, k, h j attains the bound in 
Theorem 1. 

3.2. Construction of G(r, 1, h) for Theorem 2 

Ler r be odd. We first give the definition 
connected graph with no cycle is called a tree 

of the terminology on a tree. A 
A, vertex of degree 1 in a tree is 
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Fig. 1. G(4,2,2). 

called a leaf. For 6 3 1 we define a b-ary tree as a tree such that 
(a) There is one specially designated vertex called the root of the tree; and 
(b) The degree of each vertex other than the leaves is 6 + 1. 

Note that the definition of a 6-a.ry tree is different from those in [I, 41. A vertex 1 

of degree lp + 1 in a b-ary tree is called an internal vertex. The depth of a vertex u 
in a b-ary tree is the length of the path from the root to u. (The ‘length of a path is 
the number of edges on the path.) The height of a tree is the le..rlgth of a longest 
path from the root to a 1eaL A b -ary tree is said to be complete if fey some integer 
K, every vertex of depth less than k is an internal vertex and every vertex of depth 
k is a leaf. We denote bSy T(b, lo) the complete b-ary tree of height h (a 1). 

G(r, 1, h) is constructed through a T(r, h) and H(r, 1)‘s as follows: for each leaf 
x of T(r, h), let H,(r, I) be a copy of H(r, I) such that E&l;r, 1) has no vertex 
common with T(r, h) or with any I&, x’# X; let G(r, 1, h) be the graph obtained 
from T(r, h) and H,(r, 1)‘s by identifying each leaf x of T(r, h) with the vertex of 
H, (r, 1) which has degree r - 1. (We depict G(3,1,2) in Fig. 2.) 

Fig. 2. G(3, 1,2). 
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Clearly G(r, 1, h) is a connected r-regular graph with p = 
(r(3r -- 5)(r - l)“-’ - 2}/(r - 2) vertices, and n(G(r, 1, h)) = (r- l)! Note that the 
maximum of (2) is attained for G(r, 1, h) when S is the set of internal vertices of 
even depth in T(r, h) if h is odd, or of odd depth otherwise. Therefore 

Hence G(r, 1, h) attains the bound in Theorem 2. 

4. Proof of Theorems 1 and 2 

For a graph G = (V, E) and a subset S of V, U(S) denotes the number of edges 
with one endvertex in S and the other in V- 5. Let I be the set of all positive 
integers, and I, the set of all positive odd integers. 

BProoff of Theorem 1. Suppose that n(G)> 2. Then it follows from (2) that there 
exists a nonempty proper subset S of V such that o(G, S)- s = n(G), where 
s = Isl. Let G, =(I&, E,) (m = 1,2,. . . ) be the mth connected component of 

G -S. Define U:i = {m 11 V,,, I = i} and fi = I.Ii I for i E I. Clearly 

and 

o(G, S) = c 6, 
iEZ, 

(3) 

p = s + C &. 6-9 
iEZ 

Since G is r-regular, we have 

rsa u(S)2 c (c U(Vf)). 
iEZ, jE.Zi 

6) 

Since the multigraph G is A-odd-connected and Vj is a nonempty proper subset 
Of V, for jEJi 

A, 

i 

if iEZ,; 

U(Vj)> 

r, if i=l. 

Combining (5) and (6), we obtain 

rS~Yt*+h C ti, 
iEZi 

where IL = I, -{ 1). IJsing (2). (3) and (7), we have 

W 

W-H 

(7) 

r l n(G)sqr-A) 
iEd,!, 

(8) 
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On the other hand, combining (4) and (7) yields 

Combining (8) and (9) yields 

12(G)qr--A)p/(3r+h). (10) 

Thus we have shown that n(G) s 1 or (10) holds. Especially (10) holds if p is 
even, since n(G) would not be 1. Our claim immediately follows from (1) and 
these facts. 

Next we give the following lemma, which characterizes the configuration of 
graphs artaining the lower bound in Theorem 2. 

Lenrma 1. I,et r 2 3 and odd, and let a connected r-regular multigraph G = (V, E) 

satisfy the following condition : n(G)/{p + 2/(r - 2)) is maximum among all con- 

nected r-regular multigraphs. Let S be a subset of V such that n(G) = o(G, S)- s, 
where s = ISI 2 1. Vi, ti and Ji (i E 6) are defined as in the proof of Theorem 1. Then 

(a) ti - 0 unless i = 1 or 3; 
(b) G - Vi contains exactly r connected -9mponents if j E .I*, i.e., ! Vjl = 1; 
(C) U(Vi)=l ifjEJ3; 
(d) G contains no edges with both endvertices in S: and 

(e) G is obtained from an (r - 1)-ary tree and copies of the graph H(r, 1) by 

identifying each leaf of the tree with the vertex of degree I”- 1 nz a distinct copy of 

H(r, 1). (H(r, 1) was defined in Section 3.) 

PH&. Le.: J’EJi, and M = rl(Vj). Let H,,,(r, 1) (m = 1,2,. . . , U) be a COPY of 
H(r, 1). ‘A& r~ow construct a new r-regular multigraph G’ from G - Vi as follows: 
(i) make the disjoint uniora of G - \$ and H,(r, I), . . . , H,,(,r, 1); and (ii) for each 
m (m = 1,. . . , u), add an edge joining the vertex of degree r -- 1, in H, and one of 
the vertices of G - Vj which were adjacent to a vertex in V,, so that the resulting 
multigraph G’ becomes r-regular. Suppose that G’ contains exactly k connected 
components D1, . . . , Ilk. We denote by p; the number of vertices of II,,,, and by 
u,, the number of edges of G with one endvertex in Vi and the other in the vertex 
set of I& for m = ‘1, . . . , k. Clearly 

and 

1s k < u, (11) 

._ 
U= c U m’ (12) 

m=l 

Let 

n= k En(o,){(r--2)p+2}-sa(G)((r-2)p~+2}1, 
m=l 
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then ?r ~0. For, otherwise, we have 

n(G) 
p+m--3 

<maxf n(Qn) 
(p;t+2/(r_2) I 

which contradicts the assumption on the maximality of G. F, = (X,,, Y,) 
(m = 1,. . . , k) denotes a connected component of G - V’ which corresponds to 
Q,,, and pm denotes the number of vertices in Q. We define n,, for m = 1,. . . , k 

as follows: 

nnl =~(F,,snx,~)-(snx,,I. 

Then we have 

and 

P = i + i Pm7 
m=l 

P’ m = Pm + 3&I,, 

n(R, ) a n,,, + Urn9 

Em + 1, if i is odd; 

n(G)= 

otherwise. 

(13) 

(14) 

(15) 

(Ma) 

We separate two cases. 
Case 1: i is even. Using (13)-(M), we obtain 

Noting that 

(18) 

and using (12) and (16)-(17), we have 

?r~n(G){(r-2)i+2-3(r-2)u-2k}+p(r-2)u+2u. (19) 

From Theorem 1 (by taking A = 1 in (lO!), we have 

pa(3r+l)n(G)/(r-1). (20) 

Substituting (11 j and (20) Into (19), we obtain 

~~n(G){(r-l)(r-2)i+2(r-l.)-!-2(r-3)u}/(r-1)+2u>0. (21) 
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Th% is a contradiction. Thus we have shown that if i is even, then 

ti =O* (22) 

Case 2: i is odd. Using (13)~(16), we obtain 

+nm{(r-2)i+2)-p,,(r-2)$-u,{p(r-2)+2-3(r-2)n(G)}-2n(G) 

(23) 

Using (12), (14), (16), (18) and (23), we obtain 

~~n(G)((r-2)i-t2-3(r-2)~~-2k}+p(r-2)(u- 1)+2(u- I). 

Substituting (20) into (24), we obtain 

(24) 

?r~n(G){(r--2)(r- l)i+4(r-2)u-2k(r-- l)-r(3~7)}/(r- 1) 

+2(u - 1). (25) 

We consider three subcases. 
Subcase (i): i = I. In this case, k < u = r. Substituting u = r and i = 1 into (29, 

we have that if ksr-1, 

Therefore k = r. Thus we have established (b). 
Subcase (ii): i = 3. Substituting (11) and i = 3 into (25), we hrzve that if u 3 2, 

rr~((~-- 1){2(r-3)n(G)/(r- 1)+2}>0. 

I’herefore u -- 1. Thus we have proved (c). 
Subcase (iii): i > 3. Substituing (11) and i > 3 into (29, we have 

n>(u- 1){2(r-3)n(G)/(r- 1)-+2}30. 

Thus we have shown that if i > 3 and odd, then 

ti =O* (26) 

Combining (22) and (26), we obtain (a). 
Suppose that G contain an edge e with both endvertices in S. We n0F-J &fine 

G’, DA, pk and rr in the same fashion as above except that G - Vi is rey!laced by 
G -e. Then we have 7r > 0. (Take i = 0 and u = 2 in (21)) Thus we have proved 

(d). 
(e) immediately follows from (a)-(d). 

Using Lemma 1, we cacti exactly decide n(G) for a graph (G which attains the 
lower bound in Theorem 2. 
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Lemma 2. Let G satisfy the requirement of Lemma 1, then 

n(G) (r- lNr-2) 
= r(3r-5) k+r:2) 

. 

Proof. S, s and t,,, (m tr’ I) are defined as in Lemma 1. By Lemma 1 we have 

n(G)=tI+t3-s, (27) 

p = t,+3t,+s, 1.28) 
and 

r, + t3 + s - 1 = rtl + t3 = rs. 

From (29) we obtain 

s = (r- l)t, + 1. 

Combining (29) and (30), we have 

r(r-2)tl = t3-r. 

Combining (27)-(3 l), we obtain 

n(G) tl + t3 - (rtI + Q/r p- 7 
(r-22)+2 (r-2)tI+3(r-2)t+(r-2)(r-l)tl+r 

(r - lN3 

(29) 

(30) 

1.3 I) 

=r(T(r-2)tl +3(r-2)t,+rj 

r-l 
=r(3r-5)’ 

Thus we have proved the claim. 

Now Theorem 2 immediately follows from Lemma 2 and (1). 

5. Lower bounds for regular pseudographs 

Employing a proof-technique similar to those of Theorems 1 or 2, we ca:? easily 
obtain the lower bounds on the cardinality of the maximum matchings of regular 
pseudographs. We show the results without proof. 

011 Em 3. Let G be an r-regular h-odd -connected pseudograph with p vertices, 
and let r 2 3, A 2 1, and r = A (mod 2). Then 

I min{Lp/2J, [hp/(r+-hjl), if r is even; 
IMCG>la 

1 
, 

rhpl(r + A >l 9 0 therwise. 
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Theorem 4. If G is a connected r-regular pseudograph, and r 2 3 and odd, then 
IM(G)(2 [(p - 1)/r]. 

it is easy to construct infinitely many regular pseudographs which attain the 
boutld in Theorem 3 for the case of A 2 2 or bound in Theorem 4. 
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