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a b s t r a c t

The inflationGI of a graphG is obtained fromG by replacing every vertex x of degree d(x) by
a clique X = Kd(x) and each edge xy by an edge between two vertices of the corresponding
cliques X and Y ofGI in such away that the edges ofGI which come from the edges ofG form
a matching of GI . A set S of vertices in a graph G is a total dominating set, abbreviated TDS,
of G if every vertex of G is adjacent to a vertex in S. The minimum cardinality of a TDS of G
is the total domination number γt(G) of G. In this paper, we investigate total domination in
inflated graphs. We provide an upper bound on the total domination number of an inflated
graph in terms of its order and matching number. We show that if G is a connected graph
of order n ≥ 2, then γt(GI) ≥ 2n/3, and we characterize the graphs achieving equality in
this bound. Further, if we restrict the minimum degree of G to be at least 2, then we show
that γt(GI) ≥ n, with equality if and only if G has a perfect matching. If we increase the
minimum degree requirement of G to be at least 3, then we show γt(GI) ≥ n, with equality
if and only if everyminimumTDSofGI is a perfect total dominating set ofGI , where a perfect
total dominating set is a TDS with the property that every vertex is adjacent to precisely
one vertex of the set.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we continue the study of domination in inflated graphs first introduced by Dunbar and Haynes [2] and
studied, for example, in [3,4,8,9]. A total dominating set, abbreviated TDS, of a graph G is a set S of vertices of G such that
every vertex is adjacent to a vertex in S. Every graph without isolated vertices has a TDS, since V (G) is such a set. The total
domination number of G, denoted by γt(G), is the minimum cardinality of a TDS of G. A TDS of G of cardinality γt(G) is called
a γt(G)-set. Total domination in graphs is nowwell studied in graph theory. The literature on this subject has been surveyed
and detailed in the two books by Haynes et al. [5,6]. A recent survey of total domination in graphs can be found in [7].

For notation and graph theory terminology, we in general follow [5]. Specifically, let G = (V , E) be a graph with vertex
set V of order n(G) and edge set E of size m(G). The minimum and maximum degrees among the vertices of G are denoted
by δ(G) and ∆(G), respectively. A cycle on n vertices is denoted by Cn, and a path on n vertices by Pn. A vertex of degree 1 in
G is called a leaf of G. We denote the set of leaves in G by L(G) and we let ℓ(G) = |L(G)|. A support vertex is a vertex that is
adjacent to a leaf, while a strong support vertex is adjacent to at least two leaves.

The open neighborhood of v is N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is N[v] = {v} ∪ N(v). For a set
S ⊆ V , its open neighborhood is the set N(S) = ∪v∈S N(v) and its closed neighborhood is the set N[S] = N(S) ∪ S. For subsets
S, T ⊆ V , the set S totally dominates the set T if T ⊆ N(S). If S and T are disjoint subsets of V , then by G[S, T ] we denote the
set of all edges in G that join a vertex of S and a vertex of T . For a set S ⊆ V , the subgraph induced by S is denoted by G[S].
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A TDS S in a graph G = (V , E) is a perfect total dominating set, abbreviated PTDS, if every vertex is adjacent to precisely
one vertex of S, that is, if |N(v) ∩ S| = 1 for each vertex v ∈ V .

Two edges in a graph G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called
a matching in G, while a matching of maximum cardinality is a maximum matching. The number of edges in a maximum
matching of G is called the matching number of G which we denote by α′(G). A perfect matching M in G is a matching in G
such that every vertex of G is incident to an edge ofM . IfM is a matching in G, anM-matched vertex is a vertex incident with
an edge inM while anM-unmatched vertex is a vertex not incident with an edge inM .

A set P ⊆ V is a paired-dominating set, abbreviated PDS, if P is a total dominating set, with the added requirement that the
subgraph induced by P contains a perfect matching (not necessarily induced). The paired-domination number of G, denoted
by γpr(G), is the minimum cardinality of a PDS of G.

The corona H ◦ K 2 of a graph H and the empty graph K 2, as defined in [5], is the graph constructed from a copy of H by
adding for each vertex v ∈ V (H), two new vertices v′ and v′′ and the two pendant edges vv′ and vv′′. Hence, H ◦ K 2 has
order 3|V (H)|.

1.1. Inflated graph

For the notation for inflated graphs, we follow [3]. The inflation or inflated graph GI of a graph Gwithout isolated vertices
is obtained as follows: each vertex xi of degree d(xi) of G is replaced by a clique Xi ∼= Kd(xi) and each edge xixj of G is replaced
by an edge uv in such a way that u ∈ Xi, v ∈ Xj, and two different edges of G are replaced by non-adjacent edges of GI . There
are two different kinds of edges in GI . The edges of the clique Xi are colored red and the Xi’s are called the red cliques (a red
clique Xi is reduced to a vertex if xi is a leaf of G). The other ones, which correspond to the edges of G, are colored blue and
they form a perfect matching of GI . Every vertex of GI belongs to exactly one red clique and is incident with exactly one blue
edge. For notational simplicity, we denote the vertex set of a red clique Xi by Xi.

Following the notation of Kang et al. [8], if xi and xj are two adjacent vertices of G, the vertex of Xi (respectively, Xj)
incident with the blue edge of GI replacing the edge xixj of G is called xixj (respectively, xjxi) in GI . By definition, every leaf
in G corresponds to a leaf in GI and every support vertex in G corresponds to a support vertex in GI . Further, every support
vertex xjxi in GI is adjacent only to other vertices in the clique Xj and to the (unique) leaf xixj adjacent to it in GI (where xi is
a leaf in G adjacent to the vertex xj).

As remarked by Favaron [3], GI is the line-graph of the subdivision S(G) of Gwhich is obtained by replacing each edge of
G by a path of length 2. In particular, we note that GI is claw-free. Further, n(GI) =

∑
xi∈V (G) dG(xi) = 2m(G), δ(GI) = δ(G)

and ∆(GI) = ∆(G).

2. Total domination in inflated graphs

Our aim in the paper is to study total domination in inflated graphs. First, we provide an upper bound on the total
domination number of an inflated graph in terms of its order and matching number. For this purpose, we define φL(G)
as the maximum possible number of leaves of G that are M-unmatched taken over all maximum matchings M in G. For
example, for k ≥ 3 if G is the graph of order 3k obtained from a cycle Ck on k vertices by adding a pendant edge to each
vertex and then subdividing exactly once every edge on the cycle, then α′(G) = k and there is a maximummatchingM in G
consisting entirely of cycle edges, whence φL(G) = k.

Lemma 1. If G is a graph with no isolated vertex, then γt(GI) ≤ 2n(G) − 2α′(G) − φL(G).

Proof. Let n = n(G), α′
= α′(G) and let φL = φL(G). Among all maximum matching in G, let M be one that maximizes the

number of leaves that are M-unmatched. Let ΦL(G) denote the set of M-unmatched leaves in G and let Φ≥2(G) denote
the set of M-unmatched vertices in G of degree at least two. Then, φL = |ΦL(G)| and |Φ≥2(G)| = n − 2α′

− φL. Let
V (G) = {x1, x2, . . . , xn}. Renaming vertices, if necessary, we may assume that M = {x2i−1x2i | 1 ≤ i ≤ α′

}. Let SM denote
the vertices in GI corresponding to theM-matched vertices of G, that is,

SM =

α′
i=1

{x2i−1x2i, x2ix2i−1}.

For i ∈ {1, 2, . . . , 2α′
}, the vertex xi is M-matched in G. If i is odd, then xixi+1 ∈ M , implying that {xixi+1, xi+1xi}(⊆SM)

totally dominates the vertices in the red cliques Xi and Xi+1. If i is even, then xixi−1 ∈ M , implying that {xixi−1, xi−1xi}(⊆SM)
totally dominates the vertices in the red cliques Xi−1 and Xi. Hence for i ∈ {1, 2, . . . , 2α′

}, the set SM totally dominates the
vertices in the red clique Xi.

For i ∈ {2α′
+ 1, . . . , n}, suppose xi ∈ ΦL(G) (and so, xi is a leaf in G that is M-unmatched). Let xj be the neighbor of xi

in G, and let Si = {xjxi}. The maximality of the matching M implies that xj is M-matched, and so the red clique Xj contains
a vertex of SM , namely xjxj+1 if j is odd or xjxj−1 if j is even, and this vertex of SM is different from the vertex xjxi. Thus the
vertex in Si is totally dominated by SM . Moreover, the vertex in Xi is totally dominated by Si.
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For i ∈ {2α′
+1, . . . , n}, suppose xi ∈ Φ≥2(G) (and so, d(xi) ≥ 2 and xi isM-unmatched). Let Si be an arbitrary 2-element

subset of Xi. Then, Si totally dominates the vertices in Xi. Hence the set

D = SM ∪


n

i=2α′+1

Si


is a TDS of GI , whence

γt(GI) ≤ |SM | +

n−
i=2α′+1

|Si|

= 2α′
+ 2|Φ≥2(G)| + |Φ(G)|

= 2α′
+ 2(n − 2α′

− φL) + φL

= 2n − 2α′
− φL. �

We remark that if we restrict the graph G in the statement of Lemma 1 to have minimum degree at least two, then the
TDSD constructed in the proof of Lemma 1 for the inflated graph GI is a paired-dominating set of GI . Hence as a consequence
of the proof of Lemma 1, we have the following result due to Kang et al. [8].

Corollary 2 ([8]). If G is a graph with δ(G) ≥ 2, then γpr(GI) ≤ 2n(G) − 2α′(G).

Next we establish lower bounds on the total domination number of an inflated graph. Recall that L(G) denotes the set of
leaves in a graph G and that ℓ(G) = |L(G)|. We begin by establishing a lower bound on the total domination number of an
inflated graph with minimum degree one in terms of the number of leaves in the graph.

Theorem 3. Let G be a graph with δ(G) = 1. Then, γt(GI) ≥ ℓ(G), with equality if and only if every vertex of G is a leaf or a
strong support vertex.

Proof. Let S be a γt(GI)-set. If xi is a leaf of G that is adjacent to a vertex xj, then the vertex xjxi in Xj belongs to S in order
to totally dominate the vertex xixj in Xi. Hence for every leaf of G, there corresponds a unique vertex in GI that belongs to S.
Thus, γt(GI) = |S| ≥ ℓ(G).

Suppose that γt(GI) = ℓ(G). Then, S consists precisely of these ℓ(G) support vertices in GI that totally dominate the set
L(GI) of leaves in GI . Suppose that xk is a vertex of G that is neither a leaf nor a strong support vertex of G. If xk is a support
vertex of G that is adjacent to a leaf xr , then the red clique Xk contains exactly one support vertex, namely xkxr , and this
support vertex is adjacent to the leaf xrxk in Xr . Thus the set S, which consists of the support vertices of GI , contains no
neighbor of xkxr . Hence the vertex xkxr is not totally dominated by S, contradicting the fact that S is a TDS in GI . Therefore,
xk is not a support vertex of G. Thus no vertex in Xk is a support vertex in GI . Since every support vertex in GI is adjacent
only to other vertices in the red clique that contains it and to the (unique) leaf adjacent to it, no vertex in the red clique Xk
is totally dominated by S, a contradiction. Therefore, every vertex of G is either a leaf or a strong support vertex of G.

Conversely, if every vertex of G is either a leaf or a strong support vertex of G, then either G = GI = K2, in which
case γt(GI) = ℓ(G) = 2, or n(G) ≥ 3, in which case the set of support vertices in GI totally dominate GI and, once again,
γt(GI) = ℓ(G) since the number of support vertices in GI is equal to the number of leaves in G. �

Wenext provide a lower bound on the total domination number of an inflated graphGI in terms of the number of vertices
of the graph G. By a weak partition of a set we mean a partition of the set in which some of the subsets may be empty.

Theorem 4. Let G be a connected graph of order n ≥ 2. Then, γt(GI) ≥ 2n/3, with equality if and only if G is the corona H ◦ K 2
of some connected graph H.

Proof. Let G = (V , E) and let V (G) = {x1, x2, . . . , xn}. Let S be a γt(GI)-set. Let S1 be the set of vertices in S that belong to a
red clique that contains exactly one vertex of S, and let S2 be the set of vertices in S that belong to a red clique that contains
at least two vertices of S. Let (V0, V1, V2) be a weak partition of V , where V0 = {xi: |S ∩ Xi| = 0}, V1 = {xi: |S ∩ Xi| = 1}
and V2 = {xi: |S ∩ Xi| ≥ 2}. For i = 0, 1, 2, let ni = |Vi|, and so n = n0 + n1 + n2. Further, |S1| = n1 and |S2| ≥ 2n2, while
|S| = |S1| + |S2|.

If n0 = 0, then |S| ≥ n1 + 2n2 = n+ n2 ≥ n > 2n/3, which establishes the desired lower bound. Hence wemay assume
that n0 ≥ 1.

Let x be a vertex in a red clique that contains no vertex of S. Then, x = xixj for some integers i and j.We note that S∩Xi = ∅.
In order to totally dominate x, the vertex xjxi ∈ Xj belongs to S. In order to totally dominate xjxi, the set S must contain a
vertex of Xj different from xjxi. Hence, |S ∩ Xj| ≥ 2, and so xj ∈ V2 and xjxi ∈ S2. Therefore, each vertex in a red clique that
contains no vertex of S is totally dominated by a unique vertex in S2. In particular, we note that the set V0 is an independent
set in G.

Let A = V0 and let B = N(A). Then, |A| = n0. Let |B| = b. From our earlier observations, we note that A is an independent
set and that B ⊆ V2. We now construct a bipartite graph F with partite sets (A, B), where the edge set of F is the set of edges
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G[A, B] that join a vertex of A and a vertex of B in the graph G. Let F have order nF and size mF . Let ∆ denote the maximum
degree of a vertex of B in the graph F . Let (B1, B2, . . . , B∆) be a weak partition of B, where dF (v) = i for each vertex v ∈ Bi
in the graph F for i = 1, 2, . . . , ∆. Thus for i = 1, 2, . . . , ∆, each vertex in Bi is adjacent to exactly i vertices of A in F . For
i = 1, 2, . . . , ∆, let |Bi| = bi, and so

b = |B| =

∆−
i=1

bi. (1)

By definition of the set V2, if xj ∈ V2, then |S ∩ Xj| ≥ 2. Since each vertex in a red clique that contains no vertex of S is
totally dominated by a unique vertex in S2, we observe that if xi ∈ Bi for some i ≥ 2, then |S∩Xi| ≥ i. For i = 1, 2, . . . , ∆, we
define a function f : B → {1, 2, . . . , ∆} as follows: for v ∈ B1, define f (v) = 2, while for v ∈ Bi for some i with 2 ≤ i ≤ ∆,
define f (v) = i. Thus if v ∈ B, say v = xj, then |S ∩ Xj| ≥ f (v). We define f (B) =

∑
v∈B f (v). By definition of the function f ,

we have that

f (B) =


∆−
i=1

ibi


+ b1. (2)

Since every vertex in A is adjacent to at least one vertex of B, we have that

n0 = |A| ≤ mF =

∆−
i=1

ibi. (3)

By Eqs. (1)–(3), we have that

nF = n0 + b

≤

∆−
i=1

(i + 1)bi

=
3
2


∆−
i=1

ibi


+ b1


− b1 −


∆−
i=3


i
2

− 1

bi



=
3
2
f (B) − b1 −


∆−
i=3


i
2

− 1

bi



≤
3
2
f (B),

and so f (B) ≥ 2nF/3. Let

SF =


xi∈V (F)

(S ∩ Xi) and SF = S \ SF .

Then,

|SF | =

−
xi∈V (F)

|S ∩ Xi| =

−
xi∈B

|S ∩ Xi| ≥

−
xi∈B

f (xi) = f (B).

For each vertex xi ∈ V (G)\V (F), we note that xi ∈ V1 ∪V2, and so |S ∩Xi| ≥ 1, implying that |SF | ≥ n−nF . Since nF ≤ n,
we have that

|S| = |SF | + |SF |
≥ f (B) + (n − nF )

≥ 2nF/3 + (n − nF )

= n − nF/3
≥ n − n/3
= 2n/3.

Hence, γt(GI) = |S| ≥ 2n/3. Suppose that equality holds. Then we must have equality throughout the above inequality
chains. In particular, this implies that nF = n, and so F = G. Further, b = b2 and n0 = mF . Hence every vertex that
belongs to A is a leaf in G, while every vertex of B is a strong support vertex in G that is adjacent to exactly two (leaves) of
A. Since G is connected, we note that G[B] is a connected graph. Hence, G is the corona H ◦ K 2 of some connected graph H
(where H = G[B]). �
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In the introductory paper on total domination, Cockayne et al. [1] showed that if G is a connected graph on n ≥ 3 vertices,
then γt(G) ≤ 2n/3. Hence as an immediate consequence of Theorem 4, we have the following result which shows that the
total domination number of a graph is at most the total domination number of its inflation.

Corollary 5. For every connected graph G with no isolated vertex, γt(G) ≤ γt(GI), with equality if and only if G = K2 or G = P3.

Proof. Let G have order n ≥ 2. If n = 2, then G = K2, and so GI = K2 and γt(G) = γt(GI) = 2. Suppose n ≥ 3. Then by
the Cockayne–Dawes–Hedetniemi result and by Theorem 4, we have that γt(G) ≤ 2n/3 ≤ γt(GI). Suppose equality occurs.
Then, γt(GI) = 2n/3 and, by Theorem 4, G is the corona H ◦ K 2 of some connected graph H of order n/3. If |V (H)| ≥ 2, then
γt(G) = |V (H)| = n/3 < γt(GI), a contradiction. Hence, H is the trivial graph K1, whence G = P3. �

We show next that if we restrict our attention to graphs with minimum degree at least two, then the lower bound in
Theorem 4 can be improved significantly.

Theorem 6. Let G be a graph of order n with δ(G) ≥ 2. Then, γt(GI) ≥ n, with equality if and only if G has a perfect matching.

Proof. Let G = (V , E) and let V (G) = {x1, x2, . . . , xn}. We follow exactly the notation and terminology introduced in the
first paragraph of the proof of Theorem 4. If n0 = 0, then |S| ≥ n1 + 2n2 ≥ n, which establishes the desired lower bound.
Hence we may assume that n0 ≥ 1.

Let x be a vertex in a red clique that contains no vertex of S. Then, x = xixj for some integers i and j.We note that S∩Xi = ∅.
In order to totally dominate x, the vertex xjxi ∈ Xj belongs to S. In order to totally dominate xjxi, the set S must contain a
vertex of Xj different from xjxi. Hence, |S ∩ Xj| ≥ 2, and so xj ∈ V2 and xjxi ∈ S2. Therefore, each vertex in a red clique that
contains no vertex of S is totally dominated by a unique vertex in S2. Since there are n0 red cliques that contain no vertex
of S, and since each red clique contains at least δ vertices, we deduce that |S2| ≥ n0δ. As observed earlier, |S2| ≥ 2n2. Since
δ ≥ 2, we therefore have that

|S2| =
1
δ
|S2| +


δ − 1

δ


|S2| ≥

1
δ
|S2| +

1
2
|S2| ≥ n0 + n2. (4)

Thus, γt(GI) = |S| = |S1| + |S2| ≥ n1 + (n0 + n2) = n, as desired. Suppose next that γt(GI) = n. We show that G has a
perfect matching.

Suppose n0 = 0. Then, n = |S| ≥ n1 + 2n2 ≥ n. Consequently, we must have equality throughout this inequality chain,
implying that n = n1. Hence, S = S1 and V = V1. Therefore, every red clique contains exactly one vertex of S. Let x ∈ V .
Then, x = xi for some i, 1 ≤ i ≤ n. Let xixj denote the vertex of the red clique Xi that belongs to S. Then, xjxi is the vertex of
the red clique Xj that belongs to S, and we set x′

= xj. Then the set ∪x∈V {xx′
} is a perfect matching in G.

Hence we may assume that n0 ≥ 1, for otherwise G has a perfect matching as claimed. We must then have equality
throughout the Inequality Chain (4), implying that δ = 2 and that every red clique that contains no vertex of S has size 2.
Further, |S2| = 2n2, and so every red clique that contains at least two vertices of S contains exactly two vertices of S. Further,
every vertex of S2 is adjacent to a vertex that belongs to a red clique containing no vertex of S. We now consider the bipartite
graph F with partite sets V0 and V2, and with edge set consisting of all edges of G that join V0 and V2, that is, E(F) = [V0, V2].
Then, F is a 2-regular bipartite subgraph of G. Let MF be a perfect matching in F . If n1 = 0, then G = F and MF is a perfect
matching in G. Hence we may assume that n1 ≥ 1, for otherwise G has a perfect matching as claimed. Let H = G[V1] be the
subgraph of G induced by the set V1. Let x ∈ V (H). Then, x = xi for some i, 1 ≤ i ≤ n. Let xixj denote the vertex of the red
clique Xi that belongs to S. Then, xjxi ∈ Xj belongs to S. If xj ∈ V2, then xjxi ∈ S2, contradicting our earlier observation that
xixj would then belong to a red clique Xi containing no vertex of S. Hence, xj ∈ V1 and we set x′

= xj. Let MH = ∪x∈V1{xx
′
}.

Then,MF ∪ MH is a perfect matching in G.
Conversely, supposeG has a perfectmatching. Then, by Corollary 2, γpr(GI) ≤ n. Since the paired-domination number of a

graph is at least its total domination, this implies thatγt(GI) ≤ n. As shownearlier,γt(GI) ≥ n. Consequently,γt(GI) = n. �

Since the paired-domination number of a graph is at least its total domination, we have the following consequence of
Theorem 6 and its proof.

Corollary 7 ([8]). Let G be a graph of order n with δ(G) ≥ 2. Then, γpr(GI) ≥ n, with equality if and only if G has a perfect
matching.

As a consequence of the proof of Theorem 6, we have the following result.

Corollary 8. Let G be a graph of order n with δ(G) ≥ 3. Then, γt(GI) ≥ n, with equality if and only if every γt(GI)-set is a perfect
total dominating set of GI .

Proof. We shall follow the notation introduced in the proof of Theorem 6. In particular, let G = (V , E) have order n = n(G).
Let δ(G) = δ ≥ 3 and let S be a γt(GI)-set. By Theorem 6, γt(GI) ≥ n. Suppose that γt(GI) = n. We show that S is a perfect
total dominating set ofGI . If n0 = 1, then by Inequality Chain (4) and since δ ≥ 3,we have that |S2| ≥

1
δ
|S2|+ 2

3 |S2| > n0+n2,
implying that n = γt(GI) = |S| = |S1|+|S2| > n1+(n0+n2) = n, a contradiction. Hence, n0 = 0, and so S = S1 and V = V1.
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Proceeding as in the proof of Theorem 6, we note that n is even and, renaming the vertices of G if necessary, that the set S
corresponds to a perfect matching M = {x2i−1x2i | 1 ≤ i ≤ n/2}. For odd j, 1 ≤ j ≤ (n − 1)/2, every vertex in Xj different
from xjxj+1 is uniquely totally dominated by xjxj+1, while the vertex xjxj+1 is uniquely totally dominated by xj+1xj. For even
j, 2 ≤ j ≤ n/2, every vertex in Xj different from xjxj−1 is uniquely totally dominated by xjxj−1, while the vertex xjxj−1 is
uniquely totally dominated by xj−1xj. In both cases, every vertex of Xj is adjacent to precisely one vertex of S. Thus, S is a
PTDS of GI . Conversely, suppose that every γt(GI)-set is a PTDS of GI . Let S be a γt(GI)-set. Since δ ≥ 3, the PTDS S contains at
most one vertex from every red clique, and so S2 = ∅ and n2 = 0. Hence, n = n0+n1 and n ≤ γt(GI) = |S| = |S1| = n1 ≤ n.
Consequently, we must have equality throughout this inequality chain, implying that γt(GI) = n. �
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