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Abstract

Let F be an infinite field of characteristic different from 2. Letbe a positive integer, and let
V = M, (F)® M, (F). The projective symplectic and orthogonal grolpSp, andPO,, act onV by
simultaneous conjugation. Results of Procesi and Rowen have showR@HtSR and £ (v)POr
are the centers of the generic division algebras with symplectic and orthogonal involutions, respec-
tively. Saltman has shown that V)PSR and F(V)POr are stably isomorphic ovef for all n even,
and that for allz odd F(V)P% is stably rational ovefF. Saltman has also shown that for alfor
which the highest power of 2 dividingis less than 8F (V)PSR and thereforer (V)POr are stably
rational overF. We show that the result is also true foriaflor which the highest power of 2 dividing
nis 8.
0 2005 Published by Elsevier Inc.
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1. Introduction

Let F be an infinite field of characteristic different from 2. Dét= M,,(F) ® M,,(F),
then the general linear groupL,, acts onV by simultaneous conjugation, and since its
center acts trivially, we obtain an action of the projective general linear gbgsip, on V.
Let PO, andPSp,, the projective orthogonal and symplectic groups. Results of Procesi [7]
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and Rowen [8] show thak (V)PSh and F(V)PO: are the centers of the generic division
algebras of degree with symplectic and orthogonal involutions, respectively.

Let G be a finite group and leF be a field. Given & G-lattice M, let F[M] denote
the group algebra of the abelian grot, and letF (M) be its quotient field. There is
an action ofG on F (M) via the G-action onM. Questions of rationality of (M), the
fixed subfield ofF (M) under the action of7, are referred to as lattice invariant problems.
The special case whed = ZG is referred to as the Noether setting@f and denoted
by F(G).

In [10] Saltman shows that (V)PSk is stably isomorphic to the invariants of a certain
lattice over the Weyl grouply’, of PSp,. This Weyl group is the wreath product @f/2Z
by S,,, the symmetric group om letters withm = n/2. Saltman also shows thai v )PSh
andF (V)P are stably isomorphic ovef for all n even, and that for alt odd F (V)P is
stably rational ovef. Saltman further shows that(V)PSR and thusF (V)P is stably
rational overF for all n for which the highest power of 2 dividing is less than 8. The
main result of this article is that(V)PS#, and thusF (V)P are also stably rational over
F for n = 8s with s odd. The proof goes as follows. Let= 2m, and letU,, be the standard
rankm integral representation &f,,, and letl,, be defined by the exact sequence

0—>1I1,—->U,—Z—0.

Let D, = Hom(1,,/21,,, F*). In Theorems 3.2 and 3.3 we show thatV)PSh is stably
isomorphic to the invariants of the Noether setting of the grdgp<« W. In Theorem 3.4

we show that the invariants of the Noether setting®efx W and of D, x S, are stably
isomorphic overF, and consequently (V)PSR is stably isomorphic to the invariant of

F (D2 x S,,). The main result, Theorem 3.5, now follows from Corollary 2.8, in which we
show that the invariants of the Noether settibg x S4 are stably rational oveF, from
results of Katsylo and Schofield [5,9] on matrix invariants of composite size, and from
Saltman’s result on the rationality &f(V)P% for s odd.

2. Preliminary results and definitions

Let G be a finite group and leF be a field. AZG-lattice M is a finitely generated
Z-free ZG-module and as in the introductiot;(M) denotes the quotient field of the
group algebra of the abelian gronp. We let L denote the category &fG-lattices.

Definition 2.1. Let G be a finite group and leM be aZG-lattice. M is said to be a
permutation module if it has Z-basis permuted b§. M is said to be stably permutation if
there exist permutation modul@sand P’ such that¥ & P = P’. M is said to be invertible
or permutation projective if it is a direct summand of a permutation moddlés said to
be quasi-permutation if there exist&Z#& -exact sequence8& M — P — R — 0 with P
andR permutation.

Let G be a finite group. An equivalence relation is definedan as follows.M and
M’ in L are equivalent if there exist permutation modukeand P’ such that @ P =
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M’ & P’. The set of equivalence classes forms an abelian monoid under the direct sum.
The zero element is the class of all stably permutation lattices. The equivalence dlass of
will be denoted by M]. For any integer, H" (G, M) will denote thenth Tate cohomology
group of G with coefficients inM. A ZG-lattice M is flasque ifH~1(H, M) = 0 for all
subgroupsH of G. A flasque resolution o# is an exact sequence

O->M—-P—>E—DO0

with P permutation andt flasque. It follows directly from [4, Lemma 1.1], that a#yG-
lattice has a flasque resolution. The flasque cladg &f[ £], and will be denoted by (M).
By [2, Lemma 5, Section 1§ (M) is independent of the flasque resolutionMt The
lattices whose flasque class is 0 are the quasi-permutation lattices.

Definition 2.2. Let L andK be extension fields of a fiel#f, and letG be a finite subgroup
of their groups ofF-automorphisms. Theh and K are stably isomorphic a&-fields
if there exist G-trivial indeterminatesx;...x, and y1...y, such thatL(x;...x,) =
K(y1...y,) as F-algebras, and the isomorphism respects teactions. If F = K we
also say thakK is stably rational oveF.

Notation 2.3. For any positive integet, Z; will denote Z/kZ. HenceforthG = S, the
symmetric group om: letters unless otherwise specified, anavill be an infinite field of
characteristic different from 2. We will denote i the subgroup of; generated by, _»

and the transpositioGn — 1, m).

Definition 2.4. We define theZ G-lattice U,, to be the standard rank permutation rep-
resentation of5, more precisel\l,, has the setus, ..., u,,} as aZ-basis and fog € G,
g(u;) = ug(;y. We defineB to be the sublattice df,, with Z-basis{u; + u;,: 1 <i <m}.
Finally we definel,, by the following exact sequence® I,, — U,, - Z — 0.

Remark 2.5. There exists an exact sequence>0B — U,, — Z» — 0 where the map
U, — Z» sendsy; to 1.

Lemma 2.6. Let D, = Hom(I,, /21,,, F*). The fieldF (B ® I,,)¢ is stably isomorphic to
the invariants of the Noether setting of the graip= D, x G.

Proof. We tensor the exact sequence of Remark 2.%,pto obtain
0—-B®Il,—-U,®1I,— I,/2I,, — 0.

This sequence gives an embeddingiafB ® 1,,,) into F(U,, ® I,,) which respects the

G-actions. By Galois theory (U,, ® I,,) is a Galois extension of'(B ® I,) with

group D>. Now we have Galois extensions

FB®1,)°  CF(B®I,) CFUy® Iy)
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and it is easy to see that the Galois groupFal/,, ® I,,) over F(B ® I,,)¢ is G’'. Since
the action ofG’ on F (U, ® I,,,) is faithful andF-linear, F (U,, ® I,,,) is stably isomorphic
to F(G’) asG’-fields by [1, Lemma 1.3] and the result followsQ

Proposition 2.7. Let G be the symmetric group ohletters. The flasque class of tie;-
lattice B ® I4 is equal to0.

Proof. There is a map front/4 ® Us to B sendingy; @ uj tou; —u; if i # j andu; ® u;
to 2u;. Now form the pullback diagram

0 0
O0——=BQI4——= BQUy B 0
0——=B®1I4 S Uso®Us ——0

0 0

Since RegaB = Re§3U4 and sincd/4 = ZG/S3 the middle horizontal sequence splits by
[2, Lemma 2, Section 1]. Furthermore, we hakex Uy = Uy ® Uy by Frobenius reci-
procity. Therefore we have an exact sequence

0->BQRItI > MPBRXUs— UsQUs— 0.

By [2, Lemma 7, Section 1} (M) = ¢ (B ® 1), where as abovg (M) denotes the flasque
class ofM. Now changing to multiplicative notation, we let the ¢gt: 1<i, j <4} bea
Z-basis forUs ® Uy, with y;; corresponding ta; ® « ;. We define the sets

Ar={tij = yijyjit 1<i < j <4,
Az ={x1; =y11y;7yj 2<j <4},
Az={w;j = yuyijyj1: 1<i<j<4.

We also define;; = yi;y;;°y;; foralli < j. Itis not difficult to check that U Az U As

y
is a basis forM over Z. As algoveH is defined to be the subgroup 6fgenerated bys»
and the transpositiofB3, 4). The setA; is a Z-basis forZG/H, since A1 is a transitive

G-set and the stabilizer a4 is H. The idea for the remainder of this proof comes from
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the proof of [6, Lemma 4, Section 3]. L& be the Klein four-group, the6'/ V4 = S3 and
we letT = Z S3/S>. Consider the exact sequence

O-K—->M®Z—->UsT — 0,

where the mapM & Z — U, @ T is defined as follows. First Ity t2, 3} be a multiplica-
tive Z-basis forT'. Then

t12 — uiuztitp and for allg € G fe(D),g(2) = Ug(WUg(2)la(D)1z(2) whereg = gVj.

X12 —> (ulugtll‘z)_l and for all geG Xg(1),g(2 = (ug(l)ug(z)tg(l)l‘g(z))_l where
8§ =28Va.

® W;; —> ULU;U 11113,

® 7 —> ULUU3UAL LS.

A direct calculation shows that this map is a group epimorphism whose k&rhak as a
Z-basis

{tijxij: 1<i < j<m}.

In terms of they;;'s, t;jxi; = yiiy;;'y;;"yji, and soK = ZG/H ", thatisZG/H tensored
with the sign representation 6f. Therefore, we have

0—->Z2ZG/H > MeZ—->UaT —0.

By [2, Lemma 7, Section 1 (M) = $(ZG/H~) and the latter is equal to 0, since the
following sequence is exact

0—-ZG/H — Z2G/S2 - ZG/H — 0. O

Corollary 2.8. The invariants of the Noether setting of the gra@ip= T> x S4 are stably
rational over the base field'.

Proof. By Lemma 2.6,F(B ® 12)% and F(G)¢ are stably isomorphic, and by [1,
Lemma 1.4],F (B ® I4)%4 is stably rational oveF since¢ (B ® I) =0. O

3. Thecenter

In [10], Saltman gives a description @b,,, the center of the generic division algebra
of degree & with symplectic involution over a base field, as a lattice invariant problem
over the Weyl group¥ of PSp,. This description will formulated in Lemma 3.1. L&t
be the direct sum of: copies ofZ, let G = S,, and letW be the semidirect product
of T by G, whereG acts onT by permutating the summands; equivaleni#y is the
wreath product of” by Z». We use the following notation some of which is the same as in
Section 2.
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e G' =Sy, andG = S,,.

W =T x G, where we le{o1, ..., 0,} generatel' andT embeds inta5’ by sending
o; to the transpositiol, m + 7).

Uy = ZG'/So—1 and we letthe sdlu;: i =1, ..., 2m} be itsZ-basis.
Un=ZG/Sp_1.

I, will be defined by the exact sequencex0ly,, — Uz, — Z — 0.

I, will be defined by the exact sequencex0l,, - U,, - Z — 0.

Y’ will be the ZW-lattice with Z-basis{y;;: i, j =1, ..., 2m} and with the following
W -action.

We let G act on the sefl,...,2m} with the usual action ofl,...,m} and fork €
{1,...,m} g(m + k) = g(k). Moreover,

k if i £k modm,
oitky={m+i ifi=kmodm andi <m,
i—m ifi=kmodm andi > m.

Now forw e W, WYij = Yw(i),w(j)-
The following lemma is in [10], we include the constructive part of the proof as it will
be needed later.

L emma 3.1. We have an epimorphism from to I,,, /1,, with kernelYy, such thatF (Y1)
is stably isomorphic to the center of the generic division algebra of degyrewith sym-
plectic involution.

Proof. A Z-basis forly, is the sef{lu; — u;,, umsi —uzm: i=21,....,m — 1, uy —uzpy},
and the sublattice witlZ-basis{u; — u;, + uyr;i —uyn: i =1,...,m — 1} is isomorphic
to I,,,. Therefore, we have an exact sequencg vf-lattices

0—>1I,— Ih,— S—0.

We also have the exact sequence

0-Y—>Y —>D,—0

where the may’ — I, sendsy;; tou; —u ;. We form the pullback of the mags — I,
andl,, — I, to obtain the diagram



E. Beneish / Journal of Algebra 294 (2005) 41-50 a7

0 Y Y’ I 0
0 Y Y1 Ly 0
0 0

By [10, Proposition 1.5]F (Y1) is stably isomorphid (V)PSR and the latter is the center
of the generic division algebra of degree @ith symplectic involution by [7, pp. 377-378]
and [8, p. 184]. O

Recall that D, = Hom(1,,/21,,, F*). Let T1 be the subgroup off generated by
{o1,...,0m_1}. We define

U=Z[W/T1Su-1]® I/,

where I7,7, is the kernel of the augmentation map froA{7/T;] to Z. We have
ReS Uy, = Re) ZG' /Som—1 = ZW/ T1S,—1 by Mackey’s subgroup theorem [3, The-
orem 10.13].

Theorem 3.2. Keeping the above notation, there isZa¥ -lattice Y defined by the exact
sequence

0>Y1—>Y' ->U—0

such that F(Y")%is equivalent to the invariants of the Noether setting of the group
Dy x W.

Proof. AsinLemma3.18 = I, /1. Lets; =u; —upy + Iy fori=1,...,m—1, and let
Z=u, —uzy + I,. Then it is immediate that the sg#, ..., s,,_1, z} is a Z-basis forS.
Now consider the sublattick of S with Z-basis{t; =2s; +z: i=1,...,m—1, t,, =z}.
Fori=1,...,m — 1 we have

ti =20 — Up) +up — uzm + Iy

Zui_um_(”m+i_MZm)+um_”2m+Im=Mi_um+i+1m-
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SoK isisomorphic taU,, as aG-module, ands; (tx) = —1#; if k =i, o;(tx) = # otherwise.
We have thé¥ -exact sequence

0—-K—->Uy,—>U,—0

where the mag/z,, — U,, sendsu; t0 u; modm. ThereforeK = ZW ®rs,,_, Ir/7, and
hencek = U. i

A simple computation now shows th&fU = D/, = Hom(D, F*). Now we form the
pullback of the maps’ — S andU — S to obtain

0 Y1 Y’ S 0
0 Y1 Y U 0
0 0

The middle vertical sequence givedia&embedding ofF (Y”) into F(Y’) and by Galois
theory F(Y')P2 = F(Y’) asW-fields. FurthermoreF (Y')P2*W = F(y")¥. Since the ac-
tion of Do x W on F(Y’) is faithful and F-linear, F(Y')P2*W s stably isomorphic to
F (D2 x W)P2*W py [1, Lemma 1.3]. O

Theorem 3.3. The fieldsF(Y”) and F(Y;) are stably isomorphic asV-fields. Conse-
quently the center of the generic division algebra of degree 2m with symplectic involution
is equivalent to the invariants of the Noether settingd, x W).

Proof. We have theZ W-exact sequence
0->Y1—>Y' ->U—0
and sincd/,, = ZW/TS,,_1 we also have

O—>0—>U2m—>Um—>0.
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Let L = F(Y1). Then F(Y") = Lo(U) for somea e Exth (U, L*). We show that
Ext}, (U, L*) = 0. We have

Exty (U, L*) = ExXty, (ZW ®z7s,_1 Ir/7. L*) Extrg . (Ir/7,, L¥)
by Shapiro’s Lemma. Sét= Hom(I7,r;, L*), then the inflation-restriction sequence gives
0— HYTSy_1/T1Sm—1, I™51) — HY(T Sp_1, 1) = HY(T1Sn-1, I).

Now [ = L* as aT1S,,—1-module, SOH(T15,,_1, I) = 0 by Hilbert's Theorem 90, and
[T5n-1 = Homyy s, o (1, L*) = (L*)TtSn-1 = (LTaSn-1)* Then

HY (T Sp—1/ T1Sp—1, IT51) = HY(T Spy_1/ T1Sm—1, (LT51)") =0

again by HiIbert’§ Theorem 90, since the actiorvqi‘m_l/ T1Sm—1.0Nn L7151 js faithful.
Therefore E>%‘,(U, L*y=0and henc& (Y= L(U)= F(Y1® U) asW-fields.
Since Regl? = U,, we choose the san#-basis for both, namely the st;, ..., u;,}

with the natural action of, and we view this basis as multiplicative. SqU) =
L(uq, ..., uy). Set

1+ui_1

Zi = 7>
1—ui1

then L(u1,...,un) = L(z1,...,2») and the action ofW is L-linear, sinceo;(zx) =
(=1)%kz; where$ is the Kronecker delta. ThereforB(Y1 & U) = L(z1,...,zs) and

L = F(Y") are stably isomorphic a® -fields by [1, Lemma 1.3]. By Theorem 3.2 the
last statement follows. O

Theorem 3.4. The invariants of the Noether settings of the grolpsx W and D> x G

are stably isomorphic oveF. Consequently the center of the generic division algebra of
degree2m with symplectic involution is equivalent to the invariants of the Noether setting
F(D2 x G).

Proof. By [1, Lemma 1.3]F(M) and F (D, x W) are stably isomorphic over for any
F-vector spaceM on which D, x W acts linearly and faithfully. Note thab, x W =

(D2 x T) x G by definition. So le = F ® 7 (U, ® I,, ® U,,) with the usualG-action
and with the following actions of and D,. We letT act trivially onU,, ® I,,. Recall that
D> =Hom(1,,/21,,, F*). We obtain a faithfulD, x G-faithful action onF (U,, ® I,,) via

the exact sequence of Remark 2.5, namely

O—-B—->U,;— Z—0,
which we now tensor by, overZ

0O—-B®Il,—-U,1,— I,/2I,, — 0.
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Now by Kummer theoryD, x G acts F-linearly and faithfully onF (U,, ® I,,). We take
{yij: i,j=1,...,m, i # j} as a multiplicative basis fd¥/,, ® I,,. We let D> act trivially
onU,, and we leby (u;) = —u; if k =i andoy(u4;) = u;, otherwise. Then

FMT = F(yij)(ul, ..., u2)
and by [1, Lemma 1.3F (M)7 is stably isomorphic ta=(U,, ® I,,) as aD» x G-field.
Since the action oD, x G on F(U,, ® I,;) is linear and faithful, F (U,, ® I,,,) is stably

isomorphic to the Noether setting(D2 x G). The last statement follows from Theo-
rem3.3. O

Theorem 3.5. For s odd, the center of the generic division algebra of degdeawith
involution over an infinite field” of characteristic different fror is stably rational ovelr'.

Proof. We let G denote the symmetric group on 4 letters, and héfice T x G where
now 7 is direct sum of 4 copies df,. Letn = 8s. By [10, Corollary 0.6 and Theorem 1.1]
the centers of the generic division algebras of even degree with symplectic and orthogonal
involutions are stably isomorphic. Let;, Zg and Z,, be the centers of the generic divi-
sion algebras of degreas 8, andn with the appropriate involutions. The proof of [10,
Lemma 5.2] shows that stable rationality4f and Zg implies stable rationality of,,. An
earlier proof from which this result follows can be found in [5,9]. By [10, Theorem Z,2]

is rational overF, thus it remains to prove thag is stably rational oveF'. We keep all the
above notation. By Theorem 3.3g is stably isomorphic to the invariants of the Noether
setting F (D2 x W). By Theorem 3.4, these invariants are stably isomorphic to those of
D> x G and the result now follows by Corollary 2.8
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