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Abstract

We study convex Hamilton–Jacobi equations H(x,Du) = 0 and ut + H(x,Du) = 0 in a bounded domain Ω of R
n with the

Neumann type boundary condition Dγ u = g in the viewpoint of weak KAM theory, where γ is a vector field on the boundary
∂Ω pointing a direction oblique to ∂Ω . We establish the stability under the formations of infimum and of convex combinations
of subsolutions of convex Hamilton–Jacobi equations, some comparison and existence results for convex and coercive Hamilton–
Jacobi equations with the Neumann type boundary condition as well as existence results for the Skorokhod problem. We define
the Aubry set associated with the Neumann type boundary problem and establish some properties of the Aubry set including the
existence results for the “calibrated” extremals for the corresponding action functional (or variational problem).
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie du point de vue de la théorie KAM-faible, des équations de Hamilton–Jacobi de la forme H(x,Du) = 0 et
ut + H(x,Du) = 0, pour un hamiltonien convexe H , dans un domaine borné Ω de R

n, avec une condition au bord de type
Neumann oblique : Dγ u = g, γ étant un champ de vecteurs sur le bord ∂Ω , pointant dans une direction oblique à ∂Ω . On montie
la stabilité par infimum et par combinaison convexe des sous-solutions de ces équations lorsque le hamiltonien H est convexe,
on établit des théorèmes de comparaison et d’existence lorsque le hamiltonien est convexe et coercif et avec condition de type
Neumann au bord, ainsi que des résultats d’existence pour le problème de Skorokhod. On définit l’ensemble de Aubry associé
aux conditions de type Neumann et on établit des propriétés de cet ensemble, notamment des résultats d’existence d’extrémales
« calibrées » pour la fonctionnelle d’action (ou problème variationnel) correspondante.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω be a bounded, open connected subset of R
n with C1 boundary. We denote by Γ its boundary ∂Ω .

We consider the Hamilton–Jacobi (HJ for short) equation with the Neumann type (or, in other words, oblique) bound-
ary condition:

H
(
x,Du(x)

) = a in Ω, (1)

Dγ u(x) = g(x) on Γ. (2)

Here a is a constant, H is a given continuous function on Ω × R
n, called a Hamiltonian, u represents the unknown

function on Ω , Du denotes the gradient (ux1 , . . . , uxn), Dγ u = Dγ u(x) denotes the directional derivative γ (x) ·Du(x)

at x, γ is a continuous vector field: Γ → R
n, and g is a given continuous function on Γ .

In addition to the continuity assumption on H , g, γ , we make the following standing assumptions.

(A1) H is a convex Hamiltonian, i.e., for each x ∈ Ω the function H(x, ·) is convex on R
n.

(A2) H is coercive. That is, lim|p|→∞ H(x,p) = ∞ for all x ∈ Ω .
(A3) γ is oblique to Γ . That is, for any x ∈ Γ , if ν(x) denotes the outer unit normal vector at x, then ν(x) · γ (x) > 0.

We consider the initial-value problem with the Neumann type (oblique) boundary condition:

ut (x, t) + H
(
x,Du(x, t)

) = 0 for (x, t) ∈ Ω × (0, T ), (3)

Dγ u(x, t) = g(x) for (x, t) ∈ Γ × (0, T ), (4)

u(x,0) = u0(x) for x ∈ Ω, (5)

where 0 < T � ∞ is a given constant, u represents the unknown function on Ω × [0, T ), Du denotes the spatial
gradient of u, Dγ u = γ · Du, and u0 is a given continuous function on Ω .

We call (1) and (3) convex Hamilton–Jacobi equations if H is a convex Hamiltonian.
The study of weak solutions (i.e., viscosity solutions) of problems (1), (2) and (3)–(5) goes back to Lions [1], and

the theory of existence and uniqueness of viscosity solutions of such boundary or initial-boundary value problems
including the case of second-order elliptic or parabolic equations has been well-developed. We refer for the devel-
opments to [1–6] and references therein. However, if problem (1), (2) has a solution, then it admits clearly multiple
solutions and therefore the problem is a bit out of the scope of such developments. Indeed, problem (1), (2) has a
solution only if a is assigned a specific value.

The problem of finding a pair (a,u) ∈ R × C(Ω) for which u is a solution of (1), (2) is called an ergodic problem
in terms of optimal control or an additive eigenvalue problem, and it is also part of weak KAM theory. See [7] for a
classical fundamental work on the ergodic problem for (1) in the periodic setting and also [8,9].

Weak KAM theory concerns the link between the HJ equation (1) in a domain Ω , with an appropriate boundary
condition on its boundary ∂Ω , and the Lagrangian flow generated by the Lagrangian L given by:

L(x, ξ) = sup
p∈Rn

(
ξ · p − H(x,p)

)
, (6)

(or the extremals (minimizers) to the action functional associated with L). We refer [10,11,8,12] for pioneering work
and further developments. We refer to [13] for some results in this direction on HJ equations with the state-constraint
boundary condition.

A typical application of weak KAM theory to the evolution equation (3) is in the study of the long-time behavior
of solutions of (3) with appropriate initial and boundary conditions. For these applications we refer to [14–20].

Our purpose in this paper is to establish some theorems concerning weak KAM theory for convex HJ equations.
Indeed, we define the critical value (or the additive eigenvalue) and the Aubry set associated with (1), (2) and es-
tablish some of basic properties of the Aubry set, representation formulas for solutions of (1), (2) and the existence
of extremals (or minimizers) for variational formulas of certain types of solutions of (1), (2). Our approach is rela-
tively close to that of [21,22] in view of weak KAM theory. The paper [23] by O.-S. Serea deals with HJ equations
on a convex domain with homogeneous Neumann condition in view of weak KAM theory. The requirements on the
Lagrangian in [23] (see the conditions (7)–(10)) seem very restrictive. On the other hand, no regularity on the domain
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other than the convexity is posed in [23]. In some special cases, the state-constraint problem for (1) is equivalent to the
Neumann type problem (1), (2), and thus some results in [13] are related to those obtained here. For this equivalence,
we refer for instance to [24].

As is somehow well known in optimal control, the solutions of (3)–(5) or (1), (2) should be given by the value
function of the corresponding optimal control problem, whose dynamics is described by the Skorokhod problem. We
present here a treatment of the Skorokhod problem suitable to our formulas for the solutions of (3)–(5) or of (1), (2),
which is slightly different from usual treatments of the Skorokhod problems for applications to stochastic differential
equations. The formulas thus obtained allows us to discuss the dynamical properties like “extremal cures” associated
with (1), (2) or (3)–(5).

One of main difficulties in our approach was how to recover the convexity of problems (1), (2) or (3)–(5) in the
viscosity formulation. In problems (1), (2) or (3)–(5) the Hamiltonian H(x,p) is convex in p and the boundary
condition, Dγ u = g, is convex in p = Du, but, for instance, in the definition of viscosity subsolution of (1), (2), it is
formally required that

min
{
H

(
x,Du(x)

)
,Dγ u(x) − g(x)

}
� 0 on ∂Ω,

where the left-hand side is no more convex in p = Du(x). This difficulty will be indeed solved in Theorems 2.1 and
2.2 below.

This paper is organized as follows. In the next section, we establish the stability under the formations of infimum
and of convex combinations of subsolutions of (1), (2) and of (3)–(5). In Section 3 we establish comparison results for
sub and supersolutions of (1), (2) and of (3)–(5). Section 4 is devoted to the Skorokhod problem in Ω with reflection
direction γ , which is essential to formulate variational representations for solutions of (1), (2) and of (3)–(5), and we
establish results concerning existence and stability of solutions of the Skorokhod problem. In Section 5, we prove the
existence of a solution of the initial-boundary value problem (3)–(5) as well as a variational formula for the solution.
In Section 6, we introduce the critical value and the Aubry set associated with (1), (2), study basic properties of the
Aubry set and establish representation formulas, based on the Aubry set, for solutions of (1), (2). In Section 7 we
establish the existence of “calibrated” extremals for the variational problem associated with (1), (2).

Notation. Let ei , with i = 1,2, . . . , n, denote the unit vector of R
n having unity as its ith coordinate. We a∧b and a∨b

for min{a, b} and max{a, b}, respectively. For A ⊂ R
n, Lip(A,R

m) (resp., BUC(A,R
m) and UC(A,R

m)) denotes the
space of Lipschitz continuous (resp., bounded uniformly continuous and uniformly continuous) functions on A with
values in R

m. For brevity, we may write Lip(A), BUC(A) and UC(A) for Lip(A,R
m), BUC(A,R

m) and UC(A,R
m),

respectively. We write Ac to denote the complement of A. For given function g on A with values in R
m, we write

‖g‖∞ = supx∈A |g(x)|. For an interval I , we denote by AC(I ) or AC(I,R
n) the space of absolutely continuous

functions on I with values in R
n. For a given function w : A → R, w∗ and w∗ denote respectively the upper and lower

semicontinuous envelopes of w defined on Q. Regarding the definition of (viscosity) solutions, we adopt the following
convention: for instance, we consider (1), (2). A function u :Ω → R is a subsolution (resp., a supersolution) provided
that u is bounded above (resp., bounded below) and whenever (x,φ) ∈ Ω × C1(Ω) and u∗ − φ (resp., u∗ − φ)
attains a maximum (resp., a minimum) at x, H(x,Dφ(x)) � a (resp., � a) if x ∈ Ω and either H(x,Dφ(x)) � a

(resp., � a) or Dγ φ(x) � g(x) (resp., � g(x)) if x ∈ Γ . A bounded function u :Ω → R is a solution if it is both
a subsolution and a supersolution. In a more general situation where a candidate of solutions, u, is defined on a set
which is not necessarily compact, the requirement on u regarding the boundedness to be a solution (resp., subsolution
or supersolution) is that it is locally bounded (resp., locally bounded above or locally bounded below).

2. Basic propositions on convex HJ equations

In this section we establish the stability of the operations of infimum and of convex combinations subsolutions
of convex HJ equations. We remark that these stability properties, without boundary condition, is the main technical
observations in the theory of lower semicontinuous viscosity solutions due to Barron and Jensen [25].

To localize problems (1), (2), or (3)–(5), let U be an open subset of R
n and set ΩU = U ∩ Ω , ΓU = U ∩ Γ and

Σ := ΩU ∪ ΓU = U ∩ Ω .
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2.1. Propositions without the coercivity assumption

In this subsection we do not assume the coercivity of H . That is, in this subsection we assume only (A1) and (A3).
Let f ∈ C(Σ). We consider the HJ equation:{

H(x,Du) = f (x) in ΩU,

Dγ u(x) = g(x) on ΓU,
(7)

and establish the following theorems.

Theorem 2.1. Let S ⊂ Lip(Σ) be a nonempty family of subsolutions of (7). Set u(x) = inf{v(x) | v ∈ S} for x ∈ Σ

and assume that u ∈ C(Σ). Then u is a subsolution of (7).

Theorem 2.2. For k ∈ N let fk ∈ C(Σ) and let uk ∈ Lip(Σ) be a subsolution of (7), with fk in place of f , and
{λk}k∈N a sequence of nonnegative numbers such that

∑
k∈N

λk = 1. Assume that the sequences {uk}k∈N and {fk}k∈N

are uniformly bounded on compact subsets of Σ . Set u(x) = ∑
k∈N

λkuk(x) and f (x) = ∑
k∈N

λkfk(x) for x ∈ Σ .
Then u is a subsolution of (7).

Before going into the proof of the above two theorems, we give two remarks. (i) If V is an open subset of R
n satis-

fying V ∩ Ω ⊂ U and u is a subsolution (resp., a supersolution) of (7), then u is a subsolution (resp., a supersolution)
of (7), with V in place of U . (ii) If Uα are open subsets of R

n for α ∈ Λ, where Λ is an index set, and the inclusion,

Ω ⊂
⋃
α∈Λ

Uα,

holds and u : Ω → R is a subsolution of (7), with U := Uα , for any α ∈ Λ, then u is a subsolution (resp., a supersolu-
tion) of (7), with Ω and Γ in place of ΩU and ΓU .

In the rest of this subsection we are devoted to proving Theorems 2.1 and 2.2. It is well known (see for instance
[25,21]) that, if ΓU = ∅, the assertions of Theorems 2.1 and 2.2 are valid. Thus, in order to prove the above two
theorems, because of their local property together with the C1 regularity of Ω , we may assume by use of a C1 change
of variables that for some constant r > 0,

U = intB(0, r), ΩU = {(
x′, xn

) ∈ U
∣∣ xn < 0

}
,

ΓU = {
x = (

x′, xn

) ∈ U
∣∣ xn = 0

}
. (8)

Here and later, for x = (x1, . . . , xn) ∈ R
n, we put x′ = (x1, . . . , xn−1) and x = (x′, xn).

We set R
n+ = R

n−1 × (0,∞) and define the function ζ ∈ C∞(Rn+ × R
n) by:

ζ(y, z) = 1

2

∣∣∣∣z − z · en

y · en

y

∣∣∣∣2

+ 1

2
(z · en)

2.

We write Dz′ for the gradient operator with respect to the variables z′ = (z1, . . . , zn−1). For instance, we write
Dz′ζ = (ζz1 , . . . , ζzn−1).

Lemma 2.3. The function ζ ∈ C∞(Rn+ × R
n) has the properties:⎧⎪⎨⎪⎩

ζ(ξ, tz) = t2ζ(ξ, z) for (ξ, z, t) ∈ R
n+ × R

n × R,

ζ(ξ, z) > 0 for (ξ, z) ∈ R
n+ × (

R
n \ {0}),

ξ · Dzζ(ξ, z) = ξnzn for (ξ, z) ∈ R
n+ × R

n.

Proof. We observe that

Dzζ(ξ, z) = z − zn

ξ
ξ − z · ξ

ξ
en + |ξ |2zn

ξ2
en + znen,
n n n
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and

ξ · Dzζ(ξ, z) = ξnzn.

It is now obvious that the function ζ has all the required properties. �
We note by the homogeneity of the functions ζ(ξ, ·) that

C−1
0 |z|2 � ζ(ξ, z) � C0|z|2,∣∣Dξζ(ξ, z)

∣∣ � C0|z|2 and
∣∣Dzζ(ξ, z)

∣∣ � C0|z| (9)

for all (ξ, z) ∈ R
n+ × R

n and for some constant 1 < C0 < ∞.
By assumption (A3) and (8), we have infx∈ΓU

γ (x) · en > 0. We restrict the domain of definition of γ to ΓU and
then extend that of the resulting vector field to R

n so that γ ∈ BUC(Rn,R
n) and γ −1

0 � γ · en � |γ | � γ0 on R
n for

some constant γ0 > 1. Let ω be the modulus of continuity of γ .
By mollification, we may choose a family {γ δ}δ∈(0,1) of C∞ vector fields on R

n so that |γ (x) − γ δ(x)| � ω(δ),
|γ δ(x)−γ δ(y)| � ω(|x−y|) and |Dγ δ(x)| � C1ω(δ)/δ for all x, y ∈ R

n and δ ∈ (0,1) and for some constant C1 > 1.
Here |A| := max{|Aξ | | ξ ∈ R

n, |ξ | � 1} for n × n real matrix A. We may also assume that γ −1
0 � γ δ · en � |γ δ| � γ0

on R
n.

For δ ∈ (0,1) we set ψδ(x, y) = ζ(γ δ(x), x − y) and note that

Dxψ
δ(x, y) = (

Dγ δ(x)
)T

Dξζ
(
γ δ(x), x − y

) + Dzζ
(
γ δ(x), x − y

)
,

Dyψ
δ(x, y) = −Dzζ

(
γ δ(x), x − y

)
,

where AT denotes the transposed matrix of the matrix A. From these we get:∣∣Dxψ
δ(x, y) + Dyψ

δ(x, y)
∣∣ = ∣∣(Dγ δ(x)

)T
Dξζ

(
γ δ(x), x − y

)∣∣
� C0C1ω(δ)|x − y|2

δ
. (10)

Given a bounded function u on Σ , for δ > 0 let uδ ∈ C(Rn) denote the sup-convolution of u with kernel function
δ−1ψδ , i.e.,

uδ(x) = sup
y∈Σ

(
u(y) − 1

δ
ψδ(x, y)

)
.

For s ∈ (0, r] we set: {
Ωs = {

x = (x1, . . . , xn) ∈ intB(0, s)
∣∣ xn < 0

}
,

Γs = {
x = (x1, . . . , xn) ∈ intB(0, s)

∣∣ xn = 0
}
.

(11)

In particular, we have ΩU = Ωr , ΓU = Γr , Σ = Ωr ∪ Γr and Σ = Ωr .

Lemma 2.4. Let μ > 0 and 0 < ε < r . Let u ∈ Lip(Σ) be a viscosity subsolution of (7), with f := 0 and g := −μ.
Then there is a constant δ0 > 0, independent of u, such that if 0 < δ < δ0, then v := uδ is a viscosity subsolution of,

H
(
x,Dv(x)

) = ε in Ωr−ε. (12)

Moreover, if 0 < δ < δ0, then

D+
γ uδ(x) � ε for x ∈ Γr−ε, (13)

where

D+
γ v(x) := lim sup

t→0+
v(x) − v(x − tγ (x))

t
.
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Proof. Let 0 < δ < 1. Let R > 0 be a Lipschitz constant of u. We may assume by extending by continuity that
u ∈ Lip(Σ), so that for each x ∈ R

n there is a point y ∈ Σ such that

uδ(x) = u(y) − 1

δ
ψδ(x, y). (14)

Fix x ∈ Ωr−ε ∪ Γr−ε and y ∈ Σ so that (14) holds. We collect here some basic estimates. As is standard, we have
uδ(x) � u(x), and

1

δ
ψδ(x, y) = u(y) − uδ(x) � u(y) − u(x) � R|x − y|.

Noting by (9) that ψδ(x, y) � C−1
0 |x − y|2, we get:

|x − y| � C2δ, (15)

where C2 := C0R. It follows from (10) that∣∣Dxψ
δ(x, y) + Dyψ

δ(x, y)
∣∣ � C3ω(δ)δ, (16)

where C3 := C0C1C
2
2 . By Lemma 2.3, we get:

γ δ(x) · Dyψ
δ(x, y) = −γ δ

n (x)(xn − yn). (17)

Also, we get: ∣∣Dyψ
δ(x, y)

∣∣ � C0|x − y| � C4δ, (18)∣∣Dxψ
δ(x, y)

∣∣ �
∣∣Dyψ

δ(x, y)
∣∣ + ∣∣Dxψ

δ(x, y) + Dyψ
δ(x, y)

∣∣ � C4δ, (19)

where C4 := C0C2 + C3ω(1).
We now show that uδ is a subsolution of (12) if δ > 0 is sufficiently small. Let φ ∈ C1(Ωr−ε) and x ∈ Ωr−ε . We

assume that uδ − φ attains a strict maximum at x, and choose a point y ∈ Σ = Ωr so that (14) holds. We choose
a constant δ1 ∈ (0,1) so that C2δ1 < ε and assume in what follows that 0 < δ < δ1. By (15), we have |x − y| < ε.
Hence, we have ∂Ωr \ Γr . Since y ∈ Ωr , we have two possibilities: y ∈ Ωr or y ∈ Γr .

Now we treat the case where y ∈ Ωr . Then we have:

Dφ(x) ∈ D+uδ(x),

Dφ(x) + 1

δ
Dxψ

δ(x, y) = 0 and
1

δ
Dyψ

δ(x, y) ∈ D+u(y),

where D+h(x) denotes the superdifferential of the function h at x. Using this last inclusion, we get H(y,Dyψ
δ(x, y)/

δ) � 0. According to (18) and (19), we have |Dyψ
δ(x, y)|/δ � C4 and |Dφ(x)| = |Dxψ

δ(x, y)|/δ � C4. Let ωH

denote the modulus of continuity of the function H restricted to Ω × B(0,C4). Using (16) and (15), we obtain:

0 � H

(
y,

1

δ
Dyψ

δ(x, y)

)
� H

(
x,Dφ(x)

) − ωH

(|x − y|) − ωH

(
C3ω(δ)

)
� H

(
x,Dφ(x)

) − ωH (C2δ) − ωH

(
C3ω(δ)

)
.

We choose a δ2 > 0 so that

ωH (C2δ2) + ωH

(
C3ω(δ2)

)
� ε.

Thus, if y ∈ Ωr and 0 < δ < δ1 ∧ δ2, then we have,

H
(
x,Dφ(x)

)
� ε. (20)

Next, we turn to the case where y ∈ Γr . Then we have,

Dφ(x) = −1

δ
Dxψ

δ(x, y) ∈ D+uδ(x) and
1

δ
Dyψ

δ(x, y) ∈ D+
Σu(y),

where D+
Σu(y) denotes the set of those p ∈ R

n for which
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u(y + ξ) � u(y) + p · ξ + o
(|ξ |) as y + ξ ∈ Σ and ξ → 0.

By (17), we get:

γ δ(x) · Dyψ
δ(x, y) = −γn(x)(xn − yn) = −γn(x)xn > 0.

Since |Dyψ
δ(x, y)|/δ � C4 by (18), we get:

γ (y) · 1

δ
Dyψ

δ(x, y) = γ δ(x) · 1

δ
Dyψ

δ(x, y) + (
γ (y) − γ δ(x)

) · 1

δ
Dyψ

δ(x, y)

> −C4
(
ω

(|x − y|) + ω(δ)
)
� −C4

(
ω(C2δ) + ω(δ)

)
.

We select a δ3 > 0 so that C4(ω(C2δ3) + ω(δ3)) < μ, and assume in the following that 0 < δ < δ1 ∧ δ3. Accordingly,
we have (1/δ)γ (y) · Dyψ

δ(x, y) > −μ. Since u is a viscosity subsolution of (7), with f := 0 and g := −μ, we get
H(y,Dyψ

δ(x, y)/δ) � 0. Now, as in the previous case, we obtain:

0 � H
(
x,Dφ(x)

) − ωH (C2δ) − ωH (C3δ).

Consequently, if y ∈ ∂Ωr and 0 < δ < δ1 ∧ δ2 ∧ δ3, then we have (20). Thus we see that if 0 < δ < δ1 ∧ δ2 ∧ δ3, then
uδ is a subsolution of (12).

We now prove that (13) is valid if δ is sufficiently small. Let x ∈ Γr−ε , and choose a y ∈ Σ so that (14) holds.
Then, for t > 0 sufficiently small, we have:

uδ(x) − uδ
(
x − tγ (x)

)
� −1

δ

(
ψδ(x, y) − ψδ

(
x − tγ (x), y

))
.

Hence,

D+
γ uδ(x) � −γ (x) · 1

δ
Dxψ

δ(x, y). (21)

Using (18), (16) and (17), we compute that

−γ (x) · 1

δ
Dxψ

δ(x, y) � −γ δ(x) · 1

δ
Dxψ

δ(x, y) + C4ω(δ)

� γ δ(x) · 1

δ
Dyψ

δ(x, y) + γ0

δ

∣∣Dxψ
δ(x, y) + Dyψ

δ(x, y)
∣∣ + C4ω(δ)

� γ0C3ω(δ) + C4ω(δ). (22)

We select a δ4 > 0 so that (γ0C3 + C4)ω(δ4) < ε. From (21) and (22), we find that if 0 < δ < δ4, then (13) holds.
Finally, setting δ0 = δ1 ∧ δ2 ∧ δ3 ∧ δ4, we conclude that if 0 < δ < δ0, then uδ is a subsolution of (12) and satis-

fies (13). �
Lemma 2.5. Let μ > 0. Let u,v ∈ Lip(Σ) be subsolutions of (7), with f := 0 and g := −μ. Then u∧v is a subsolution
of (7), with f = g = 0.

Proof. Fix any ε ∈ (0, r). In view of Lemma 2.4, there is a constant δ0 > 0 such that if 0 < δ < δ0, then u := uδ, vδ

are solutions of H(x,Du) � ε in the viscosity sense in Ωr−ε and satisfy D+
γ u � ε on Γr−ε . As is well known, since

H(x, ·) is convex, the function zδ := uδ ∧ vδ is a subsolution of H(x,Dzδ) � ε in Ωr−ε . Also, it is easy to see that
D+

γ zδ(x) � ε for x ∈ Γr−ε . It is then easily checked that zδ is a subsolution of (7), with ΩU := Ωr−ε , ΓU := Γr−ε ,
f (x) := ε and g(x) := ε. Sending δ → 0 and setting z := u∧ v, we see by the stability of the viscosity property under
uniform convergence that z is a viscosity subsolution of (7), with ΩU := Ωr−ε , ΓU := Γr−ε , f (x) := ε and g(x) := ε.
But, since ε ∈ (0, r) is arbitrary, the function z is a viscosity subsolution of (7), with f := 0 and g := 0. �

Noting that for any u,v ∈ C(Σ), 0 < λ < 1 and x ∈ ΓU ,

D+
γ

(
λu + (1 − λ)v

)
(x) � λD+

γ u(x) + (1 − λ)D+
γ v(x),

we deduce that the argument of the above proof yields also the following lemma.
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Lemma 2.6. Let μ > 0 and f1, f2 ∈ C(Σ). For i = 1,2 let ui ∈ C(Σ) be a subsolution of (7), with f := fi and
g := −μ. Let 0 < λ < 1 and set u = λu1 + (1 − λ)u2 and f = λf1 + (1 − λ)f2. Then u is a subsolution of (7), with
g := 0.

Proof of Theorem 2.1. By the continuity of the function u, we may assume that S is a sequence {uk}k∈N. Indeed,
we can choose a sequence {Km}m∈N of compact subsets of Σ such that Σ = ⋃

m∈N
Km. By a compactness argument,

we can choose for each m ∈ N a sequence {vm,j }j∈N ⊂ S such that u(x) = inf{vm,j (x) | j ∈ N} for x ∈ Km. Then
we have u(x) = inf{vm,j (x) | j,m ∈ N} for x ∈ Σ . Relabeling {vm,j } appropriately, we find a sequence {uk} which
replaces S in the following argument.

Next, we fix any μ > 0. According to the C1 regularity of Ω and the continuity of g, we may select ψμ ∈ C1(Ω)

so that g(x)+μ � Dγ ψμ(x) � g(x)+2μ for x ∈ Γ . Set vk(x) = uk(x)−ψμ(x) and v(x) = u(x)−ψμ(x) for x ∈ Σ

and observe that w := vk is a solution of, {
H̃ (x,Dw) � 0 in ΩU,

Dγ w(x) � −μ on ΓU,
(23)

where H̃ is the continuous function on Ω × R
n given by H̃ (x,p) = H(x,p + Dψμ(x)) − f (x). By Lemma 2.5, we

see that wk := v1 ∧ · · · ∧ vk is a solution of (23), with μ replaced by 0. Since wk(x) → v(x) locally uniformly on Σ

as k → ∞, by the stability of the viscosity property under uniform convergence, we see that v is a solution of (23),
with μ := 0. This means that u is a subsolution of (7), with g(x) replaced by g(x) + 2μ. Since μ > 0 is arbitrary, we
conclude that u is a subsolution of (7). �
Proof of Theorem 2.2. Since the property to be shown is local, by replacing U by a smaller one, we may assume that
the sequences {uk} and {fk} are uniformly bounded on Σ . We set for x ∈ Σ ,

vk(x) = 1∑k
j=1 λj

k∑
j=1

λjuj (x) and Fk(x) = 1∑k
j=1 λj

k∑
j=1

λjfj (x).

Assume that k is sufficiently large, so that
∑k

j=1 λj > 0, vk ∈ Lip(Σ) and Fk ∈ C(Σ). Moreover, using Lemma 2.6
and arguing as in the previous proof that vk is a subsolution of (7), with f replaced by Fk . In view of the uniform
boundedness of the sequences {uk} and {fk}, we see that vk(x) → u(x) and Fk(x) → f (x) uniformly on Σ as k → ∞.
By the stability of the viscosity property, we conclude that u is a subsolution of (7). �
2.2. Propositions under the coercivity assumption

In this subsection, we always assume that (A1)–(A3) hold, and reformulate Theorems 2.1 and 2.2.

Theorem 2.7. Let S ⊂ C(Σ) be a nonempty subset of subsolutions of (7). Assume that inf{v(x) | v ∈ S} > −∞ for
some x ∈ Σ . Then the function,

u(x) := inf
{
v(x)

∣∣ v ∈ S
}
, (24)

on Σ is a subsolution of (7).

A consequence of the above theorem is stated as follows. If S ⊂ C(Σ) is a nonempty subset of solutions of (7) and
formula (24) defines a real-valued function u, then u is a solution of (7). Indeed, as is well known, the supersolution
property is stable under taking infimums, and therefore u is a supersolution of (7) as well.

Proof. Because of the local nature of our assertion, by replacing U by a smaller one, we may assume that f is
bounded on Σ . Then, by the coercivity assumption (A2), we can choose a constant C > 0 so that for (x,p) ∈ Ω ×R

n,
if H(x,p) � f (x), then |p| � C. This together with the boundedness and C1 regularity of Ω implies that S is equi-
Lipschitz continuous on Σ . Consequently, we have u ∈ Lip(Σ). Applying Theorem 2.1, we find that u is a subsolution
of (7). �
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We consider next the evolution equation with the Neumann type boundary condition:{
ut + H(x,Du) = f (x, t) in ΩU × (0, T ),

Dγ u = g(x) on ΓU × (0, T ),
(25)

where f ∈ C(Σ × (0, T )).

Theorem 2.8. Let S ⊂ C(Σ × (0, T )) be a nonempty subset of subsolutions of (25). Assume that S is uniformly
bounded on compact subsets of Σ × (0, T ). Then the function,

u(x, t) := inf
{
v(x, t)

∣∣ v ∈ S
}
, (26)

on Σ × (0, T ) is a subsolution of (25).

A remark parallel to the remark after Theorem 2.7 is valid here. Indeed, if S ⊂ C(Σ × (0, T )) is a nonempty subset
of solutions of (25) and it is uniformly bounded on compact subsets of Σ × (0, T ), then the function u given by (26)
is a solution of (25).

Proof. Because the viscosity property is local, we may assume, by replacing U and the interval (0, T ) by smaller
ones and by translation in the t-direction if needed, that S are uniformly bounded on Σ × (0, T ). We may also assume
that f ∈ BUC(Σ). Let C > 0 be a constant such that |v(x, t)| � C for (x, t) ∈ Σ × (0, T ) and v ∈ S .

Let ε > 0 and introduce the sup-convolution of v ∈ S with respect to the t-variable:

vε(x, t) = inf
0<s<T

(
v(x, s) − 1

2ε
(t − s)2

)
for (x, t) ∈ Σ × R.

Setting δ = 2
√

εC, we observe that for (x, t) ∈ Σ × (δ, T − δ),

vε(x, t) = max
|s−t |�δ

(
u(x, s) − 1

2ε
(t − s)2

)
,

from which we deduce as usual in viscosity solutions theory that vε is a subsolution of,{
vε
t + H

(
x,Dvε

) = f + ω(δ) in ΩU × (δ, T − δ),

Dγ vε = g on ΓU × (δ, T − δ),
(27)

where ω is the modulus of continuity of f .
Now, the family of functions vε(x, ·), with x ∈ Σ and v ∈ S , is equi-Lipschitz continuous on (δ, T − δ). From this

and (27), we see that H(x,Dvε) � Cε in the viscosity sense in ΩU × (δ, T − δ) for all v ∈ S and for some constant
Cε > 0. Observe then that for (x, t) ∈ Σ × R,

uε(x, t) := inf
0<s<T

(
u(x, s) − 1

2ε
(t − s)2

)
= inf

{
vε(x, t)

∣∣ v ∈ S
}
.

We apply Theorem 2.1, to see that uε is a subsolution of (27). Indeed, in order to apply Theorem 2.1, we set Ω̃ =
Ω × (0, T ), Ũ = U × (0, T ), H̃ (x, t,p, q) = H(x,p) + q and γ̃ (x, t) = (γ (x),0), and regard problem (25) as
problem (7), with Ω̃ , Ũ , H̃ and γ̃ in place of Ω , U , H and γ , respectively.

Next, we observe that for (x, t) ∈ Σ × (0, T ), the family {uε(x, t)} converges monotonically to u(x, t) as ε → 0,
which implies, together with the continuity of uε , that u(x, t) is identical to the upper relaxed limit of uε(x, t) as
ε → 0. Because of the stability of the subsolution property under such a limiting process, we see that u is a subsolution
of (25). �
Theorem 2.9. For k ∈ N let fk ∈ C(Σ × (0, T )) and uk ∈ USC(Σ × (0, T )) be a subsolution of (25), with fk in
place of f . Let {λk}k∈N be a sequence of nonnegative numbers such that

∑
k∈N

λk = 1. Assume that the sequences
{uk}k∈N and {fk}k∈N are uniformly bounded on compact subsets of Σ × (0, T ). Set u(x, t) = ∑

k∈N
λkuk(x, t) and

f (x, t) = ∑
k∈N

λkfk(x, t) for (x, t) ∈ Σ × (0, T ). Then u is a subsolution of (25).

Proof. Arguing as in the proof of Theorem 2.8, with use of Theorem 2.1 instead of Theorem 2.2, we conclude that
Theorem 2.9 is valid. �
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3. Comparison results

The comparison results presented in this section are more or less well known (see for instance [1,3,4]). The only
new feature of our results may be in the point that they are formulated in a localized fashion.

Theorem 3.1. Let f1, f2 ∈ C(Σ) and let u ∈ USC(Σ) (resp., v ∈ LSC(Σ)) be a subsolution (resp., a supersolution)
of (7), with f replaced by f1 (resp., f2). Assume that f1(x) < f2(x) for x ∈ Σ . Then supΣ(u−v) � sup∂U∩Ω(u−v).

We remark that if ∂U ∩ Ω = ∅ in the above theorem, then the right-hand side of the above inequality equals −∞
by definition. In particular, if Ω ⊂ U in the above theorem, then the theorem asserts that supΩ(u − v) = −∞.

Corollary 3.2. If a < b and problem (1), (2) has a subsolution, then problem (1), (2), with b in place of a, does not
have a supersolution. In particular, if problem (1), (2) has a solution for some a ∈ R, then problem (1), (2), with a

replaced by b �= a, has no solution.

Proof. Let a < b, and assume that there are a subsolution u of (1), (2) and a supersolution of (1), (2), with b in place
of a. Note that, for any c ∈ R, the function u+ c is also a subsolution of (1), (2). By Theorem 3.1, we have u∗ + c � v∗
on Ω for c ∈ R, which is a contradiction. This proves our claim. �
Lemma 3.3. Assume that f is bounded on Σ . Then there is a constant C > 0, depending only H , f and Ω , such that
for any subsolution u ∈ USC(Σ) of (7) and x, y ∈ Σ , |u(x) − u(y)| � C|x − y|.

Proof. Let u ∈ USC(Σ) be a subsolution of (7). By the coercivity assumption (A2) and the boundedness of f , there
is a constant C0 > 0 such that for (x,p) ∈ ΩU , if |p| � C0, then H(x,p) � f (x) + 1. It follows from (7) that u is a
subsolution of |Du| � C0 in ΩU , which implies together with the C1 regularity of Ω that u is Lipschitz continuous
on ΩU with a Lipschitz constant C > 0 depending only on C0 and Ω .

We next show that u ∈ C(Σ), which guarantees that u is Lipschitz continuous on Σ with the same Lipschitz
constant C. To this end, we need only to show that for any fixed z ∈ ΓU , u is continuous at z. By translation, we may
assume that z = 0. By rotation and localization, we may furthermore assume that U , ΩU and ΓU are given by (8).
Since u ∈ USC(Σ) and u ∈ Lip(ΩU), it is enough to show that

u(0) � sup
Ωs

u for s ∈ (0, r). (28)

Here and later we use the notation Ωs and Γs as defined in (11).
We may assume by replacing r > 0 by a smaller one that γ0 := infx∈Γr γ (x) · en > 0. (Recall that en denotes the

unit vector (0, . . . ,0,1) ∈ R
n.) We select a closed convex cone K with vertex at the origin so that K \ {0} ⊂ −R

n+ and
−γ (x) + B(0, δ) ∈ K for all x ∈ Γr and for some δ > 0. We denote by NK the normal cone to K at the origin. That
is, we set NK = {ξ ∈ R

n | ξ · p � 0 for p ∈ K}. It follows that ξ · (−γ (x)) � −δ|ξ | for all ξ ∈ NK and x ∈ Γr . Let dK

denote the distance function from the set K , i.e., dK(x) = dist(x,K). As is well known, the function dK is convex on
R

n, dK ∈ C(Rn) ∩ C1(Rn \ K), dK(x) � 0 for x ∈ R
n and DdK(x) ∈ NK ∩ ∂B(0,1) for x ∈ R

n \ K .
Fix any s ∈ (0, r) and set ρ = dist(K, ∂B(0, s) ∩ {xn = 0}). Here and later we use the notation: {xn = 0} :=

{(x′, xn) ∈ R
n | xn = 0} and similarly {xn < 0} := {(x′, xn) ∈ R

n | xn < 0}. Note that 0 < ρ � s and fix any ε ∈ (0, ρ).
We may assume by replacing r > 0 by a smaller one that u is bounded above on Ωr . We choose a constant C1 > 0
so that supΩr

u � C1, supΩr
|u| � C1 and supΓr

g � C1. We select a function ζε ∈ C1(R) so that ζ ′
ε(r) � 1 for r ∈ R,

ζε(r) = r for r � ε and ζε(ρ) � 2C1. We set A = max{1,C0, (C1 + 1)/δ}, and define the function v ∈ C(Rn) by

v(x) := Aζε

(
dK(x + εen)

) + sup
Ωs

u = Aζε

(
dist(x,K − εen)

) + sup
Ωs

u.

Let V = Ωs \ (K − εen). We intend to show that u � v on the set V . To do this, we suppose by contradiction that
maxV (u − v) > 0. Note that

V ⊂ Ωs = (
Ωs ∩ {xn < 0}) ∪ (

∂B(0, s) ∩ {xn = 0}) ∪ Γs.
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Since u ∈ C(Ωr), it is clear that u � supΩs
u � v on Ωs ∩ {xn < 0}. For any x ∈ ∂B(0, s) ∩ {xn = 0}, we have

dist(x,K − εen) � dist(x,K) � ρ > s, and hence

v(x) � ζε

(
dK(x + εen)

) − C1 � ζε(ρ) − C1 � C1 � u(x).

Consequently, we have u(x) � v(x) for V ∩Γs and therefore there is a point y ∈ Γs such that (u− v)(y) = maxV (u−
v). Since u is a subsolution of (7), with V in place of U , we have either H(y,Dv(y)) � f (y) or Dγ v(y) � g(y).
Since y ∈ Γs and Γs ∩ (K − εen) = ∅, we have:

Dv(y) = Aζ ′
ε

(
dK(y + εen)

)
DdK(y + εen).

Hence, we get |Dv(y)| � A � C0 and, by the choice of C0, H(y,Dv(y)) > f (y). Also, we get:

Dγ v(y) = Aζ ′
ε

(
dK(y + εen)

)
γ (y) · DdK(y + εen) � Aδ � C1 + 1 > g(y).

We are in a contradiction, and thus we conclude that (28) holds. �
Proof of Theorem 3.1. We first deal with the case where Ω ∩ ∂U �= ∅. We suppose by contradiction that

max
Σ

(u − v) > max
∂U∩Ω

(u − v). (29)

By replacing U by a smaller one (for instance, the set {x ∈ U | dist(x, ∂U) > ε} with sufficiently small ε > 0) if
needed, we may assume that f1, f2 are continuous on Σ and supΣ(f1 − f2) < 0. We note by Lemma 3.3 that the
function u is Lipschitz continuous on Σ .

We now intend to replace H by a uniformly continuous Hamiltonian, which is not coercive nor convex any more.
For this, we define the function H̃ ∈ UC(Σ ×R

n) by H̃ (x,p) = min{H(x,p)−f1(x),1}. Set f̃1(x) = 0 and f̃2(x) =
min{f2(x)−f1(x),1} for x ∈ Σ . Now, the function u (resp., v) is a subsolution (resp., a supersolution) of (7), with H̃

and f̃1 (resp., f̃2) in place of H and f . Thus, replacing H , f1 and f2 by H̃ , f̃1 and f̃2, respectively, we may assume
in what follows that H ∈ UC(Σ × R

n).
We select a function ψ ∈ C1(Ω) so that Dγ ψ(x) > 0 for all x ∈ Γ . Let δ > 0 and set uδ(x) = u(x) − δψ(x) and

vδ(x) = v(x) + δψ(x) for x ∈ Σ . In view of the uniform continuity of H , selecting δ > 0 small enough, replacing
f1, f2 by a new ones if necessary, we may assume that uδ (resp., vδ) is a subsolution (resp., a supersolution) of (7),
with g and f replaced respectively by g − ε (resp., g + ε), where ε is a positive constant and by f1 (resp., f2). We
may also assume that (29) holds with uδ and vδ in place of u and v, respectively. Henceforth we replace u and v by
uδ and vδ in our notation, respectively.

If supΓU
(u − v) < maxΣ(u − v), then we have max∂Σ(u − v) < maxΣ(u − v) and get a contradiction by arguing

as in the standard proof (in the case of the Dirichlet boundary condition) of comparison results where the Lipschitz
continuity of u is available.

Thus we assume henceforth that supΓU
(u − v) = maxΣ(u − v). Then the function u − v attains a maximum at a

point z ∈ ΓU . By replacing U by an open ball intB(z, r), with r > 0 sufficiently small, and by translation, we may
assume that z = 0, ΩU = Ωr and ΓU = Γr , where Ωr and Γr are the sets given by (11). We set γ̃ = γ (0)/|γ (0)|2,
ũ(x) = u(x) − g(0)γ̃ · x − |x|2 and ṽ(x) = v(x) − g(0)γ̃ · x for Σ . Note that ũ − ṽ attains a strict maximum at the
origin and that w := ũ is a solution of,{

H
(
x,Dw(x) + g(0)γ̃ + 2x

)
� f1(x) in Ωr,

Dγ Dw(x) � g(x) − g(0)γ (x) · γ̃ − 2γ (x) · x − ε on Γr,

and w := ṽ is a solution of,
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{
H

(
x,Dw(x) + g(0)γ̃

)
� f2(x) in Ωr,

Dγ Dw(x) � g(x) − g(0)γ (x) · γ̃ + ε on Γr .

Replacing r > 0 by a smaller positive number, we may assume that w := ũ is a solution of,{
H

(
x,Dw(x) + g(0)γ̃

)
� f1(x) + ε in Ωr,

Dγ Dw(x) � − ε
2 on Γr,

and w := ṽ is a solution of, {
H

(
x,Dw(x) + g(0)γ̃

)
� f2(x) in Ωr,

Dγ Dw(x) � ε

2
on Γr .

Reselecting ε > 0 small enough if necessary, we may assume that maxΩr
(f1 + ε − f2) < 0. In the argument which

follows, we write u, v, f1 and H for the functions ũ, ṽ, f1 + ε and H(x,p + g(0)γ̃ ), respectively.
Let ζ ∈ C∞(Rn+ × R

n) be the function from Lemma 2.3. Set φ(x, y) = ζ(γ (0), x − y). For α > 1 we consider the
function Φ(x,y) := u(x) − v(y) − αφ(x, y) on Σ × Σ . Let (xα, yα) ∈ Σ2 be a maximum point of Φ . Since u − v

attains a strict maximum at the origin, we deduce easily that xα, yα → 0 as α → ∞. Let C1 > 0 be the Lipschitz
constant of the function u. Then, since Φ(yα, yα) � Φ(xα, yα), we find that αφ(xα,uα) � C1|xα − yα|, from which
we get α|xα − yα| � C2, where C2 > 0 is a constant independent of α. If xα, yα ∈ Ωr , then we have:

H
(
xα,Dxφ(xα, yα)

)
� f1(xα) and H

(
yα,−Dyφ(xα, yα)

)
� f2(yα).

Here, noting that Dxφ(x, y) + Dyφ(x, y) = 0, we find that

H
(
xα,Dxφ(xα, yα)

)
� f1(xα) and H

(
yα,Dxφ(xα, yα)

)
� f2(yα). (30)

Assume instead that xα ∈ Γr . By the viscosity property of u, we have either,

H
(
xα,Dxφ(xα, yα)

)
� f1(xα) or γ (xα) · Dxφ(xα, yα) � −ε

2
.

Compute that

γ (xα) · Dxφ(xα, yα) = γ (xα) · Dzζ
(
γ (0), xα − yα

)
� γn(0) · (−yαn) − C2C3ωγ

(|xα|),
where C3 > 0 is a constant, independent of α, such that |Dzζ(γ (0), z)| � C3|z| for z ∈ R

n+ ×R
n, ωγ is the modulus of

continuity of γ on Γ and yαn := en · y. Accordingly, if α is large enough, then we have γ (xα) · Dxφ(xα, yα) > −ε/2.
Thus, we have H(xα,Dxφ(xα, yα)) � f1(xα) if α is large enough. Similarly, in the case where yα ∈ Γr , we have
H(yα,Dxφ(xα, yα)) � f2(yα) if α is large enough. Now, assuming α is large enough, we always have (30), from
which get a contradiction, f1(0) � f2(0), by taking the limit as α → ∞.

We next turn to the case where ∂U ∩ Ω = ∅. We have:

Ω = (Ω ∩ U) ∪ (
Ω ∩ Uc

) = (Ω ∩ U) ∪ (
Ω ∩ int

(
Uc

))
.

Since Ω is connected and Ω ∩ U = Σ �= ∅, we see that Ω ∩ int(Uc) = ∅ and Ω ⊂ U . We thus need to show that
supΩ(u − v) = −∞. Indeed, if maxΩ(u − v) ∈ R, then the argument in the previous case yields a contradiction. The
proof is now complete. �
Theorem 3.4. Let u ∈ USC(Σ × [0, T )) and v ∈ LSC(Σ × [0, T )) be respectively a subsolution and a supersolution
of (25). Assume that u � v on Σ × {0} ∪ (∂U ∩ Ω) × (0, T ). Then u � v in Σ × [0, T ).

Lemma 3.5. Assume that f ∈ C(Σ × (0, T )) is bounded on Σ × (0, T ). Then for any R > 0 there is a constant
CR > 0, depending only on R, H , f and Ω , for which if u ∈ USC(Σ × (0, T )) is a subsolution of (25) and if
the family {u(x, ·) | x ∈ Σ} is equi-Lipschitz continuous on (0, T ) with Lipschitz constant R, then the function u is
Lipschitz continuous on Σ × (0, T ) with Lipschitz constant CR .
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Proof. Fix any R > 0. As in the proof of Lemma 3.3, there is a constant MR > 0, depending only on R, H and f ,
such that for (x,p) ∈ Σ × R

n, if H(x,p) � f (x) + R, then |p| � MR . Let u ∈ USC(Σ × (0, T )) be a subsolution
of (25), and assume that the family {u(x, ·) | x ∈ Σ} is equi-Lipschitz continuous on (0, T ) with Lipschitz constant R.
Then, it is easily seen that for each t ∈ (0, T ), the function u(·, t) is a subsolution of (7), with H(x,p) and f (x)

replaced by |p| and C0, respectively. By Lemma 3.3, there is a constant CR � R, depending only on MR and Ω , such
that the family {u(·, t) | 0 < t < T } is equi-Lipschitz continuous on Σ , with Lipschitz constant CR . Then we have
|u(x, t) − u(y, s)| � CR(|x − y| + |t − s|) for all (x, t), (y, s) ∈ Σ × (0, T ) and finish the proof. �
Proof of Theorem 3.4. We follow the line of the proof of Theorem 3.1. For S < T we write:

∂ ′
p

(
Σ × (S,T )

) = Σ × {S} ∪ (∂U ∩ Ω) × (S,T ).

It is enough to show that

sup
QT

(u − v) � sup
∂ ′
pQT

(u − v), (31)

where QT = Σ × (0, T ).
To prove (31), we suppose, on the contrary, that

sup
QT

(u − v) > sup
∂ ′
pQT

(u − v). (32)

Let δ > 0 and set ũ(x, t) = u(x, t) − δ/(T − t) for (x, t) ∈ QT . By replacing u by ũ, we may assume that u is
a subsolution of (25) with f (x) replaced by f (x) − ε, where ε > 0 is a constant, and that limt→T − supx∈Σ(u −
v)(x, t) = −∞. By taking the sup-convolution of u in the t-variable, replacing U and the interval (0, T ) by smaller
(in the sense of inclusion) ones, and translating the smaller interval, we may assume that f is uniformly continuous on
QT and the family {u(x, ·) | x ∈ Σ} is equi-Lipschitz continuous on (0, T ). According to Lemma 3.5, the function u is
Lipschitz continuous on QT . Next, we may replace H by a uniformly continuous function on Σ ×R

n. By perturbing u

(resp., v) as in the proof of Theorem 3.1 and replacing ε > 0 by a smaller positive number, we may assume that u

(resp., v) is a subsolution (resp., a supersolution) of (25), with f (x, t) and g(x) replaced by f (x, t) − ε and −ε

(resp., f (x, t) and ε). Moreover, we may assume that u − v attains a strict maximum at a point (z, τ ) ∈ ΓU × (0, T ).
Furthermore, we may assume that z = 0, U = intB(0, r), ΩU = Ωr and ΓU = Γr , where r > 0 and Ωr,Γr are the
sets given by (11).

Now we consider the function,

Φ(x, t, y, s) = u(x, t) − v(y, s) − αφ(x, y) − α(t − s)2,

on the set QT × QT , where α > 1 is a constant and φ is the function used in the proof of Theorem 3.1.
Let (xα, yα) ∈ QT × QT be a maximum point of Φ . Arguing as in the proof of Theorem 3.1, we see that if α is
sufficiently large, then we always have:{

2α(tα − sα) + H
(
xα,αDxφ(xα, yα)

)
� f (xα) − ε,

2α(tα − sα) + H
(
yα,αDxφ(xα, yα)

)
� f (yα).

(33)

Also, using the Lipschitz continuity of u, we find that α|tα − sα| + α|xα − yα| � C for some constant C > 0, inde-
pendent of α. Sending α → ∞ in (33) yields a contradiction. �
4. Skorokhod problem

In this section we are concerned with the Skorokhod problem. We recall that R+ = (0,∞) and hence R+ = [0,∞).
We denote by L1

loc(R+,R
k) (resp., ACloc(R+,R

k)) the space of functions v : R+ → R
k which are integrable (resp.,

absolutely continuous) on any bounded interval I ⊂ R+.
Given x ∈ Ω and v ∈ L1

loc(R+,R
n), the Skorokhod problem is to seek for a pair of functions, (η, l) ∈

ACloc(R+,R
n) × L1 (R+,R), such that
loc
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⎧⎪⎨⎪⎩
η(0) = x, η(t) ∈ Ω for t ∈ R+,

η̇(t) + l(t)γ
(
η(t)

) = v(t) for a.e. t ∈ R+,

l(t) � 0, l(t) = 0 if η(t) ∈ Ω for a.e. t ∈ R+.

(34)

Regarding the solvability of the Skorokhod problem, our main result is the following:

Theorem 4.1. Let v ∈ L1
loc(R+,R

n) and x ∈ Ω . Then there exits a pair (η, l) ∈ ACloc(R+,R
n) × L1

loc(R+,R) such
that (34) holds.

We are interested in “regular” solutions in the above theorem. See [26] and references therein for more general
viewpoints on the Skorokhod problem. The advantage of the above result is in that it applies to domains with C1

boundary.
A natural question is the uniqueness of the solution (η, l) in the above theorem. But we do now know if the

uniqueness holds or not.
We first establish the following result.

Theorem 4.2. Let v ∈ L∞(R+,R
n) and x ∈ Ω . Then there exits a pair (η, l) ∈ Lip(R+,R

n) × L∞(R+,R) such that
(34) holds.

We borrow some ideas from [26] in the following proof.

Proof. We may assume that γ is defined on R
n. Let ψ ∈ C1(Rn) be such that ψ(x) < 0 in Ω , |Dψ(x)| > 1 for x ∈ Γ ,

ψ(x) > 0 for x ∈ R
n \ Ω and lim inf|x|→∞ ψ(x) > 0. We can select a constant δ > 0 so that for x ∈ R

n,

γ (x) · Dψ(x) � δ
∣∣Dψ(x)

∣∣ and
∣∣Dψ(x)

∣∣ � 1 if 0 � ψ(x) � δ.

We set q(x) = (ψ(x)∨0)∧ δ for x ∈ R
n. Note that q(x) = 0 for x ∈ Ω , q(x) > 0 for x ∈ R

n \Ω , and γ (x) ·Dq(x) �
δ|Dq(x)| for a.e. x ∈ R

n.
Fix ε > 0 and x ∈ Ω . We consider the initial-value problem for the ODE

ξ̇ (t) + 1

ε
q
(
ξ(t)

)
γ
(
ξ(t)

) = v(t) for a.e. t ∈ R+, ξ(0) = x. (35)

Here ξ represents the unknown function. By the standard ODE theory, there is a unique solution ξ ∈ C1(R+) of (35).
Let m � 2. We multiply the ODE of (35) by mq(ξ(t))m−1Dq(ξ(t)), to get:

d

dt
q
(
ξ(t)

)m + m

ε
q
(
ξ(t)

)m
Dq

(
ξ(t)

) · γ (
ξ(t)

) = mq
(
ξ(t)

)m−1
Dq

(
ξ(t)

) · v(t) a.e.

Fix any T ∈ R+. Integrating over [0, T ], we get:

q
(
ξ(T )

)m − q
(
ξ(0)

)m + m

ε

T∫
0

q
(
ξ(s)

)m
γ
(
ξ(s)

) · Dq
(
ξ(s)

)
ds

= m

T∫
0

q
(
ξ(s)

)m−1
Dq

(
ξ(s)

) · v(s)ds.

Here we have:

T∫
0

q
(
ξ(s)

)m
γ
(
ξ(s)

) · Dq
(
ξ(s)

)
ds � δ

T∫
0

q
(
ξ(s)

)m∣∣Dq
(
ξ(s)

)∣∣ds,
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and

T∫
0

q
(
ξ(s)

)m−1
Dq

(
ξ(s)

) · v(s)ds

�
( T∫

0

q
(
ξ(s)

)m∣∣Dq
(
ξ(s)

)∣∣ds

)1− 1
m
( T∫

0

∣∣v(s)
∣∣m∣∣Dq

(
ξ(s)

)∣∣ds

) 1
m

.

Combining these, we get:

q
(
ξ(T )

)m + mδ

ε

T∫
0

q
(
ξ(s)

)m∣∣Dq
(
ξ(s)

)∣∣ds

� m

( T∫
0

q
(
ξ(s)

)m∣∣Dq
(
ξ(s)

)∣∣ds

)1− 1
m
( T∫

0

∣∣v(s)
∣∣m∣∣Dq

(
ξ(s)

)∣∣ds

) 1
m

. (36)

From this we obtain

δ

ε

( T∫
0

q
(
ξ(s)

)m∣∣Dq
(
ξ(s)

)∣∣ds

) 1
m

�
( T∫

0

∣∣v(s)
∣∣m∣∣Dq

(
ξ(s)

)∣∣ds

) 1
m

, (37)

and

q
(
ξ(T )

)m �
(

ε

δ

)m−1

m

T∫
0

∣∣v(s)
∣∣m∣∣Dq

(
ξ(s)

)∣∣ds.

Hence, setting C0 = ‖Dq‖L∞(Rn), we deduce that

q
(
ξ(t)

)m �
(

ε

δ

)1− 1
m

mC0T ‖v‖m
L∞(0,T ) for t ∈ [0, T ]. (38)

Henceforth we write ξε for ξ , to indicate the dependence on ε of ξ . We see from (38) that for any T > 0,

lim
ε→0+ max

t∈[0,T ]
dist

(
ξε(t),Ω

) = 0. (39)

Also, (38) ensures that for each T > 0 there is an εT > 0 such that q(ξε(t)) < δ for t ∈ [0, T ] and 0 < ε < εT .
Now let T > 0 and 0 < ε < εT . We have q(ξε(s)) = ψ(ξε(s)) ∨ 0 for all t ∈ [0, T ] and hence q(ξε(t))

m ×
|Dq(ξε(t))| = q(ξε(t))

m for a.e. t ∈ (0, T ). Accordingly, (37) yields,

δ

ε

( T∫
0

q
(
ξε(s)

)m ds

) 1
m

� (C0T )
1
m ‖v‖L∞(0,T ).

Sending m → ∞, we find that (δ/ε)‖q ◦ ξε‖L∞(0,T ) � ‖v‖L∞(0,T ), and moreover

δ

ε
‖q ◦ ξε‖L∞(R+) � ‖v‖L∞(R+). (40)

We set lε = (1/ε)q ◦ ξε . Due to (40), we may choose a sequence εj → 0+ so that lεj
→ l weakly-star in L∞(R+) as

j → ∞ for a function l ∈ L∞(R+). It is clear that l(s) � 0 for a.e. s ∈ R+.
ODE (35) together with (40) guarantees that {ξ̇ε}ε>0 is bounded in L∞(R+). Hence, we may assume as well that

ξεj
converges locally uniformly on R+ to a function η ∈ Lip(R+) as j → ∞. It is then obvious that η(0) = x and the

pair (η, l) satisfies:
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η(t) +
t∫

0

(
l(s)γ

(
ξ(s)

) − v(s)
)

ds = 0 for t > 0,

from which we get η̇(t) + l(t)γ (η(t)) = v(t) for a.e. t ∈ R+. It follows from (39) that η(t) ∈ Ω for t � 0.
In order to show that the pair (η, l) is a solution of (34), we need only to prove that for a.e. t ∈ R+, l(t) = 0 if

η(t) ∈ Ω . Set A = {t � 0 | η(t) ∈ Ω}. It is clear that A is an open subset of [0,∞). We can choose a sequence {Ik}k∈N

of closed intervals of A such that A = ⋃
k∈N

Ik . Note that for each k ∈ N, the set η(Ik) is a compact subset of Ω and
the convergence of {ξεj

} to η is uniform on Ik . Hence, for any fixed k ∈ N, we may choose J ∈ N so that ξεj
(t) ∈ Ω

for all t ∈ Ik and j � J . From this, we have q(ξεj
(t)) = 0 for t ∈ Ik and j � J . Moreover, in view of the weak-star

convergence of {lεj
}, we find that for any k ∈ N,∫

Ik

l(t)dt = lim
j→∞

∫
Ik

1

εj

q
(
ξj (t)

)m dt = 0,

which yields l(t) = 0 for a.e. t ∈ Ik . Since A = ⋃
k∈N

Ik , we see that l(t) = 0 a.e. in A. The proof is complete. �
For x ∈ Ω , let SP(x) denote the set of all triples,

(η, v, l) ∈ ACloc
(
R+,R

n
) × L1

loc

(
R+,R

n
) × L1

loc(R+),

which satisfies (34). We set SP = ⋃
x∈Ω SP(x).

We remark that for any x, y ∈ Ω and 0 < T < ∞, there exists a triple (η, v, l) ∈ SP(x) such that η(T ) = y. Indeed,
given x, y ∈ Ω and 0 < T < ∞, we choose a curve η ∈ Lip([0, T ],Ω) so that η(0) = x and η(T ) = y. The existence
of such a curve is guaranteed since Ω is a domain and has the C1 regularity. We extend the domain of definition of η to
R+ by setting η(t) = y for t > T . Now, if we set v(t) = η̇(t) and l(t) = 0 for t � 0, we have (η, v, l) ∈ SP(x), which
has the property, η(T ) = y. Here and henceforth, for interval I , we denote by Lip(I,Ω) the set of those η ∈ Lip(I,R

n)

such that η(t) ∈ Ω for t ∈ I . We use such notation for other spaces of functions having values in Ω ⊂ R
n as well.

We note also that problem (34) has the following semi-group property: for any (x, t) ∈ Ω × R+ and (η1, v1, l1),

(η2, v2, l2) ∈ SP, if η1(0) = x and η2(0) = η1(t) hold and if (η, v, l) is defined on R+ by:(
η(s), v(s), l(s)

) =
{

(η1(s), v1(s), l1(s)) for s ∈ [0, t),

(η2(s − t), v2(s − t), l2(s − t)) for s ∈ [t,∞),

then (η, v, l) ∈ SP(x).

Proposition 4.3. There is a constant C > 0, depending only on Ω and γ , such that for (η, v, l) ∈ SP, we have
|η̇(s)| ∨ l(s) � C|v(s)| for a.e. s � 0.

An immediate consequence of the above proposition is that for (η, v, l) ∈ SP, if v ∈ Lp(R+,R
n) (resp., v ∈

L
p

loc(R+,R
n)), with 1 � p � ∞, then (η, l) ∈ Lp(R+,Rn+1) (resp., (η, l) ∈ L

p

loc(R+,R
n+1)).

Proof. Thanks to hypothesis (A3), there is a constant δ0 > 0 such that ν(x) · γ (x) � δ0 for x ∈ Γ . Let (η, v, l) ∈ SP.
According to the C1 regularity of Ω , there is a function ψ ∈ C1(Rn) such that Ω = {x ∈ R

n | ψ(x) < 0} and
Dψ(x) �= 0 for x ∈ Γ . Noting that ψ(η(s)) � 0 for all s � 0, we find that for any s > 0, if η(s) ∈ Γ and η is
differentiable at s, then

0 = d

ds
ψ

(
η(s)

) = Dψ
(
η(s)

) · η̇(s).

Hence, noting that Dψ(η(s)) is parallel to ν(η(s)), we see that ν(η(s)) · η̇(s) = 0.
Let s > 0 be such that η(s) ∈ Γ , η̇(s) exists, η̇(s) + l(s)γ (η(s)) = v(s), l(s) � 0 and ν(η(s)) · η̇(s) = 0. We

see immediately that l(s)γ (η(s)) · ν(η(s)) = v(s) · ν(η(s)). Hence, we get δ0l(s) � v(s) · ν(η(s)) � |v(s)| and
l(s) � δ−1

0 |v(s)| for a.e. s � 0. We also have:∣∣η̇(s)
∣∣ �

∣∣v(s)
∣∣ + ‖γ ‖∞

∣∣l(s)∣∣ �
(

1 + ‖γ ‖∞
)∣∣v(s)

∣∣ for a.e. s � 0. �

δ0
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Let F be a subset of L1(I,R
m), where I ⊂ R is an interval. We recall that F is said to be uniformly integrable if

for any ε > 0 there is a δ > 0 such that for any f ∈ F ,∣∣∣∣ ∫
B

f (s)ds

∣∣∣∣ < ε whenever B ⊂ I is measurable and |B| < δ.

Here |B| denotes the Lebesgue measure of B ⊂ R.

Proposition 4.4. Let {(ηk, vk, lk)}k∈N ⊂ SP. Assume that {|vk|} is uniformly integrable on every intervals [0, T ], with
0 < T < ∞. Then there exist a subsequence {ηkj

, vkj
, lkj

}j∈N of {ηk, vk, lk} and an (η, v, l) ∈ SP such that

ηkj
(t) → η(t) uniformly on [0, T ],

η̇kj
dt → η̇ dt weakly-star in C

([0, T ],R
n
)∗

,

vkj
dt → v dt weakly-star in C

([0, T ],R
n
)∗

,

lkj
dt → l dt weakly-star in C

([0, T ])∗
,

for every T > 0.

In the above proposition, we denote by X∗ the dual space of the Banach space X. Regarding notation in the above
proposition, we remark that the weak-star convergence in C([0, T ])∗ or C([0, T ],R

n)∗ is usually stated as the weak
convergence of measures.

Proof. By Proposition 4.3, there is a constant C0 > 0 such that for k ∈ N,∣∣η̇k(s)
∣∣ ∨ lk(s) � C0

∣∣vk(s)
∣∣ for a.e. s � 0. (41)

It follows from this that the sequences {|η̇k|} and {lk} are uniformly integrable on the intervals [0, T ], 0 < T < ∞. If
we set:

Vk(t) =
t∫

0

vk(s)ds and Lk(t) =
t∫

0

lk(s)ds for t � 0,

then the sequences {ηk}, {Vk} and {Lk} are equi-continuous and uniformly bounded on the intervals
[0, T ], 0 < T < ∞. We may therefore choose an increasing sequence {kj } ⊂ N so that the sequences {ηkj

}, {Vkj
} and

{Lkj
} converge, as j → ∞, uniformly on every finite interval [0, T ], 0 < T < ∞, to some functions η ∈ C(R+,Ω),

V ∈ C(R+,R
n) and L ∈ C(R+). The uniform integrability of the sequences {|η̇k|}, {|vk|} and {lk} implies that the

functions η, V and L are absolutely continuous on every finite interval [0, T ], 0 < T < ∞.
Fix any 0 < T < ∞. The uniform integrability of the sequences {|η̇k|}, {|vk|} and {lk} guarantees that the sequences

{η̇k ds}, {vk ds} and {lk ds} of measures on [0, T ] are bounded. That is, we have:

sup
k∈N

T∫
0

(∣∣η̇k(s)
∣∣ + ∣∣vk(s)

∣∣ + lk(s)
)

ds < ∞.

Hence we may assume without loss of generality that as j → ∞,

η̇kj
ds → μ1 weakly-star in C

([0, T ],R
n
)∗

,

vkj
dt → μ2 weakly-star in C

([0, T ],R
n
)∗

,

lkj
dt → μ3 weakly-star in C

([0, T ])∗
,

for some regular Borel measures μ1, μ2 and μ3 of bounded variations on [0, T ]. Then, for any φ ∈ C1([0, T ],R
n),

using integration by parts twice, we get:
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T∫
0

φ(s)μ1(ds) = lim
j→∞

T∫
0

φ(s)η̇kj
(s)ds

= lim
j→∞

([
φηkj

]T

0
−

T∫
0

φ′(s)ηkj
(s)ds

)

=
[
φη

]T

0
−

T∫
0

φ′(s)η(s)ds =
T∫

0

φ(s)η̇(s)ds.

By the density of C1([0, T ],R
n) in C([0, T ],R

n), we find that

T∫
0

φ(s)μ1(ds) =
T∫

0

φ(s)η̇(s)ds,

which shows that μ1 = η̇ ds on [0, T ]. Similarly we see that μ2 = V̇ ds and μ2 = L̇ds. Thus, setting v = V̇ and l = L̇,
we have as j → ∞,

η̇kj
ds → η̇ ds weakly-star in C

([0, T ],R
n
)∗

,

vkj
dt → v ds weakly-star in C

([0, T ],R
n
)∗

,

lkj
dt → l ds weakly-star in C

([0, T ])∗
.

Note here that the above weak-star convergence is valid for every 0 < T < ∞.
Since η̇k(s)+ lk(s)γ (ηk(s)) = vk(s) for a.e. s � 0, integrating this over [0, t], with 0 < t < ∞, and sending k = kj

as j → ∞, we get:

η(t) − η(0) +
t∫

0

l(s)γ
(
η(s)

)
ds =

t∫
0

v(s)ds for t > 0,

which ensures that η̇(s)+ l(s)γ (η(s)) = v(s) for a.e. s � 0. It is obvious that η(s) ∈ Ω for s � 0. Finally, we argue as
in the last part of the proof of Theorem 4.2, to find that for a.e. s ∈ R+, l(s) = 0 if η(s) ∈ Ω . The proof is complete. �
Proof of Theorem 4.1. Fix any x ∈ Ω and v ∈ L1

loc(R+,R
n). In view of the semi-group property of problem (34),

we may assume that v(s) = 0 for s � 1, so that v ∈ L1(R+,R
n). We define the sequence {vk}k∈N ⊂ L∞(R+,R

n) by:

vk(s) =
{

v(s) if |v(s)| � k,

0 otherwise.

Since |vk(s)| � |v(s)| for s � 0, we see that the sequence {|vk|} is uniformly integrable on R+. According to
Theorem 4.2, there is a sequence {(ηk, lk)} ⊂ Lip(R+,R

n) × L∞(R+,R+) such that (ηk, vk, lk) ∈ SP(x) for all
k ∈ N. Then applying Proposition 4.4, we deduce that there is an (η, l) ∈ ACloc(R+,R

n) × L1
loc(R+,R+) such that

(η, v, l) ∈ SP(x). �
5. Cauchy problem with the Neumann type boundary condition

In this section we introduce the value function of an optimal control problem associated with the initial-boundary
value problem (3)–(5), and show that it is a (unique) solution of problem (3)–(5).

Let L denote the function L ∈ LSC(Ω × R
n,R ∪ {∞}), called the Lagrangian of H , given by (6). The value

function w of the optimal control with the dynamics given by (34), the running cost (L,g) and the pay-off u0 is given
by:
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w(x, t) = inf

{ t∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + u0

(
η(t)

) ∣∣∣ (η, v, l) ∈ SP(x)

}

for (x, t) ∈ Ω × R+. (42)

Under our hypotheses, the Lagrangian L may take the value ∞ and, on the other hand, there is a constant C0 > 0 such
that L(x, ξ) � −C0 for (x, ξ) ∈ Ω × R

n. Thus, it is reasonable to interpret,

t∫
0

L
(
η(s),−v(s)

)
ds = ∞,

if the function: s �→ L(η(s),−v(s)) is not integrable, which we adopt here.
It is well known (and also easily seen) that the value function w satisfies the dynamic programming principle,

w(x, s + t) = inf

{ t∫
0

(
L

(
η(τ),−v(τ)

) + g
(
η(τ)

)
l(τ )

)
dτ + w

(
η(t), s

) ∣∣∣ (η, v, l) ∈ SP(x)

}

for x ∈ Ω and t, s ∈ R+.

Theorem 5.1. The value function w is continuous on Ω × R+ and it is a solution of (3)–(4). Moreover, w satisfies (5)
in the sense that limt→0+ w(x, t) = u0(x) uniformly for x ∈ Ω .

The above theorem clearly ensures the existence of a solution of (3)–(5). This together with Theorem 3.4, with
U := R

n, establishes the unique existence of a solution of (3)–(5). For the solvability of stationary and evolution
problem for HJ equations, we refer to [1–4,6,5].

Another aspect of the theorem above is that it gives a variational formula for the unique solution of (3)–(5). This is
a classical observation on the value functions in optimal control, and, in this regard, we refer for instance to [1,2].

The variational formula (42) is sometimes called the Lax–Oleinik formula.
For the proof of Theorem 5.1, we need the following three lemmas. We set Q = Ω × R+.

Lemma 5.2. Let ψ ∈ C1(Q) be a classical subsolution of (3)–(4). Assume that ψ(x,0) � u0(x) for x ∈ Ω .
Then w � ψ on Q.

Proof. Let (x, t) ∈ Q and (η, v, l) ∈ SP(x). We have:

ψ
(
η(t),0

) − ψ
(
η(0), t

) =
t∫

0

d

ds
ψ

(
η(s), t − s

)
ds

=
t∫

0

(
Dψ

(
η(s), t − s

) · η̇(s) − ψt

(
η(s), t − s

))
ds

=
t∫

0

(
Dψ

(
η(s), t − s

) · (v(s) − l(s)γ
(
η(s)

)) − ψt

(
η(s), t − s

))
ds.

Now, using the subsolution property of ψ and the inequality ψ(·,0) � u0, we get:

ψ(x, t) − u0
(
η(t)

)
�

t∫ (−Dψ
(
η(s), t − s

) · v(s) + l(s)Dψ
(
η(s)

) · γ (
η(s)

) + ψt

(
η(s), t − s

))
ds
0
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�
t∫

0

(
H

(
η(s),Dψ

(
η(s), t − s

)) + L
(
η(s),−v(s)

) + l(s)Dψ
(
η(s)

) · γ (
η(s)

)
+ ψt

(
η(s), t − s

))
ds

�
t∫

0

(
L

(
η(s),−v(s)

) + l(s)g
(
η(s)

))
ds.

Thus we conclude that ψ(x, t) � w(x, t). �
Lemma 5.3. For any ε > 0 there is a constant Cε > 0 such that w(x, t) � u0(x) − ε − Cεt for (x, t) ∈ Q.

Proof. We fix any ε > 0 and choose a function uε
0 ∈ C1(Ω) so that |u0(x) − uε

0(x)| � ε for x ∈ Ω . We choose a
function ψ0 ∈ C1(Rn) so that Ω = {x ∈ R

n | ψ0(x) < 0} and Dψ0(x) �= 0 for x ∈ Γ . By multiplying ψ0 by a positive
constant, we may find a function ψε ∈ C1(Ω) so that γ (x) · D(uε

0 + ψε)(x) � g(x) for x ∈ Γ . Next, approximating
the function: r �→ (−ε) ∨ (ε ∧ r) on R by a smooth function, we build a function ζε ∈ C1(R) so that |ζε(r)| � ε

for r ∈ R and ζ ′
ε(0) = 1. Note that D(ζε ◦ ψε)(x) = Dψε(x) for x ∈ Γ and |u0(x) − uε

0(x) − ζε ◦ ψε(x)| � 2ε for
x ∈ Ω . We choose a constant Cε > 0 so that H(x,D(uε

0 + ζε ◦ψε)(x)) � Cε for x ∈ Ω . Finally we define the function
φε ∈ C1(Q) by φε(x, t) = −2ε + uε

0(x) + ζε ◦ ψε(x) − Cεt , and observe that φε is a classical subsolution of (3), (4)
and that φε(x,0) � u0(x) for x ∈ Ω . By Lemma 5.2, we get φε(x, t) � w(x, t) for (x, t) ∈ Q. Hence, we obtain
w(x, t) � u0(x) − 4ε − Cεt for all (x, t) ∈ Q. �
Lemma 5.4. There is a constant C > 0 such that w(x, t) � u0(x) + Ct for (x, t) ∈ Q.

Proof. Let (x, t) ∈ Q. Set η(s) = x, v(s) = 0 and l(s) = 0 for s � 0. Then (η, v, l) ∈ SP(x). Hence, we have:

w(x, t) � u0(x) +
t∫

0

L(x,0)ds = u0(x) + tL(x,0) � u0(x) − t min
p∈Rn

H(x,p).

Setting C = −minΩ×Rn H , we get w(x, t) � u0(x) + Ct . �
Lemma 5.5. Let t > 0, x ∈ Ω , φ ∈ C1(Ω × [0, t]) and ε > 0. Then there is a triple (η, v, l) ∈ SP(x) such that for
a.e. s ∈ (0, t),

H
(
η(s),Dφ

(
η(s), t − s

)) + L
(
η(s),−v(s)

)
� ε − v(s) · Dφ

(
η(s), t − s

)
.

We postpone the proof of the above lemma and give now the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemmas 5.3 and 5.4, there is a constant C > 0 and for each ε > 0 a constant Cε > 0 such
that −ε − Cεt � w(x, t) − u0(x) � Ct for all (x, t) ∈ Q. This shows that w is a real-valued function on Q and that

lim
t→0+w(x, t) = u0(x) uniformly for x ∈ Ω. (43)

We next prove that w is a subsolution of (3), (4). Let (x̂, t̂ ) ∈ Q and φ ∈ C1(Q). Assume that w∗ − φ attains a
strict maximum at (x̂, t̂ ). We need to show that if x̂ ∈ Ω , then φt (x̂, t̂ ) + H(x̂,Dφ(x̂, t̂ )) � 0, and if x̂ ∈ Γ , then
either

φt (x̂, t̂ ) + H
(
x̂,Dφ(x̂, t̂ )

)
� 0 or γ (x̂) · Dφ(x̂, t̂ ) � g(x̂). (44)

We are here concerned only with the case where x̂ ∈ Γ . The other case can be treated similarly. To prove (44), we
argue by contradiction. Thus we suppose that (44) were false. We may choose an ε ∈ (0,1) so that t̂ − 2ε > 0 and for
(x, t) ∈ (Ω ∩ B(x̂,2ε)) × [t̂ − 2ε, t̂ + 2ε],
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φt (x, t) + H
(
x,Dφ(x, t)

)
� 2ε and γ (x) · Dφ(x, t) − g(x) � 2ε, (45)

where γ and g are assumed to be defined and continuous on Ω . We may assume that (w∗ − φ)(x̂, t̂ ) = 0. Set

B = (
∂B(x̂,2ε) × [t̂ − 2ε, t̂ + 2ε] ∪ B(x̂,2ε) × {t̂ − 2ε}) ∩ Q,

and m = −maxB(w∗ − φ). Note that m > 0 and w(x, t) � φ(x, t) − m for (x, t) ∈ B . We choose a point
(x̄, t̄ ) ∈ Ω ∩ B(x̂, ε) × [t̂ − ε, t̂ + ε] so that (w − φ)(x̄, t̄ ) > −ε2 ∧ m. We apply Lemma 5.5, to find a triple
(η, v, l) ∈ SP(x̄) such that for a.e. s � 0,

H
(
η(s),Dφ(η(s), t̄ − s)

) + L
(
η(s),−v(s)

)
� ε − v(s) · Dφ

(
η(s), t̄ − s

)
. (46)

Note that σ := t̄ − (t̂ − 2ε) � ε and dist(x̄, ∂B(x̂,2ε)) � ε. Set

S = {
s ∈ [0, σ ] ∣∣ η(s) ∈ ∂B(x̂,2ε)

}
and τ = infS.

We consider first the case where τ = ∞, i.e., the case S = ∅. By the dynamic programming principle, we have:

φ(x̄, t̄ ) < w(x̄, t̄ ) + ε2

�
σ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + w

(
η(σ ), t̄ − σ

) + ε2

�
σ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε

)
ds + φ

(
η(σ ), t̄ − σ

)
.

Hence, we obtain:

0 <

σ∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε + d

ds
φ
(
η(s), t̄ − s

))
ds

�
σ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε

+ Dφ
(
η(s), t̄ − s

) · η̇(s) − φt

(
η(s), t̄ − s

))
ds

�
σ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε

+ Dφ
(
η(s), t̄ − s

) · (v(s) − l(s)γ
(
η(s)

) − φt

(
η(s), t̄ − s

)))
ds.

Now, using (46) and (45), we get:

0 <

σ∫
0

(
2ε − H

(
η(s),Dφ

(
η(s), t̄ − s

)) + g
(
η(s)

)
l(s)

− l(s)Dφ
(
η(s), t̄ − s

) · γ (
η(s)

) − φt

(
η(s), t̄ − s

))
ds

�
σ∫

0

l(s)
(
g
(
η(s)

) − γ
(
η(s)

) · Dφ
(
η(s), t̄ − s

))
ds � 0,

which is a contradiction.
Next we consider the case where τ < ∞. Observe that τ > 0, and
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φ(x̄, t̄ ) < w(x̄, t̄ ) + m

�
τ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + w

(
η(τ), t̄ − τ

) + m

�
τ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + φ

(
η(τ), t̄ − τ

)
.

Using (46) and (45) as before, we compute that

0 <

τ∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) − φt

(
η(s), t̄ − s

)
+ Dφ

(
η(s), t̄ − s

) · v(s) − l(s)γ
(
η(s)

) · Dφ
(
η(s), t̄ − s

))
ds

�
τ∫

0

{
ε − H

(
η(s),Dφ

(
η(s), t̄ − s

)) − φt

(
η(s), t̄ − s

)
+ l(s)

[
g
(
η(s)

) − γ
(
η(s)

) · Dφ
(
η(s), t̄ − s

)]}
ds < 0,

which is again a contradiction. Thus, we conclude that w is a subsolution of (3), (4).
Now, we turn to the proof of the supersolution property of w. Let φ ∈ C1(Q) and (x̂, t̂ ) ∈ Ω × (0,∞). Assume

that w∗ − φ attains a strict minimum at (x̂, t̂ ). We show that if x̂ ∈ Ω , then φt (x̂, t̂ ) + H(x̂,Dφ(x̂, t̂ )) � 0, and if
x̂ ∈ Γ , then

φt (x̂, t̂ ) + H
(
x̂,Dφ(x̂, t̂ )

)
� 0 or γ (x̂) · Dφ(x̂, t̂ ) � g(x̂). (47)

We only consider the case where x̂ ∈ Γ , and leave it to the reader to check the details in the other case. To show
(47), we suppose by contradiction that (47) were false. That is, we have φt (x̂, t̂ ) + H(x̂,Dφ(x̂, t̂ )) < 0 and γ (x̂) ·
Dφ(x̂, t̂ ) − g(x̂) < 0. There is an ε > 0 such that if we set R := B(x̂,2ε) × [t̂ − 2ε, t̂ + 2ε], then, for (x, t) ∈ R ∩ Q,
we have:

φt (x, t) + H
(
x,Dφ(x, t)

)
< 0 and γ (x) · Dφ(x, t) − g(x) < 0.

Here we may assume that t̂ − 2ε > 0 and (u∗ − φ)(x̂, t̂ ) = 0. Set m := minQ∩∂R(u∗ − φ) (> 0). We may choose a

point (x̄, t̄ ) ∈ Q so that (u∗ − φ)(x̄, t̄ ) < m, |x̄ − x̂| < ε and |t̄ − t̂ | < ε. We select a triple (η, v, l) ∈ SP(x̄) so that

u(x̄, t̄ ) + m >

t̄∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + u0

(
η(t̄ )

)
.

We set τ = min{s � 0 | (η(s), t̄ − s) ∈ ∂R}. It is clear that τ > 0, η(s) ∈ R ∩ Q for s ∈ [0, τ ] and, if |η(τ) − x̂| < 2ε,
then τ = t̄ − (t̂ − 2ε) > ε. Accordingly, we have:

φ(x̄, t̄ ) + m >

τ∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + u

(
η(τ), t̄ − τ

)

�
τ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + φ

(
η(τ), t̄ − τ

) + m.

Hence, we get:
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0 >

τ∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)l(s) + Dφ

(
η(s), t̄ − s

) · η̇(s)

− φt

(
η(s), t̄ − s

)))
ds

�
τ∫

0

(−v(s) · Dφ
(
η(s), t̄ − s

) − H
(
η(s),Dφ

(
η(s), t̄ − s

)) − g
(
η(s)

)
l(s)

+ Dφ
(
η(s), t̄ − s

) · η̇(s) − φt

(
η(s), t̄ − s

))
ds > 0,

which is a contradiction.
It remains to show that w is continuous on Q. According to (43), we have w∗(·,0) = w∗(·,0) = u0 on Ω . Thus,

applying the comparison theorem (Theorem 3.4 with U := R
n), we see that w∗ � w∗ on Q, which guarantees that

w ∈ C(Q). This completes the proof. �
For the proof of Lemma 5.5, we need the following basic lemma.

Lemma 5.6. Let R > 0. There is a constant C > 0, depending only on R and H , such that for any
(x,p, v) ∈ Ω × B(0,R) × R

n, if H(x,p) + L(x,−v) � 1 − v · p, then we have |v| � C.

Proof. We may choose a constant C1 > 0 so that C1 � maxΩ×B(0,2R) |H |. Observe that

L(x,−v) � max
p∈B(0,2R)

(−v · p) − C1 = 2R|v| − C1 for (x, v) ∈ Ω × R
n.

Let (x,p, v) ∈ Ω × B(0,R) × R
n be a point such that H(x,p) + L(x,−v) � 1 − v · p. Then we have

−C1 + 2R|v| − C1 � 1 + |v||p| � 1 + R|v|. Consequently, we get R|v| � 2C1 + 1. �
For i ∈ N we introduce the function Li ∈ C(Ω × R

n) by setting:

Li(x, ξ) = max
p∈B(0,i)

(
ξ · p − H(x,p)

)
.

Observe that Li(x, ξ) � L(x, ξ) and limi→∞ Li(x, ξ) = L(x, ξ) for (x, ξ) ∈ Ω × R
n and that every Li is uniformly

continuous on bounded subsets of Ω × R
n.

Proof of Lemma 5.5. Fix k ∈ N. Set δ = t/k and sj = (j − 1)δ for j = 1,2, . . . , k. We define inductively a sequence
{(xj , ηj , vj , lj )}kj=1 ⊂ Ω × SP. We set x1 = x and choose a ξ1 ∈ R

n so that

H
(
x1,Dφ(x1, t)

) + L(x1,−ξ1) � ε − ξ1 · Dφ(x1, t).

Set v1(s) = ξ1 for s � 0 and choose a pair (η1, l1) ∈ Lip(R+,Ω) × L∞(R+,R+) so that (η1, v1, l1) ∈ SP(x1).
According to Theorem 4.2, such a pair always exists.

Suppose now that we are given (xi, ηi, vi, li ) for all i = 1,2, . . . , j − 1 and for some j � k. Then set xj = ηj−1(δ),
choose a ξj ∈ R

n so that

H
(
xj ,Dφ(xj , t − sj )

) + L(xj ,−ξj ) � ε − ξj · Dφ(xj , t − sj ), (48)

set vj (s) = ξj for s � 0, and select a pair (ηj , lj ) ∈ Lip(R+,Ω) × L∞(R+,R
n) so that (ηj , vj , lj ) ∈ SP(xj ). Thus,

by induction, we have chosen a sequence {(xj , ηj , vj , lj )}kj=1 ⊂ Ω × SP such that x1 = η1(0), xj = ηj−1(δ) = ηj (0)

for j = 2, . . . , k and for each j = 1,2, . . . , k, (48) holds with ξj = vj (s) for all s � 0. Notice that the choice of
xj , ηj , vj , lj , with j = 1, . . . , k, depends on k, which is not explicit in our notation.

Next, we define a triple (η̄k, v̄k, l̄k) ∈ SP(x) by setting:(
η̄k(s), v̄k(s), l̄k(s)

) = (
ηj (s − sj ), vj (s − sj ), lj (s − sj )

)
for sj � s < sj+1 and j = 1,2, . . . , k − 1, and
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(
η̄k(s), v̄k(s), l̄k(s)

) = (
ηk(s − sk), vk(s − sk), lk(s − sk)

)
,

for s � sk . We may assume that ε < 1 and, by Lemma 5.6, we find a constant C1 > 0, independent of k, such
that maxs�0 |v̄k(s)| = max1�j�k |ξj | � C1. By Proposition 4.3, we find a constant C2 > 0, independent of k, such
that ‖dη̄k/ds‖L∞(R+) ∨ ‖l̄k‖L∞(R+) � C2. Now, we define the step function χk on R+ by setting χk(s) = sj for
sj � s < sj+1 and j = 1,2, . . . , k and χk(s) = sk for s � sk , and observe that (48), with 1 � j � k, can be rewritten
as

H
(
η̄k

(
χk(s)

)
,Dφ

(
η̄k

(
χk(s)

)
, t − χk(s)

)) + L
(
η̄k

(
χk(s)

)
,−v̄k(s)

)
� ε − v̄k(s) · Dφ

(
η̄k

(
χk(s)

)
, t − χk(s)

)
for 0 � s � t. (49)

We may invoke Proposition 4.4, to find a triple (η, v, l) ∈ SP(x) and a subsequence of {(η̄k, v̄k, l̄k)}k∈N, which
will be denoted again by the same symbol, so that for every 0 < T < ∞, as k → ∞, η̄k → η uniformly on [0, T ],
v̄k ds → v ds weakly-star in C([0, T ],R

n)∗ and l̄k ds → l ds weakly-star in C([0, T ])∗. We may moreover assume
that v̄k → v weakly-star in L∞(R+,R

n) and l̄k → l weakly-star in L∞(R+) as k → ∞.
Since v̄k → v weakly in L2(0, t), we may choose a sequence {λk}k∈N of finite sequences λk = (λk,1, λk,2, . . . ,

λk,Nk
) of nonnegative numbers such that

Nk∑
j=1

λk,j = 1 and v̂k :=
Nk∑
j=1

λk,j v̄k+j converge to v in L2(0, t).

Here we may moreover assume by selecting a subsequence of {(η̄k, v̄k, l̄k)} that as k → ∞, v̂k(s) → v(s) for
a.e. s ∈ (0, t).

Fix any i ∈ N and θ > 1. In view of the uniform continuity of the functions H and Li on bounded subsets of
Ω × R

n and the uniform convergence of {η̄k} to η on [0, t], from (49), we get:

H
(
η(s),Dφ

(
η(s), t − s

)) + Li

(
η(s),−v̄k(s)

)
� θε − v̄k(s) · Dφ

(
η(s), t − s

)
for s ∈ (0, t),

for sufficiently large k, say, for k � kθ , and hence, by taking the convex combination,

H
(
η(s),Dφ

(
η(s), t − s

)) + Li

(
η(s),−v̂k(s)

)
� θε − v̂k(s) · Dφ

(
η(s), t − s

)
for s ∈ (0, t),

for k � kθ . Sending k → ∞, we get for a.e. s ∈ (0, t),

H
(
η(s),Dφ

(
η(s), t − s

)) + Li

(
η(s),−v(s)

)
� θε − v(s) · Dφ

(
η(s), t − s

)
,

and, because of the arbitrariness of i and θ > 1, we obtain for a.e. s ∈ (0, t),

H
(
η(s),Dφ

(
η(s), t − s

)) + L
(
η(s),−v(s)

)
� ε − v(s) · Dφ

(
η(s), t − s

)
. �

6. Aubry sets and formulas for solutions of (1), (2)

In this section we define the Aubry set associated with (1), (2). Our argument here is very close to that of [21,22].
By the C1 regularity of Ω and assumption (A3), there is a function ψ ∈ C1(Ω) such that Dγ ψ(x) > 0 for x ∈ Γ .

By multiplying ψ by a positive constant, we may assume that Dγ ψ(x) � |g(x)| for x ∈ Γ . Selecting a constant
C− ∈ R small enough, we may have H(x,Dψ(x)) � C− for x ∈ Ω . It is easy to check that the function ψ is a
supersolution of (1), (2), with C− in place of a. Similarly, if we choose a constant C+ ∈ R large enough, then the
function −ψ is a subsolution of (1), (2), with C+ in place of a.

We define the critical value (or additive eigenvalue) c by:

c = inf
{
a ∈ R

∣∣ there is a subsolution of (1), (2)
}
.

Obviously we have c � C+. By Corollary 3.2, we see as well that c � C−. In particular, we have c ∈ R. For any
decreasing sequence {ak} converging to c, there is a sequence {uk} ⊂ USC(Ω) such that for every k ∈ N, uk is a
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subsolution of (1), (2), with ak in place of a. By Lemma 3.3, with U = R
n, we find that {uk} is equi-Lipschitz

continuous on Ω . By adding a constant to uk , we may assume that {uk} is uniformly bounded on Ω . By choosing
a subsequence, we may thus assume that the sequence {uk} converges to a function u ∈ Lip(Ω) as k → ∞. By the
stability of the viscosity property under uniform convergence, we see that u is a subsolution of (1), (2), with c in place
of a.

Henceforth in this section, we normalize c = 0 by replacing H by H − c, and we are concerned only with problem
(1), (2), with a = 0, that is, the problem: {

H
(
x,Du(x)

) = 0 in Ω,

Dγ u(x) = g(x) on Γ.
(50)

We introduce the function d on Ω × Ω by:

d(x, y) = sup
{
v(x) − v(y)

∣∣ v is a subsolution of (50)
}
. (51)

According to Lemma 3.3, the family of functions d(·, y), with y ∈ Ω , is equi-Lipschitz continuous on Ω . By the
stability of the viscosity property, we see that for any y ∈ Ω , the function d(·, y) is a subsolution of (50). It is easily
seen that

d(x, y) � d(x, z) + d(z, y) for x, y, z ∈ Ω.

Also, in view of the Perron method, we find that for every y ∈ Ω , the function d(·, y) is a solution of,{
H

(
x,Du(x)

) = 0 in Ω \ {y},
Dγ u(x) = g(x) on Γ \ {y}, (52)

which is just problem (7), with f := 0 and U := R
n \ {y}.

We define the Aubry set A associated with (50) (or (1), (2) with generic a) by:

A = {
y ∈ Ω

∣∣ d(·, y) is a solution of (50)
}
.

Theorem 6.1. The Aubry set A is a nonempty and compact.

Remark 1. If we define the function da on Ω × Ω by:

da(x, y) = sup
{
v(x) − v(y)

∣∣ v is a subsolution of (1), (2)
}
,

then da(x, y) = sup∅ = −∞ for a < 0. Moreover, if we define the Aubry set Aa for a > 0 by:

Aa = {
y ∈ Ω

∣∣ da(·, y) is a solution of (1), (2)
}
,

then Aa = ∅.

The nonemptiness of A will be proved based on the following observation.

Lemma 6.2. Let y ∈ Ω \ A. Then there are functions v ∈ Lip(Ω) and f ∈ C(Ω) such that f (y) < 0, f (x) � 0 for
x ∈ Ω and v is a subsolution of (7), with U = R

n.

Proof. Fix any y ∈ Ω \ A and set u(x) = d(x, y) for x ∈ Ω . For definiteness, we consider the case where y ∈ Γ .
We leave it to the reader to check the other case. Since u is not a supersolution of (50) while it is a solution of (52),
we find a C1 function φ on Ω such that u − φ attains a strict minimum at y, H(y,Dφ(y)) < 0 and Dγ φ(y) < g(y).
By continuity, there is an open neighborhood V of y such that

H
(
x,Dφ(x)

)
< 0 for x ∈ ΩV and Dγ φ(x) < g(x) for x ∈ ΓV . (53)

We may assume by adding a constant to φ that u(y) = φ(y). Note that minΩ\V (u − φ) > 0, and select a constant

ε > 0 small enough so that (u − φ)(x) > ε for x ∈ Ω \ V . We may choose an open neighborhood W of V c such that
(u − φ)(x) > ε for x ∈ Ω ∩ W . We set v(x) = u(x) ∨ (φ(x) + ε) for x ∈ Ω .
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Observe that v(x) = u(x) for x ∈ W ∩Ω , which ensures that v is a subsolution of (7), with f (x) := 0 and U := W .
On the other hand, there is an open neighborhood Y ⊂ V of y such that φ(x) + ε > u(x) for x ∈ Y ∩ Ω . It is clear
that Ω ∩ Y ∩ W = ∅. In view of (53), we may choose a function f ∈ C(Ω) so that f (y) < 0, f (x) � 0 for x ∈ Y ,
f (x) = 0 for x ∈ Ω \ Y and

H
(
x,Dφ(x)

)
� f (x) for x ∈ ΩV and Dγ φ(x) � g(x) for x ∈ ΓV .

It is easily seen that v is a subsolution of (7), with U := V . Finally, we note that v is a subsolution of (7), with
U := R

n, and finish the proof. �
Proof of Theorem 6.1. The compactness of A follows directly from the stability of the viscosity property under
uniform convergence.

To see that A �= ∅, we suppose by contradiction that A = ∅. By Lemma 6.2, for each y ∈ Ω there are functions
vy ∈ Lip(Ω) and fy ∈ C(Ω) such that fy(y) < 0, fy(x) � 0 for x ∈ Ω and vy is a subsolution of (7), with f := fy

and U := R
n. By the compactness of Ω , we may choose a finite sequence {yj }Jj=1 ⊂ Ω so that

∑J
j=1 fyj

(x) < 0 for

x ∈ Ω . Theorem 2.2, with U := R
n, guarantees that the function v(x) = (1/J )

∑J
j=1 vyj

(x) on Ω is a subsolution

of (7), with U := R
n and f (x) := (1/J )

∑J
j=1 fyj

(x). We choose a constant a < 0 so that f (x) � a for x ∈ Ω and
observe that v is a subsolution of (7), with f := a and U := R

n. This contradicts the fact that c = 0. The proof is
complete. �
Proposition 6.3. The function d can be represented as

d(x, y) = inf

{ t∫
0

(
L

(
η(s),−v(s)

) + g
(
γ (s)

)
l(s)

)
ds

∣∣∣ t > 0, (η, v, l) ∈ SP(x), η(t) = y

}
. (54)

Proof. Fix any y ∈ Ω . We denote by w(x) the right-hand side of (54). According to Theorem 5.1, the function,

u(x, t) := inf

{ t∫
0

L
(
η(s),−v(s)

) + g
(
η(s)

)
l(s)ds + d

(
η(t), y

) ∣∣∣ (η, v, l) ∈ SP(x)

}
,

is a solution of (3)–(5), with u0 := d(·, y). Noting that the function d(x, y), as a function of (x, t) ∈ Ω × R+, is a
subsolution of (3)–(5) with u0 := d(·, y), by applying the comparison theorem (Theorem 3.4, with U = R

n), we see
that d(x, y) � u(x, t) for (x, t) ∈ Ω ×R+. Since d(y, y) = 0, we have inft>0 u(x, t) � w(x) for x ∈ Ω . Consequently,
we have d(x, y) � w(x) for x ∈ Ω .

By the C1 regularity of Ω , for each x ∈ Ω we may choose a Lipschitz continuous curve η on [0, t] connecting x

to y in Ω , with a Lipschitz constant independent of x. Here t > 0 is an appropriate constant, and moreover we may
assume that t � C1|x − y| for some constant C1 > 0 independent of x. As is well known and easily shown, L(x, ξ) is
bounded on Ω ×B(0, δ), if δ > 0 is chosen sufficiently small. Fix such a constant δ > 0 and choose a constant C2 > 0
so that L(x, ξ) � C2 for (x, ξ) ∈ Ω × B(0, δ). By scaling, we may assume that |η̇(s)| � δ for a.e. s ∈ [0, t]. Noting
that (η, η̇,0) ∈ SP(x), we get:

w(x) �
t∫

0

L
(
η(s),−η̇(s)

)
ds � C2t � C1C2|x − y|.

In particular, we may conclude that w is continuous at y and w(y) = 0.
To complete the proof, it is enough to show that w is a subsolution of (50). Indeed, once this is done, by the

definition of d , we get:

w(x) = w(x) − w(y) � d(x, y) for x ∈ Ω,

which guarantees that d(x, y) = w(x) for x ∈ Ω .
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To prove the subsolution property of w, we just need to follow the argument of the proof of Theorem 5.1.
Let x̂ ∈ Ω and φ ∈ C1(Ω). Assume that w∗ − φ attains a strict maximum at x̂. We need to show that if x̂ ∈ Ω ,
then H(x̂,Dφ(x̂)) � 0, and if x̂ ∈ Γ , then either

H
(
x̂,Dφ(x̂)

)
� 0 or γ (x̂) · Dφ(x̂) � g(x̂). (55)

We are here concerned only with the case where x̂ ∈ Γ , and leave the proof in the other case to the reader. To show
(55), we suppose by contradiction that (55) were false. Then we may choose an ε ∈ (0,1) so that for x ∈ Ω ∩B(x̂,2ε),

H
(
x,Dφ(x)

)
� 2ε and γ (x) · Dφ(x) − g(x) � 2ε, (56)

where γ and g are, as usual, assumed to be defined and continuous on Ω . We may also assume that (w∗ − φ)(x̂) = 0.
Set B = ∂B(x̂,2ε) ∩ Ω , and m = −maxB(w∗ − φ). Obviously, we have m > 0 and w(x) � φ(x) − m for x ∈ B . We
choose a point x̄ ∈ Ω ∩B(x̂, ε) so that (w−φ)(x̄) > −ε2 ∧m. We apply Lemma 5.5, to obtain a triple (η, v, l) ∈ SP(x̄)

such that for a.e. s � 0,

H
(
η(s),Dφ

(
η(s)

)) + L
(
η(s),−v(s)

)
� ε − v(s) · Dφ

(
η(s)

)
. (57)

Note that dist(x̄, ∂B(x̂,2ε)) � ε, and set τ = inf{s > 0 | η(s) ∈ ∂B(x̂,2ε)}. Consider first the case where τ = ∞,
which means that η(s) ∈ intB(x̂,2ε) for all s � 0. By the dynamic programming principle, we have:

φ(x̄) < w(x̄) + ε2 �
ε∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε

)
ds + φ

(
η(ε)

)
.

Hence, we obtain:

0 <

ε∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε + Dφ

(
η(s)

) · η̇(s)
)

ds

�
ε∫

0

{
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + ε + Dφ

(
η(s)

) · (v(s) − l(s)γ
(
η(s)

))}
ds.

Now, using (57) and (56), we get:

0 <

ε∫
0

{
2ε − H

(
η(s),Dφ

(
η(s)

)) + l(s)
[
g
(
η(s)

) − Dφ
(
η(s)

) · γ (
η(s)

)]}
ds � 0,

which is a contradiction.
Consider next the case where τ < ∞. Note that

φ(x̄) < w(x̄) + m �
τ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + w

(
η(τ)

) + m

�
τ∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + φ

(
η(τ)

)
.

Using (57) and (56) as before, we obtain

0 <

τ∫
0

{
ε − H

(
η(s),Dφ

(
η(s)

)) + l(s)
[
g
(
η(s)

) − γ
(
η(s)

) · Dφ
(
η(s)

)]}
ds < 0.

This is again a contradiction, and we conclude that w is a subsolution of (50). �
We give another characterization of the Aubry set associated with (50).
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Theorem 6.4. Let τ > 0 and y ∈ Ω . Then we have y ∈ A if and only if,

inf

{ t∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds

∣∣∣ t > τ, (η, v, l) ∈ SP, η(0) = η(t) = y

}
= 0. (58)

Lemma 6.5. Let u0 ∈ C(Ω) and let u ∈ C(Ω × R+) be the solution of (3)–(5). Set u−(x) = lim inft→∞ u(x, t) for
x ∈ Ω . Then u− ∈ Lip(Ω) and it is a solution of (50).

Proof. Thanks to Theorem 6.1, there is a solution φ ∈ Lip(Ω) of (50). By adding a constant to φ if needed, we may
assume that φ(x) � u0(x) for x ∈ Ω . Let C > 0 be a constant such that u0(x) � φ(x)+C for x ∈ Ω . By comparison,
we get φ(x) � u(x, t) � φ(x) + C for x ∈ Ω .

Setting v(x, t) = infs>t u(x, s) for (x, t) ∈ Ω × R+, we note that u−(x) = supt>0 v(x, t) for x ∈ Ω . Applying
Theorem 2.8 (and the remark after it) to the family {u(·, · + s)}s>0 of solutions of (3), (4), we see that v is a solution
of (3), (4). Observe also that v ∈ USC(Ω × R+) and the functions v(x, ·), with x ∈ Ω , are nondecreasing on R+.
This monotonicity of v guarantees that the functions v(·, t), with t > 0, are subsolutions of (50), which implies that
the family {v(·, t)}t>0 is equi-Lipschitz continuous on Ω . Accordingly, we have u− ∈ Lip(Ω). By the Dini lemma,
we see that u−(x) = limt→∞ v(x, t) uniformly for x ∈ Ω . By the stability of the viscosity property under uniform
convergence, we conclude that u− is a solution of (50). �
Proof of Theorem 6.4. Fix any τ > 0 and y ∈ Ω . By Proposition 6.3, we have:

inf

{ t∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds

∣∣∣ (η, v, l) ∈ SP, η(0) = η(t) = y

}
� d(y, y) = 0 for t > 0. (59)

We assume that y ∈ A and show that (58) holds. Note that the function u(x, t) = d(x, y) on Ω × R is the unique
solution of the initial-boundary value problem (3)–(5), with u0 := d(·, y). By Theorem 5.1, we get:

0 = d(y, y) = inf

{ τ∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + d

(
η(τ), y

) ∣∣∣ (η, v, l) ∈ SP(y)

}
.

Fix any ε > 0 and choose a triple (η, v, l) ∈ SP(y) so that

ε >

τ∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + d

(
η(τ), y

)
.

In view of Proposition 6.3, by modifying (η, v, l) on the set (τ,∞) if necessary, we may assume that for some t > τ ,

d
(
η(τ), y

) + ε >

t∫
τ

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds and η(t) = y.

Thus, we obtain,

2ε >

t∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds and η(0) = η(t) = y,

which ensures together with (59) that (58) holds.
Next we assume that (58) holds and show that y ∈ A. Let u be the unique solution of problem (3)–(5), with initial

data d(·, y). Since d(·, y), regarded as a function on Ω × R+, is a subsolution of (3), (4), by comparison, we see that
d(x, y) � u(x, t) for (x, t) ∈ Ω × [0,∞). As in Lemma 6.5, we set u−(x) = lim inft→∞ u(x, t) for x ∈ Ω , to find
that u− ∈ Lip(Ω) and u− is a solution of (50). It follows that d(x, y) � u−(x) for x ∈ Ω . It is easily seen from (58)
that for each k ∈ N,
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inf

{ t∫
0

(
L

(
η(s), v(s)

) + g
(
η(s)

)
l(s)

)
ds

∣∣∣ t > kτ, (η, v, l) ∈ SP, η(0) = η(t) = y

}
= 0.

On the other hand, we have:

inf
t>kτ

u(y, t) � inf

{ t∫
0

(
L

(
η(s), v(s)

) + g
(
η(s)

)
l(s)

)
ds

∣∣∣ t > kτ, (η, v, l) ∈ SP, η(0) = η(t) = y

}
.

These together ensure that u−(y) � 0 and hence d(x, y) � u−(x) for x ∈ Ω . Thus we find that d(x, y) = u−(x) and
conclude that y ∈ A. �
Theorem 6.6. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be respectively a subsolution and a supersolution of (50). Assume
that u(x) � v(x) for x ∈ A. Then u(x) � v(x) for x ∈ Ω .

Lemma 6.7. There exist functions ψ ∈ Lip(Ω) and f ∈ C(Ω) such that f (x) � 0 for x ∈ Ω , f (x) < 0 for x ∈ Ω \ A
and ψ is a subsolution of (7), with U := R

n.

Proof. By Lemma 6.2, for each y ∈ Ω \ A there are functions fy ∈ C(Ω) and ψy ∈ C(Ω) such that fy(y) < 0,
fy(x) � 0 for x ∈ Ω and ψy is a subsolution of (7), with U := R

n and f := fy . Since {ψy}y∈Ω\A is equi-Lipschitz

continuous on Ω , we may assume by adding to ψy an appropriate constant Cy ∈ R if necessary that {ψy}y∈Ω\A is

uniformly bounded on Ω . Also, we may assume without any loss of generality that {fy}y∈Ω\A is uniformly bounded

on Ω . We may choose a sequence {yj }j∈N ⊂ Ω \ A so that infj∈N fyj
(x) < 0 for x ∈ Ω \ A. Now we set ψ(x) =∑

j∈N
2−jψyj

(x) for x ∈ Ω , and observe in view of Theorem 2.2 that ψ is a subsolution of (7), with U := R
n and f

given by f (x) = ∑
j∈N

2−j fyj
(x) for x ∈ Ω . Finally, we note that f (x) � 0 for x ∈ Ω , f (x) < 0 for x ∈ Ω \ A and

ψ ∈ Lip(Ω). The proof is complete. �
Proof of Theorem 6.6. Due to Lemma 6.7, there are functions f ∈ C(Ω) and ψ ∈ Lip(Ω) such that f (x) � 0
for x ∈ Ω , f (x) < 0 for x ∈ Ω \ A and ψ is a subsolution of (7), with U := R

n. Fix any 0 < ε < 1 and set
uε(x) = (1 − ε)u(x) + εψ(x) for x ∈ Ω . Then the function uε is a subsolution of (7), with U := R

n and f replaced
by εf . We apply Theorem 3.1, with U := R

n \ A, to obtain uε � v on Ω , which implies that u � v on Ω . �
Theorem 6.8. Let u ∈ C(Ω) be a solution of (50). Then

u(x) = min
{
u(y) + d(x, y)

∣∣ y ∈ A
}

for x ∈ Ω. (60)

Proof. We denote by w(x) the right-hand side of (60). We note first by the remark after Theorem 2.7 that w is a
solution of (50). Next, by the definition of d , we have u(x)−u(y) � d(x, y) for x, y ∈ Ω . Hence we get u(x) � w(x)

for x ∈ Ω . Also, by the definition of w, we have w(x) � u(x) for x ∈ A. Thus we have u(x) = w(x) for x ∈ A.
By Theorem 6.6, we conclude that u = w on Ω . �
Corollary 6.9. If u ∈ C(Ω) is a solution of (50), then

u(x) = inf

{ t∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + u

(
η(t)

) ∣∣∣ t > 0, (η, v, l) ∈ SP(x), η(t) ∈ A
}

for x ∈ Ω.

Theorem 6.8 and Proposition 6.3 yield the above assertion.

7. Calibrated extremals

As in the previous section, we assume throughout this section that the critical value c is equal to zero.
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Lemma 7.1. Let 0 < T < ∞ and {(ηk, vk, lk)}k∈N ⊂ SP. Assume that there is a constant C > 0, independent of k ∈ N,
such that

T∫
0

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds � C for k ∈ N.

Then there exists a triple (η, v, l) ∈ SP such that

T∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds

� lim inf
k→∞

T∫
0

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds.

Moreover, for the triple (η, v, l), there is a subsequence {(ηkj
, vkj

, lkj
)} of {(ηk, vk, lk)} such that as j → ∞,

ηkj
(0) → η(0), (61)

η̇kj
(t)dt → η̇(t)dt weakly-star in C

([0, T ],R
n
)∗

, (62)

vkj
(t)dt → v(t)dt weakly-star in C

([0, T ],R
n
)∗

, (63)

lkj
(t)dt → l(t)dt weakly-star in C

([0, T ])∗
. (64)

Of course, under the hypotheses of the above theorem, the functions,

ηkj
(t) = ηkj

(0) +
t∫

0

η̇kj
(s)ds,

converge to η(t) uniformly on [0, T ] as j → ∞.

Proof. We may assume without loss of generality that ηk(t) = ηk(T ), vk(t) = 0 and lk(t) = 0 for t � T and k ∈ N.
According to Proposition 4.3, there is a constant C0 > 0 such that for any (η, v, l) ∈ SP, |η̇(t)| ∨ |l(t)| � C0|v(t)|

for a.e. t � 0. Note that for each A > 0 there is a constant CA > 0 such that L(x, ξ) � A|ξ |−CA for (x, ξ) ∈ Ω ×R
n.

From this lower bound of L, it is obvious that for (x, ξ, r) ∈ Ω × R
n × R+, if r � C0|ξ |, then

L(x, ξ) + g(x)r � A|ξ | − CA − C0‖g‖∞|ξ |, (65)

which ensures that there is a constant C1 > 0 such that for (η, v, l) ∈ SP,

L
(
η(s),−v(s)

) + g
(
η(s)

)
l(s) + C1 � 0 for a.e. s � 0. (66)

Using (66), we obtain for any measurable B ⊂ [0, T ],∫
B

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s) + C1

)
ds

�
T∫

0

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s) + C1

)
ds � C + C1T .

This together with (65) yields,(
A − C0‖g‖∞

)∫ ∣∣vk(s)
∣∣ds � CA|B| + C + C1T for A > 0. (67)
B
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This shows that the sequence {|vk|} is uniformly integrable on R+.
We choose an increasing sequence {kj } ⊂ N so that

lim inf
k→∞

T∫
0

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds

= lim
j→∞

T∫
0

(
L

(
ηkj

(s),−vkj
(s)

) + g
(
ηkj

(s)
)
lkj

(s)
)

ds.

Thanks to estimate (67), in view of Proposition 4.4, we may assume by replacing {kj } by a subsequence if
needed that there is a triple (η, v, l) ∈ SP such that the convergences (61)–(64) hold. Here we may assume that
(η(t), v(t), l(t)) = (η(T ),0,0) for t � T .

In what follows, we write (ηj , vj , lj ) for (ηkj
, vkj

, lkj
) for notational simplicity. It remains to show that

T∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds

� lim
j→∞

T∫
0

(
L

(
ηj (s),−vj (s)

) + g
(
ηj (s)

)
lj (s)

)
ds.

In view of the monotone convergence theorem, we need to show that for each m ∈ N,

T∫
0

(
Lm

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds

� lim
j→∞

T∫
0

(
L

(
ηj (s),−vj (s)

) + g
(
ηj (s)

)
lj (s)

)
ds,

where Lm(x, ξ) := maxp∈B(0,m)(ξ · p − H(x,p)) for (x, ξ) ∈ Ω × R
n. Note that

Lm(x, ξ) � Lm+1(x, ξ) for (x, ξ) ∈ Ω × R
n and m ∈ N,

lim
m→∞Lm(x, ξ) = L(x, ξ) for (x, ξ) ∈ Ω × R

n,

and the functions Lm are uniformly continuous on bounded subsets of Ω × R
n.

We fix any m ∈ N. In view of the selection theorem of Kuratowski and Ryll–Nardzewski, we may choose a Borel
function Pm :Ω × R

n → B(0,m), so that

Lm(x, ξ) = ξ · Pm(x, ξ) − H
(
x,Pm(x, ξ)

)
for (x, ξ) ∈ Ω × R

n. (68)

Indeed, if we define the multifunction: Ω × R
n → 2R

n
by,

F(x, ξ) = {
p ∈ B(0,m)

∣∣ Lm(x, ξ) = ξ · p − H(x,p)
}
,

then (i) F(x, ξ) is a nonempty closed set for every (x, ξ) ∈ Ω ×R
n and (ii) F−1(K) is a closed set whenever K ⊂ R

n

is closed. From (ii), we see easily that F−1(U) is a Fσ -set (and hence a Borel set) whenever U ⊂ R
n is open. Hence,

as claimed above, by the theorem of Kuratowski and Ryll–Nardzewski (see, for instance, [27, Theorem 1.5]), there
exists a Borel function: Pm :Ω × R

n → R
n such that Pm(x, ξ) ∈ F(x, ξ) for all (x, ξ) ∈ Ω × R

n.
Set p(t) = Pm(η(t),−v(t)) for t � 0. Let ρε , with ε > 0, be a mollification kernel on R whose support is contained

in [−ε,0] and set pε(t) = ρε ∗ p(t) for t � 0.



130 H. Ishii / J. Math. Pures Appl. 95 (2011) 99–135
We fix any ε > 0, and observe by the definition of L that

I :=
T∫

0

(
L

(
ηj (s),−vj (s)

) + g
(
ηj (s)

)
lj (s)

)
ds

�
T∫

0

(−vj (s) · pε(s) − H
(
ηj (s),pε(s)

) + g
(
ηj (s)

)
lj (s)

)
ds.

From this, in view of (61)–(64), we find that

I �
T∫

0

(−v(s) · pε(s) − H
(
η(s),pε(s)

) + g
(
η(s)

)
l(s)

)
ds. (69)

Note here that |pε(s)| � m for s � 0 and pε → p in L1(0, T ) as ε → 0. In particular, for some sequence εk → +0,
we have pεk

(t) → p(t) for a.e. t ∈ [0, T ] as k → ∞. Sending ε → 0 along the sequence ε = εk and using (68), from
(69) we obtain:

I �
T∫

0

(−v(s) · p(s) − H
(
η(s),p(s)

) + g
(
η(s)

)
l(s)

)
ds

=
T∫

0

(
Lm

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds,

which completes the proof. �
Theorem 7.2. Let u0 ∈ C(Ω) and let u ∈ C(Ω × R+) be the unique solution of (3)–(5). Let (x, t) ∈ Ω × R+. Then
there exists a triple (η, v, l) ∈ SP(x) such that

u(x, t) =
t∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + u0

(
η(t)

)
.

If, in addition, u ∈ Lip(Ω × (α,β)), with 0 � α < β � ∞, then the triple (η, v, l), restricted to (α,β), belongs to
Lip(α,β) × L∞(α,β) × L∞(α,β).

Here we should note that the infimum on the right-hand side of formula (42) is always attained, which is a conse-
quence of the above theorem and Theorem 5.1.

Proof. Fix (x, t) ∈ Ω . By Theorem 5.1, we can choose a sequence {(ηk, vk, lk)} ⊂ SP(x) such that

u(x, t) = lim
k→∞

{ t∫
0

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds + u0

(
ηk(t)

)}
.

By virtue of Lemma 7.1, there are an increasing sequence {kj } ⊂ N and an (η, v, l) ∈ SP such that ηkj
(s) → η(s)

uniformly on [0, t], and

t∫
0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds

� lim inf
k→∞

t∫ (
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds.
0
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Now it is easy to see that

u(x, t) �
t∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds + u0

(
η(t)

)
,

but we have already the opposite inequality by Theorem 5.1.
Now, assume in addition that u ∈ Lip(Ω × (α,β)), where 0 � α < β � ∞. Let C > 0 be a Lipschitz constant of the

function u on the set Ω × [α,β]. Let C0 > 0 be the constant from Proposition 4.3, so that |η̇(s)| ∨ l(s) � C0|v(s)| for
a.e. s � 0. As in the proof of Proposition 4.4, for each A > 0 we choose a constant CA > 0 so that L(y, ξ) � A|ξ |−CA

for (y, ξ) ∈ Ω × R
n. Fix any finite interval [a, b] ⊂ (α,β). Then, with help of the dynamic programming principle,

we get:

b∫
a

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds = u

(
η(b), b

) − u
(
η(a), a

)

� C
(∣∣η(b) − η(a)

∣∣ + |b − a|) �
b∫

a

(
C

∣∣η̇(s)
∣∣ + C

)
ds

�
b∫

a

(
CC0

∣∣v(s)
∣∣ + C

)
ds.

On the other hand, for any A > 0, we have:

b∫
a

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds �

b∫
a

((
A − C0‖g‖∞

)∣∣v(s)
∣∣ − CA

)
ds.

Combining these, we obtain:

b∫
a

((
A − C0‖g‖∞ − CC0

)∣∣v(s)
∣∣ − CA − C

)
ds � 0.

We fix A > 0 so that A � C0‖g‖∞ + CC0 + 1 and get:

b∫
a

(∣∣v(s)
∣∣ − CA − C

)
ds � 0.

Since a, b are arbitrary as far as α < a < b < β , we conclude from the above that |v(s)| � CA + C for a.e. s ∈ (α,β).
By Proposition 4.3, we see that (η, v, l) ∈ Lip(α,β) × L∞(α,β) × L∞(α,β). �
Theorem 7.3. Let φ ∈ Lip(Ω) be a solution of (1), (2), with a := 0. Let x ∈ Ω . Then there is a triple (η, v, l) ∈ SP(x)

such that for any t > 0,

φ(x) − φ
(
η(t)

) =
t∫

0

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds. (70)

Moreover, (η, v, l) ∈ Lip(R+) × L∞(R+) × L∞(R+).

Let φ and (η, v, l) ∈ SP. Following [8], we call a triple (η, v, l) ∈ SP a calibrated extremal associated with φ if
(70) holds for all t > 0.
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Proof. Note that the function u(x, t) = φ(x) is a solution of (3), (4). Using Theorem 7.2, we define inductively the
sequence {(ηk, vk, lk)} ⊂ SP as follows. We choose first an (η1, v1, l1) ∈ SP(x) so that

φ
(
η(0)

) − φ
(
η(1)

) =
1∫

0

(
L

(
η1(s)

) + g
(
η1(s)

)
l1(s)

)
ds.

We next assume that {(ηk, vk, lk)}k�j−1, with j � 2, is given and choose an (ηj , vj , lj ) ∈ SP(ηj−1(1)) so that

φ
(
ηj (1)

) − φ
(
ηj (0)

) =
1∫

0

(
L

(
ηj (s),−vj (s)

) + g
(
ηj (s)

)
lj (s)

)
ds.

Once the sequence {(ηk, vk, lk)}k∈N ⊂ SP is given, we define the (η, v, l) ∈ SP(x) by setting
(η(s + k − 1), v(s + k − 1), l(s + k − 1)) = (ηk(s), vk(s), lk(s)) for k ∈ N and s ∈ [0,1). It is clear that the triple
(η, v, l) satisfies (70). Thanks to Theorem 7.2, we have (ηk, vk, lk) ∈ Lip([0,1]) × L∞(0,1) × L∞(0,1) for k ∈ N.
Reviewing the proof of Theorem 7.2, we see easily that supk∈N ‖vk‖L∞(0,1) < ∞, from which we conclude that
(η, v, l) ∈ Lip(R+) × L∞(R+) × L∞(R+). �
Theorem 7.4. Let φ ∈ Lip(Ω) be a solution of (1), (2), with a := 0 and (η, v, l) ∈ SP a calibrated extremal associated
with φ. Then

lim
t→∞ dist

(
η(t), A

) = 0.

Proof. According to Lemma 6.7, there are functions ψ ∈ Lip(Ω) and f ∈ C(Ω) such that f (x) < 0 for x ∈ Ω \ A,
f (x) � 0 for x ∈ Ω and ψ is a subsolution of (7), with U = R

n. Then u(x, t) := ψ(x) is a subsolution of (3), (4),
with H replaced by H − f . By comparison, if w ∈ C(Ω × R+) is a solution of (3)–(5), with H replaced by H − f

and u0 := ψ , then we get u � w on Ω × R+. Hence, using Theorem 5.1, with H replaced by H − f , we find that for
any t > 0,

ψ
(
η(0)

)
�

t∫
0

(
L

(
η(s),−v(s)

) + f
(
η(s)

) + g
(
η(s)

)
l(s)

)
ds + ψ

(
η(t)

)

= φ
(
η(0)

) − φ
(
η(t)

) + ψ
(
η(t)

) +
t∫

0

f
(
η(s)

)
ds. (71)

From this we find that

inf
t>0

t∫
0

f
(
η(s)

)
ds > −∞ or equivalently

∞∫
0

∣∣f (
η(s)

)∣∣ds < ∞,

which yields,

lim
t→∞

t+1∫
t

∣∣f (
η(s)

)∣∣ds = 0. (72)

Reviewing the proof of Lemma 7.1 up to (63), since

t+1∫
t

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds = φ

(
η(t)

) − φ
(
η(t + 1)

)
� 2‖φ‖∞ for t � 0,
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we deduce that for any A > 0 and t � 0,

(
A − C0‖g‖∞

) t+ε∫
t

∣∣v(s)
∣∣ds � CAε + 2‖φ‖∞ + C1,

where the constants C0,C1,CA are selected as in the proof of Lemma 7.1. This estimate together with Proposi-
tion 4.4 guarantees that η is uniformly continuous on R+. Now, (72) ensures that limt→∞ f (η(t)) = 0 and hence
limt→∞ dist(η(t), A) = 0. �

Let SP−∞ denote the set of all triples (η, v, l) : R → Ω ×R
n ×R+ such that for every T � 0, the triple (ηT , vT , lT )

defined on R+ by (ηT (t), vT (t), lT (t)) = (η(t − T ), v(t − T ), l(t − T )) belongs to SP.

Theorem 7.5. For any y ∈ A there exists a triple (η, v, l) ∈ SP−∞ such that η(0) = y, η(t) ∈ A for t ∈ R and for any
−∞ < σ < τ < ∞,

τ∫
σ

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds = d

(
η(σ ), η(τ )

)
,

where d is the function on Ω × Ω given by (51).

Proof. Fix y ∈ A. By Theorem 6.4, for any k ∈ N there is a triple (η̄k, v̄k, l̄k) ∈ SP such that η̄k(0) = η̄k(τk) = y for
some τk > k, and

1

k
>

τk∫
0

(
L

(
η̄k(s),−v̄k(s)

) + g
(
η̄k(s)

)
l̄k(s)

)
ds. (73)

For k ∈ N we set (
ηk(t), vk(t), lk(t)

) =
{

(η̄k(t), v̄k(t), l̄k(t)) for t ∈ [0, τk],
(η̄k(t + τk), v̄k(t + τk), l̄k(t + τk)) for t ∈ [−τk,0].

In view of Proposition 6.3, using (73), we see that if −τk � σ � τ � τk , then

d
(
y,ηk(σ )

)
�

σ∫
−τk

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds,

d
(
ηk(σ ), ηk(τ )

)
�

τ∫
σ

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds,

d
(
ηk(τ ), y

)
�

τk∫
τ

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds,

( σ∫
−τk

+
τ∫

σ

+
τk∫

τ

)(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds

<
2

k
= 2

k
+ d(y, y)

� 2

k
+ d

(
y,ηk(σ )

) + d
(
ηk(σ ), ηk(τ )

) + d
(
ηk(τ ), y

)
.

Consequently we get for −τk < σ < τ < τk ,
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d
(
ηk(σ ), ηk(τ )

)
�

τ∫
σ

(
L

(
ηk(s),−vk(s)

) + g
(
ηk(s)

)
lk(s)

)
ds

< d
(
ηk(σ ), ηk(τ )

) + 2

k
,

0 � d
(
y,ηk(τ )

) + d
(
ηk(τ ), y

)
<

2

k
.

Hence, applying Lemma 7.1, we find a triple (η, v, l) ∈ SP−∞ such that η(0) = y and for any −∞ < σ < τ < ∞,

d
(
y,η(τ)

) + d
(
η(τ), y

) = 0,

τ∫
σ

(
L

(
η(s),−v(s)

) + g
(
η(s)l(s)

))
ds � d

(
η(σ ), η(τ )

)
. (74)

The last inequality yields for any −∞ < σ < τ < ∞,

d
(
η(σ ), η(τ )

) =
τ∫

σ

(
L

(
η(s),−v(s)

) + g
(
η(s)

)
l(s)

)
ds.

Theorem 6.4 and (74) together guarantee that η(t) ∈ A for all t ∈ R. The proof is complete. �
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