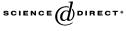


Available online at www.sciencedirect.com



journal of Algebra

Journal of Algebra 294 (2005) 41-50

www.elsevier.com/locate/jalgebra

Centers of generic algebras with involution

Esther Beneish¹

Received 9 September 2004 Available online 5 October 2005 Communicated by Michel Van den Bergh

Abstract

Let *F* be an infinite field of characteristic different from 2. Let *n* be a positive integer, and let $V = M_n(F) \oplus M_n(F)$. The projective symplectic and orthogonal groups, PSp_n and PO_n , act on *V* by simultaneous conjugation. Results of Procesi and Rowen have shown that $F(V)^{PSp_n}$ and $F(V)^{PO_n}$ are the centers of the generic division algebras with symplectic and orthogonal involutions, respectively. Saltman has shown that $F(V)^{PSp_n}$ and $F(V)^{PSp_n}$ and $F(V)^{PO_n}$ are stably isomorphic over *F* for all *n* even, and that for all *n* odd $F(V)^{PO_n}$ is stably rational over *F*. Saltman has also shown that for all *n* for which the highest power of 2 dividing *n* is less than 8, $F(V)^{PSp_n}$ and therefore $F(V)^{PO_n}$ are stably rational over *F*. We show that the result is also true for all *n* for which the highest power of 2 dividing *n* is 8.

© 2005 Published by Elsevier Inc.

Keywords: Rationality; Flasque classes; Generic algebra; Symplectic and orthogonal groups

1. Introduction

Let *F* be an infinite field of characteristic different from 2. Let $V = M_n(F) \oplus M_n(F)$, then the general linear group GL_n acts on *V* by simultaneous conjugation, and since its center acts trivially, we obtain an action of the projective general linear group PGL_n on *V*. Let PO_n and PSp_n , the projective orthogonal and symplectic groups. Results of Procesi [7]

E-mail address: ebeneish@gmail.com.

¹ Partially supported by NSF grant #DMS-0244766.

and Rowen [8] show that $F(V)^{PSp_n}$ and $F(V)^{PO_n}$ are the centers of the generic division algebras of degree *n* with symplectic and orthogonal involutions, respectively.

Let *G* be a finite group and let *F* be a field. Given a *ZG*-lattice *M*, let *F*[*M*] denote the group algebra of the abelian group *M*, and let *F*(*M*) be its quotient field. There is an action of *G* on *F*(*M*) via the *G*-action on *M*. Questions of rationality of *F*(*M*)^{*G*}, the fixed subfield of *F*(*M*) under the action of *G*, are referred to as lattice invariant problems. The special case where M = ZG is referred to as the Noether setting of *G*, and denoted by *F*(*G*).

In [10] Saltman shows that $F(V)^{PSp_n}$ is stably isomorphic to the invariants of a certain lattice over the Weyl group, W, of PSp_n . This Weyl group is the wreath product of Z/2Zby S_m , the symmetric group on m letters with m = n/2. Saltman also shows that $F(V)^{PSp_n}$ and $F(V)^{PO_n}$ are stably isomorphic over F for all n even, and that for all n odd $F(V)^{PO_n}$ is stably rational over F. Saltman further shows that $F(V)^{PSp_n}$, and thus $F(V)^{PO_n}$, is stably rational over F for all n for which the highest power of 2 dividing n is less than 8. The main result of this article is that $F(V)^{PSp_n}$, and thus $F(V)^{PO_n}$, are also stably rational over F for n = 8s with s odd. The proof goes as follows. Let n = 2m, and let U_m be the standard rank m integral representation of S_m , and let I_m be defined by the exact sequence

$$0 \to I_m \to U_m \to Z \to 0.$$

Let $D_2 = \text{Hom}(I_m/2I_m, F^*)$. In Theorems 3.2 and 3.3 we show that $F(V)^{PSp_n}$ is stably isomorphic to the invariants of the Noether setting of the group $D_2 \rtimes W$. In Theorem 3.4 we show that the invariants of the Noether settings of $D_2 \rtimes W$ and of $D_2 \rtimes S_m$ are stably isomorphic over F, and consequently $F(V)^{PSp_n}$ is stably isomorphic to the invariant of $F(D_2 \rtimes S_m)$. The main result, Theorem 3.5, now follows from Corollary 2.8, in which we show that the invariants of the Noether setting $D_2 \rtimes S_4$ are stably rational over F, from results of Katsylo and Schofield [5,9] on matrix invariants of composite size, and from Saltman's result on the rationality of $F(V)^{PO_s}$ for s odd.

2. Preliminary results and definitions

Let *G* be a finite group and let *F* be a field. A *ZG*-lattice *M* is a finitely generated *Z*-free *ZG*-module and as in the introduction, F(M) denotes the quotient field of the group algebra of the abelian group *M*. We let \mathcal{L}_G denote the category of *ZG*-lattices.

Definition 2.1. Let *G* be a finite group and let *M* be a *ZG*-lattice. *M* is said to be a permutation module if it has a *Z*-basis permuted by *G*. *M* is said to be stably permutation if there exist permutation modules *P* and *P'* such that $M \oplus P \cong P'$. *M* is said to be invertible or permutation projective if it is a direct summand of a permutation module. *M* is said to be quasi-permutation if there exists a *ZG*-exact sequence $0 \to M \to P \to R \to 0$ with *P* and *R* permutation.

Let *G* be a finite group. An equivalence relation is defined on \mathcal{L}_G as follows. *M* and *M'* in \mathcal{L}_G are equivalent if there exist permutation modules *P* and *P'* such that $M \oplus P \cong$

 $M' \oplus P'$. The set of equivalence classes forms an abelian monoid under the direct sum. The zero element is the class of all stably permutation lattices. The equivalence class of M will be denoted by [M]. For any integer n, $H^n(G, M)$ will denote the *n*th Tate cohomology group of G with coefficients in M. A ZG-lattice M is flasque if $H^{-1}(H, M) = 0$ for all subgroups H of G. A flasque resolution of M is an exact sequence

$$0 \to M \to P \to E \to 0$$

with *P* permutation and *E* flasque. It follows directly from [4, Lemma 1.1], that any *ZG*-lattice has a flasque resolution. The flasque class of *M* is [*E*], and will be denoted by $\phi(M)$. By [2, Lemma 5, Section 1] $\phi(M)$ is independent of the flasque resolution of *M*. The lattices whose flasque class is 0 are the quasi-permutation lattices.

Definition 2.2. Let *L* and *K* be extension fields of a field *F*, and let *G* be a finite subgroup of their groups of *F*-automorphisms. Then *L* and *K* are stably isomorphic as *G*-fields if there exist *G*-trivial indeterminates $x_1 \dots x_n$ and $y_1 \dots y_r$ such that $L(x_1 \dots x_n) \cong K(y_1 \dots y_r)$ as *F*-algebras, and the isomorphism respects their *G*-actions. If F = K we also say that *K* is stably rational over *F*.

Notation 2.3. For any positive integer k, Z_k will denote Z/kZ. Henceforth $G = S_m$ the symmetric group on m letters unless otherwise specified, and F will be an infinite field of characteristic different from 2. We will denote by H the subgroup of G generated by S_{m-2} and the transposition (m - 1, m).

Definition 2.4. We define the *ZG*-lattice U_m to be the standard rank *m* permutation representation of *G*, more precisely U_m has the set $\{u_1, \ldots, u_m\}$ as a *Z*-basis and for $g \in G$, $g(u_i) = u_{g(i)}$. We define *B* to be the sublattice of U_m with *Z*-basis $\{u_i + u_m: 1 \le i \le m\}$. Finally we define I_m by the following exact sequence $0 \to I_m \to U_m \to Z \to 0$.

Remark 2.5. There exists an exact sequence $0 \rightarrow B \rightarrow U_m \rightarrow Z_2 \rightarrow 0$ where the map $U_m \rightarrow Z_2$ sends u_i to 1.

Lemma 2.6. Let $D_2 = \text{Hom}(I_m/2I_m, F^*)$. The field $F(B \otimes I_m)^G$ is stably isomorphic to the invariants of the Noether setting of the group $G' = D_2 \rtimes G$.

Proof. We tensor the exact sequence of Remark 2.5 by I_m to obtain

$$0 \to B \otimes I_m \to U_m \otimes I_m \to I_m/2I_m \to 0.$$

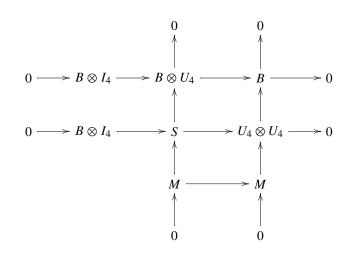
This sequence gives an embedding of $F(B \otimes I_m)$ into $F(U_m \otimes I_m)$ which respects the *G*-actions. By Galois theory $F(U_m \otimes I_m)$ is a Galois extension of $F(B \otimes I_m)$ with group D_2 . Now we have Galois extensions

$$F(B \otimes I_m)^G \subset F(B \otimes I_m) \subset F(U_m \otimes I_m)$$

and it is easy to see that the Galois group of $F(U_m \otimes I_m)$ over $F(B \otimes I_m)^G$ is G'. Since the action of G' on $F(U_m \otimes I_m)$ is faithful and F-linear, $F(U_m \otimes I_m)$ is stably isomorphic to F(G') as G'-fields by [1, Lemma 1.3] and the result follows. \Box

Proposition 2.7. Let G be the symmetric group on 4 letters. The flasque class of the ZGlattice $B \otimes I_4$ is equal to 0.

Proof. There is a map from $U_4 \otimes U_4$ to *B* sending $u_i \otimes u_j$ to $u_i - u_j$ if $i \neq j$ and $u_i \otimes u_i$ to $2u_i$. Now form the pullback diagram



Since $\operatorname{Res}_{S_3}^G B \cong \operatorname{Res}_{S_3}^G U_4$ and since $U_4 \cong ZG/S_3$ the middle horizontal sequence splits by [2, Lemma 2, Section 1]. Furthermore, we have $B \otimes U_4 \cong U_4 \otimes U_4$ by Frobenius reciprocity. Therefore we have an exact sequence

$$0 \to B \otimes I_4 \to M \oplus B \otimes U_4 \to U_4 \otimes U_4 \to 0.$$

By [2, Lemma 7, Section 1], $\phi(M) = \phi(B \otimes I_4)$, where as above $\phi(M)$ denotes the flasque class of *M*. Now changing to multiplicative notation, we let the set $\{y_{ij}: 1 \leq i, j \leq 4\}$ be a *Z*-basis for $U_4 \otimes U_4$, with y_{ij} corresponding to $u_i \otimes u_j$. We define the sets

$$A_{1} = \{t_{ij} = y_{ij}y_{ji}: 1 \leq i < j \leq 4\},\$$

$$A_{2} = \{x_{1j} = y_{11}y_{1j}^{-2}y_{jj}^{-1}: 2 \leq j \leq 4\},\$$

$$A_{3} = \{w_{ij} = y_{1i}y_{ij}y_{j1}: 1 < i < j \leq 4\}.$$

We also defined $x_{ij} = y_{ii}y_{ij}^{-2}y_{jj}^{-1}$ for all i < j. It is not difficult to check that $A_1 \cup A_2 \cup A_3$ is a basis for M over Z. As above H is defined to be the subgroup of G generated by S_2 and the transposition (3, 4). The set A_1 is a Z-basis for ZG/H, since A_1 is a transitive G-set and the stabilizer of t_{34} is H. The idea for the remainder of this proof comes from

the proof of [6, Lemma 4, Section 3]. Let V_4 be the Klein four-group, then $G/V_4 \cong S_3$ and we let $T = ZS_3/S_2$. Consider the exact sequence

$$0 \to K \to M \oplus Z \to U_4 \oplus T \to 0,$$

where the map $M \oplus Z \to U_4 \oplus T$ is defined as follows. First let $\{t_1, t_2, t_3\}$ be a multiplicative Z-basis for *T*. Then

- $t_{12} \rightarrow u_1 u_2 t_1 t_2$ and for all $g \in G \ t_{g(1),g(2)} = u_{g(1)} u_{g(2)} t_{\bar{g}(1)} t_{\bar{g}(2)}$ where $\bar{g} = g V_4$.
- $x_{12} \rightarrow (u_1 u_2 t_1 t_2)^{-1}$ and for all $g \in G$ $x_{g(1),g(2)} = (u_{g(1)} u_{g(2)} t_{\bar{g}(1)} t_{\bar{g}(2)})^{-1}$ where $\bar{g} = gV_4$.
- $w_{ij} \rightarrow u_1 u_i u_j t_1 t_2 t_3$.
- $z \rightarrow u_1 u_2 u_3 u_4 t_1 t_2 t_3$.

A direct calculation shows that this map is a group epimorphism whose kernel K has as a Z-basis

$$\{t_{ij}x_{ij}: 1 \leq i < j \leq m\}.$$

In terms of the y_{ij} 's, $t_{ij}x_{ij} = y_{ii}y_{ij}^{-1}y_{jj}^{-1}y_{jj}$, and so $K \cong ZG/H^-$, that is ZG/H tensored with the sign representation of *G*. Therefore, we have

$$0 \to ZG/H^- \to M \oplus Z \to U \oplus T \to 0.$$

By [2, Lemma 7, Section 1] $\phi(M) = \phi(ZG/H^-)$ and the latter is equal to 0, since the following sequence is exact

$$0 \rightarrow ZG/H^- \rightarrow ZG/S_2 \rightarrow ZG/H \rightarrow 0.$$

Corollary 2.8. The invariants of the Noether setting of the group $G' = T_2 \rtimes S_4$ are stably rational over the base field *F*.

Proof. By Lemma 2.6, $F(B \otimes I_4)^{S_4}$ and $F(G')^{G'}$ are stably isomorphic, and by [1, Lemma 1.4], $F(B \otimes I_4)^{S_4}$ is stably rational over *F* since $\phi(B \otimes I_4) = 0$. \Box

3. The center

In [10], Saltman gives a description of Z_{2m} , the center of the generic division algebra of degree 2m with symplectic involution over a base field F, as a lattice invariant problem over the Weyl group W of PSp_n . This description will formulated in Lemma 3.1. Let Tbe the direct sum of m copies of Z_2 , let $G = S_m$ and let W be the semidirect product of T by G, where G acts on T by permutating the summands; equivalently W is the wreath product of T by Z_2 . We use the following notation some of which is the same as in Section 2.

- $G' = S_{2m}$, and $G = S_m$.
- $W = T \rtimes G$, where we let $\{\sigma_1, \ldots, \sigma_m\}$ generate *T* and *T* embeds into *G'* by sending σ_i to the transposition (i, m + i).
- $U_{2m} \cong ZG'/S_{2m-1}$ and we let the set $\{u_i: i = 1, \dots, 2m\}$ be its Z-basis.
- $U_m \cong ZG/S_{m-1}$.
- I_{2m} will be defined by the exact sequence $0 \rightarrow I_{2m} \rightarrow U_{2m} \rightarrow Z \rightarrow 0$.
- I_m will be defined by the exact sequence $0 \rightarrow I_m \rightarrow U_m \rightarrow Z \rightarrow 0$.
- *Y'* will be the *ZW*-lattice with *Z*-basis $\{y_{ij}: i, j = 1, ..., 2m\}$ and with the following *W*-action.

We let G act on the set $\{1, ..., 2m\}$ with the usual action on $\{1, ..., m\}$ and for $k \in \{1, ..., m\}$ g(m + k) = g(k). Moreover,

$$\sigma_i(k) = \begin{cases} k & \text{if } i \neq k \mod m, \\ m+i & \text{if } i = k \mod m \text{ and } i \leq m, \\ i-m & \text{if } i = k \mod m \text{ and } i > m. \end{cases}$$

Now for $w \in W$, $wy_{ij} = y_{w(i),w(j)}$.

The following lemma is in [10], we include the constructive part of the proof as it will be needed later.

Lemma 3.1. We have an epimorphism from Y' to I_{2m}/I_m with kernel Y_1 , such that $F(Y_1)^W$ is stably isomorphic to the center of the generic division algebra of degree 2m with symplectic involution.

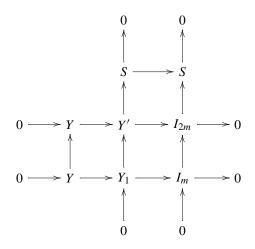
Proof. A *Z*-basis for I_{2m} is the set $\{u_i - u_m, u_{m+i} - u_{2m}: i = 1, ..., m - 1, u_m - u_{2m}\}$, and the sublattice with *Z*-basis $\{u_i - u_m + u_{m+i} - u_{2m}: i = 1, ..., m - 1\}$ is isomorphic to I_m . Therefore, we have an exact sequence of *ZW*-lattices

$$0 \to I_m \to I_{2m} \to S \to 0.$$

We also have the exact sequence

$$0 \to Y \to Y' \to I_{2m} \to 0$$

where the map $Y' \to I_{2m}$ sends y_{ij} to $u_i - u_j$. We form the pullback of the maps $Y' \to I_{2m}$ and $I_m \to I_{2m}$ to obtain the diagram



By [10, Proposition 1.5], $F(Y_1)^W$ is stably isomorphic $F(V)^{PSp_n}$ and the latter is the center of the generic division algebra of degree 2m with symplectic involution by [7, pp. 377–378] and [8, p. 184]. \Box

Recall that $D_2 = \text{Hom}(I_m/2I_m, F^*)$. Let T_1 be the subgroup of T generated by $\{\sigma_1, \ldots, \sigma_{m-1}\}$. We define

$$U \cong Z[W/T_1S_{m-1}] \otimes I_{T/T_1},$$

where I_{T/T_1} is the kernel of the augmentation map from $Z[T/T_1]$ to Z. We have $\operatorname{Res}_W^{G'}U_{2m} = \operatorname{Res}_W^{G'}ZG'/S_{2m-1} = ZW/T_1S_{m-1}$ by Mackey's subgroup theorem [3, Theorem 10.13].

Theorem 3.2. *Keeping the above notation, there is a ZW-lattice* Y'' *defined by the exact sequence*

$$0 \to Y_1 \to Y'' \to \tilde{U} \to 0$$

such that $F(Y'')^W$ is equivalent to the invariants of the Noether setting of the group $D_2 \rtimes W$.

Proof. As in Lemma 3.1, $S \cong I_{2m}/I_m$. Let $s_i = u_i - u_m + I_m$ for i = 1, ..., m - 1, and let $z = u_m - u_{2m} + I_m$. Then it is immediate that the set $\{s_1, ..., s_{m-1}, z\}$ is a *Z*-basis for *S*. Now consider the sublattice *K* of *S* with *Z*-basis $\{t_i = 2s_i + z: i = 1, ..., m - 1, t_m = z\}$. For i = 1, ..., m - 1 we have

$$t_i = 2(u_i - u_m) + u_m - u_{2m} + I_m$$

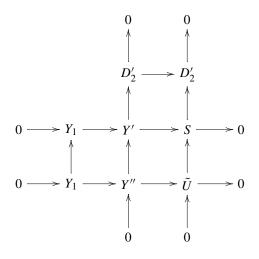
= $u_i - u_m - (u_{m+i} - u_{2m}) + u_m - u_{2m} + I_m = u_i - u_{m+i} + I_m$

So *K* is isomorphic to U_m as a *G*-module, and $\sigma_i(t_k) = -t_k$ if k = i, $\sigma_i(t_k) = t_k$ otherwise. We have the *W*-exact sequence

$$0 \to K \to U_{2m} \to U_m \to 0$$

where the map $U_{2m} \to U_m$ sends u_i to $u_i \mod m$. Therefore $K = ZW \otimes_{TS_{m-1}} I_{T/T_1}$ and hence $K \cong \tilde{U}$.

A simple computation now shows that $S/\tilde{U} \cong D'_2 = \text{Hom}(D_2, F^*)$. Now we form the pullback of the maps $Y' \to S$ and $\tilde{U} \to S$ to obtain



The middle vertical sequence gives a *W*-embedding of F(Y') into F(Y') and by Galois theory $F(Y')^{D_2} \cong F(Y')$ as *W*-fields. Furthermore, $F(Y')^{D_2 \rtimes W} \cong F(Y'')^W$. Since the action of $D_2 \rtimes W$ on F(Y') is faithful and *F*-linear, $F(Y')^{D_2 \rtimes W}$ is stably isomorphic to $F(D_2 \rtimes W)^{D_2 \rtimes W}$ by [1, Lemma 1.3]. \Box

Theorem 3.3. The fields F(Y'') and $F(Y_1)$ are stably isomorphic as W-fields. Consequently the center of the generic division algebra of degree 2m with symplectic involution is equivalent to the invariants of the Noether setting $F(D_2 \rtimes W)$.

Proof. We have the ZW-exact sequence

$$0 \to Y_1 \to Y'' \to \tilde{U} \to 0$$

and since $U_m \cong ZW/TS_{m-1}$ we also have

$$0 \rightarrow \tilde{U} \rightarrow U_{2m} \rightarrow U_m \rightarrow 0$$

Let $L = F(Y_1)$. Then $F(Y'') \cong L_{\alpha}(\tilde{U})$ for some $\alpha \in \operatorname{Ext}^1_W(\tilde{U}, L^*)$. We show that $\operatorname{Ext}^1_W(\tilde{U}, L^*) = 0$. We have

$$\operatorname{Ext}^{1}_{W}(\tilde{U}, L^{*}) \cong \operatorname{Ext}^{1}_{W}(ZW \otimes_{ZTS_{m-1}} I_{T/T_{1}}, L^{*}) \cong \operatorname{Ext}^{1}_{TS_{m-1}}(I_{T/T_{1}}, L^{*})$$

by Shapiro's Lemma. Set $\hat{I} = \text{Hom}(I_{T/T_1}, L^*)$, then the inflation-restriction sequence gives

$$0 \to H^1(TS_{m-1}/T_1S_{m-1}, \hat{I}^{T_1S_{m-1}}) \to H^1(TS_{m-1}, \hat{I}) \to H^1(T_1S_{m-1}, \hat{I}).$$

Now $\hat{I} \cong L^*$ as a $T_1 S_{m-1}$ -module, so $H^1(T_1 S_{m-1}, \hat{I}) = 0$ by Hilbert's Theorem 90, and $\hat{I}^{T_1 S_{m-1}} = \text{Hom}_{T_1 S_{m-1}}(I, L^*) \cong (L^*)^{T_1 S_{m-1}} \cong (L^{T_1 S_{m-1}})^*$. Then

$$H^{1}(TS_{m-1}/T_{1}S_{m-1}, \hat{I}^{T_{1}S_{m-1}}) \cong H^{1}(TS_{m-1}/T_{1}S_{m-1}, (L^{T_{1}S_{m-1}})^{*}) = 0$$

again by Hilbert's Theorem 90, since the action of TS_{m-1}/T_1S_{m-1} on $L^{T_1S_{m-1}}$ is faithful. Therefore $\operatorname{Ext}^1_W(\tilde{U}, L^*) = 0$ and hence $F(Y'') \cong L(\tilde{U}) \cong F(Y_1 \oplus \tilde{U})$ as *W*-fields.

Since $\operatorname{Res}_G^W \tilde{U} \cong U_m$ we choose the same Z-basis for both, namely the set $\{u_1, \ldots, u_m\}$ with the natural action of W, and we view this basis as multiplicative. So $L(\tilde{U}) = L(u_1, \ldots, u_m)$. Set

$$z_i = \frac{1 + u_i^{-1}}{1 - u_i^{-1}},$$

then $L(u_1, \ldots, u_m) = L(z_1, \ldots, z_m)$ and the action of W is L-linear, since $\sigma_i(z_k) = (-1)^{\delta_{ik}} z_k$ where δ is the Kronecker delta. Therefore $F(Y_1 \oplus \tilde{U}) = L(z_1, \ldots, z_m)$ and L = F(Y'') are stably isomorphic as W-fields by [1, Lemma 1.3]. By Theorem 3.2 the last statement follows. \Box

Theorem 3.4. The invariants of the Noether settings of the groups $D_2 \rtimes W$ and $D_2 \rtimes G$ are stably isomorphic over F. Consequently the center of the generic division algebra of degree 2m with symplectic involution is equivalent to the invariants of the Noether setting $F(D_2 \rtimes G)$.

Proof. By [1, Lemma 1.3] F(M) and $F(D_2 \rtimes W)$ are stably isomorphic over F for any F-vector space M on which $D_2 \rtimes W$ acts linearly and faithfully. Note that $D_2 \rtimes W = (D_2 \times T) \rtimes G$ by definition. So let $M = F \otimes_Z (U_m \otimes I_m \oplus U_m)$ with the usual G-action and with the following actions of T and D_2 . We let T act trivially on $U_m \otimes I_m$. Recall that $D_2 = \text{Hom}(I_m/2I_m, F^*)$. We obtain a faithful $D_2 \rtimes G$ -faithful action on $F(U_m \otimes I_m)$ via the exact sequence of Remark 2.5, namely

$$0 \rightarrow B \rightarrow U_m \rightarrow Z_2 \rightarrow 0$$
,

which we now tensor by I_m over Z

$$0 \to B \otimes I_m \to U_m \otimes I_m \to I_m/2I_m \to 0.$$

Now by Kummer theory $D_2 \rtimes G$ acts *F*-linearly and faithfully on $F(U_m \otimes I_m)$. We take $\{y_{ij}: i, j = 1, ..., m, i \neq j\}$ as a multiplicative basis for $U_m \otimes I_m$. We let D_2 act trivially on U_m , and we let $\sigma_k(u_i) = -u_i$ if k = i and $\sigma_k(u_i) = u_i$, otherwise. Then

$$F(M)^T = F(y_{ij}) \left(u_1^2, \dots, u_m^2 \right)$$

and by [1, Lemma 1.3] $F(M)^T$ is stably isomorphic to $F(U_m \otimes I_m)$ as a $D_2 \rtimes G$ -field. Since the action of $D_2 \rtimes G$ on $F(U_m \otimes I_m)$ is linear and faithful, $F(U_m \otimes I_m)$ is stably isomorphic to the Noether setting $F(D_2 \rtimes G)$. The last statement follows from Theorem 3.3. \Box

Theorem 3.5. For *s* odd, the center of the generic division algebra of degree 8*s* with involution over an infinite field *F* of characteristic different from 2 is stably rational over *F*.

Proof. We let *G* denote the symmetric group on 4 letters, and hence $W = T \rtimes G$ where now *T* is direct sum of 4 copies of Z_2 . Let n = 8s. By [10, Corollary 0.6 and Theorem 1.1] the centers of the generic division algebras of even degree with symplectic and orthogonal involutions are stably isomorphic. Let Z_s , Z_8 and Z_n be the centers of the generic division algebras of degrees *s*, 8, and *n* with the appropriate involutions. The proof of [10, Lemma 5.2] shows that stable rationality of Z_s and Z_8 implies stable rationality of Z_n . An earlier proof from which this result follows can be found in [5,9]. By [10, Theorem 1.2] Z_s is rational over *F*, thus it remains to prove that Z_8 is stably rational over *F*. We keep all the above notation. By Theorem 3.3, Z_8 is stably isomorphic to the invariants of the Noether setting $F(D_2 \rtimes W)$. By Theorem 3.4, these invariants are stably isomorphic to those of $D_2 \rtimes G$ and the result now follows by Corollary 2.8. \Box

References

- E. Beneish, Lattice invariants and the center of the generic division ring, Trans. Amer. Math. Soc. 356 (4) (2003) 1609–1622.
- [2] J.L. Colliot-Thelene, J.P. Sansuc, La *R*-equivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977) 175–230.
- [3] C. Curtis, I. Reiner, Methods of Representation Theory, vol. 1, Springer-Verlag, Berlin, 1982.
- [4] S. Endo, T. Miyata, On the classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1974) 85–104.
- [5] P.I. Katsylo, Stable rationality of linear representations of the groups PSL₆ and PSL₁₂, Mat. Zametki 48 (2) (1990) 49–52 (in Russian). Translation in: Math. Notes 48 (1–2) (1991) 751–753.
- [6] E. Formanek, The center of the ring of 3×3 generic matrices, Linear Multilinear Algebra 7 (1979) 203–212.
- [7] C. Procesi, The invariant theory of $n \times n$ -matrices, Adv. Math. 19 (3) (1976) 306–381.
- [8] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.
- [9] A. Schofield, Matrix invariants of composite size, J. Algebra 147 (2) (1991) 345-349.
- [10] D. Saltman, Invariant fields of symplectic and orthogonal groups, J. Algebra 258 (2002) 507-534.