
a

t

espec-

g

its

si [7]

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Journal of Algebra 294 (2005) 41–50

www.elsevier.com/locate/jalgebr

Centers of generic algebras with involution

Esther Beneish1

Received 9 September 2004

Available online 5 October 2005

Communicated by Michel Van den Bergh

Abstract

Let F be an infinite field of characteristic different from 2. Letn be a positive integer, and le
V = Mn(F)⊕Mn(F). The projective symplectic and orthogonal groups,PSpn andPOn, act onV by
simultaneous conjugation. Results of Procesi and Rowen have shown thatF(V )PSpn andF(V )POn

are the centers of the generic division algebras with symplectic and orthogonal involutions, r
tively. Saltman has shown thatF(V )PSpn andF(V )POn are stably isomorphic overF for all n even,
and that for alln oddF(V )POn is stably rational overF . Saltman has also shown that for alln for
which the highest power of 2 dividingn is less than 8,F(V )PSpn and thereforeF(V )POn are stably
rational overF . We show that the result is also true for alln for which the highest power of 2 dividin
n is 8.
 2005 Published by Elsevier Inc.
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1. Introduction

Let F be an infinite field of characteristic different from 2. LetV = Mn(F) ⊕ Mn(F),
then the general linear groupGLn acts onV by simultaneous conjugation, and since
center acts trivially, we obtain an action of the projective general linear groupPGLn onV .
Let POn andPSpn, the projective orthogonal and symplectic groups. Results of Proce
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and Rowen [8] show thatF(V )PSpn andF(V )POn are the centers of the generic divisi
algebras of degreen with symplectic and orthogonal involutions, respectively.

Let G be a finite group and letF be a field. Given aZG-lattice M , let F [M] denote
the group algebra of the abelian groupM , and letF(M) be its quotient field. There i
an action ofG on F(M) via theG-action onM . Questions of rationality ofF(M)G, the
fixed subfield ofF(M) under the action ofG, are referred to as lattice invariant problem
The special case whereM = ZG is referred to as the Noether setting ofG, and denoted
by F(G).

In [10] Saltman shows thatF(V )PSpn is stably isomorphic to the invariants of a certa
lattice over the Weyl group,W , of PSpn. This Weyl group is the wreath product ofZ/2Z

by Sm, the symmetric group onm letters withm = n/2. Saltman also shows thatF(V )PSpn

andF(V )POn are stably isomorphic overF for all n even, and that for alln oddF(V )POn is
stably rational overF . Saltman further shows thatF(V )PSpn , and thusF(V )POn , is stably
rational overF for all n for which the highest power of 2 dividingn is less than 8. The
main result of this article is thatF(V )PSpn , and thusF(V )POn , are also stably rational ove
F for n = 8s with s odd. The proof goes as follows. Letn = 2m, and letUm be the standard
rankm integral representation ofSm, and letIm be defined by the exact sequence

0→ Im → Um → Z → 0.

Let D2 = Hom(Im/2Im,F ∗). In Theorems 3.2 and 3.3 we show thatF(V )PSpn is stably
isomorphic to the invariants of the Noether setting of the groupD2 � W . In Theorem 3.4
we show that the invariants of the Noether settings ofD2 � W and ofD2 � Sm are stably
isomorphic overF , and consequentlyF(V )PSpn is stably isomorphic to the invariant o
F(D2 � Sm). The main result, Theorem 3.5, now follows from Corollary 2.8, in which
show that the invariants of the Noether settingD2 � S4 are stably rational overF , from
results of Katsylo and Schofield [5,9] on matrix invariants of composite size, and
Saltman’s result on the rationality ofF(V )POs for s odd.

2. Preliminary results and definitions

Let G be a finite group and letF be a field. AZG-lattice M is a finitely generated
Z-free ZG-module and as in the introduction,F(M) denotes the quotient field of th
group algebra of the abelian groupM . We letLG denote the category ofZG-lattices.

Definition 2.1. Let G be a finite group and letM be aZG-lattice. M is said to be a
permutation module if it has aZ-basis permuted byG. M is said to be stably permutation
there exist permutation modulesP andP ′ such thatM ⊕P ∼= P ′. M is said to be invertible
or permutation projective if it is a direct summand of a permutation module.M is said to
be quasi-permutation if there exists aZG-exact sequence 0→ M → P → R → 0 with P

andR permutation.

Let G be a finite group. An equivalence relation is defined onLG as follows.M and
M ′ in LG are equivalent if there exist permutation modulesP andP ′ such thatM ⊕ P ∼=
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M ′ ⊕ P ′. The set of equivalence classes forms an abelian monoid under the direc
The zero element is the class of all stably permutation lattices. The equivalence clasM

will be denoted by[M]. For any integern, Hn(G,M) will denote thenth Tate cohomology
group ofG with coefficients inM . A ZG-latticeM is flasque ifH−1(H,M) = 0 for all
subgroupsH of G. A flasque resolution ofM is an exact sequence

0→ M → P → E → 0

with P permutation andE flasque. It follows directly from [4, Lemma 1.1], that anyZG-
lattice has a flasque resolution. The flasque class ofM is [E], and will be denoted byφ(M).
By [2, Lemma 5, Section 1]φ(M) is independent of the flasque resolution ofM . The
lattices whose flasque class is 0 are the quasi-permutation lattices.

Definition 2.2. Let L andK be extension fields of a fieldF , and letG be a finite subgroup
of their groups ofF -automorphisms. ThenL and K are stably isomorphic asG-fields
if there exist G-trivial indeterminatesx1 . . . xn and y1 . . . yr such thatL(x1 . . . xn) ∼=
K(y1 . . . yr ) asF -algebras, and the isomorphism respects theirG-actions. IfF = K we
also say thatK is stably rational overF .

Notation 2.3. For any positive integerk, Zk will denoteZ/kZ. HenceforthG = Sm the
symmetric group onm letters unless otherwise specified, andF will be an infinite field of
characteristic different from 2. We will denote byH the subgroup ofG generated bySm−2
and the transposition(m − 1,m).

Definition 2.4. We define theZG-latticeUm to be the standard rankm permutation rep
resentation ofG, more preciselyUm has the set{u1, . . . , um} as aZ-basis and forg ∈ G,
g(ui) = ug(i). We defineB to be the sublattice ofUm with Z-basis{ui + um: 1 � i � m}.
Finally we defineIm by the following exact sequence 0→ Im → Um → Z → 0.

Remark 2.5. There exists an exact sequence 0→ B → Um → Z2 → 0 where the map
Um → Z2 sendsui to 1.

Lemma 2.6. Let D2 = Hom(Im/2Im,F ∗). The fieldF(B ⊗ Im)G is stably isomorphic to
the invariants of the Noether setting of the groupG′ = D2 � G.

Proof. We tensor the exact sequence of Remark 2.5 byIm to obtain

0→ B ⊗ Im → Um ⊗ Im → Im/2Im → 0.

This sequence gives an embedding ofF(B ⊗ Im) into F(Um ⊗ Im) which respects th
G-actions. By Galois theoryF(Um ⊗ Im) is a Galois extension ofF(B ⊗ Im) with
groupD2. Now we have Galois extensions

F(B ⊗ Im)G ⊂ F(B ⊗ Im) ⊂ F(Um ⊗ Im)
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and it is easy to see that the Galois group ofF(Um ⊗ Im) overF(B ⊗ Im)G is G′. Since
the action ofG′ onF(Um ⊗ Im) is faithful andF -linear,F(Um ⊗ Im) is stably isomorphic
to F(G′) asG′-fields by [1, Lemma 1.3] and the result follows.�
Proposition 2.7. Let G be the symmetric group on4 letters. The flasque class of theZG-
latticeB ⊗ I4 is equal to0.

Proof. There is a map fromU4 ⊗ U4 to B sendingui ⊗ uj to ui − uj if i 	= j andui ⊗ ui

to 2ui . Now form the pullback diagram

0 0

0 B ⊗ I4 B ⊗ U4 B 0

0 B ⊗ I4 S U4 ⊗ U4 0

M M

0 0

Since ResGS3
B ∼= ResGS3

U4 and sinceU4 ∼= ZG/S3 the middle horizontal sequence splits
[2, Lemma 2, Section 1]. Furthermore, we haveB ⊗ U4 ∼= U4 ⊗ U4 by Frobenius reci-
procity. Therefore we have an exact sequence

0→ B ⊗ I4 → M ⊕ B ⊗ U4 → U4 ⊗ U4 → 0.

By [2, Lemma 7, Section 1],φ(M) = φ(B ⊗ I4), where as aboveφ(M) denotes the flasqu
class ofM . Now changing to multiplicative notation, we let the set{yij : 1� i, j � 4} be a
Z-basis forU4 ⊗ U4, with yij corresponding toui ⊗ uj . We define the sets

A1 = {tij = yij yji : 1� i < j � 4},
A2 = {

x1j = y11y
−2
1j y−1

jj : 2� j � 4
}
,

A3 = {wij = y1iyij yj1: 1< i < j � 4}.

We also definedxij = yiiy
−2
ij y−1

jj for all i < j . It is not difficult to check thatA1 ∪A2 ∪A3
is a basis forM overZ. As aboveH is defined to be the subgroup ofG generated byS2
and the transposition(3,4). The setA1 is a Z-basis forZG/H , sinceA1 is a transitive
G-set and the stabilizer oft34 is H . The idea for the remainder of this proof comes fr
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the proof of [6, Lemma 4, Section 3]. LetV4 be the Klein four-group, thenG/V4 ∼= S3 and
we letT = ZS3/S2. Consider the exact sequence

0→ K → M ⊕ Z → U4 ⊕ T → 0,

where the mapM ⊕ Z → U4 ⊕ T is defined as follows. First let{t1, t2, t3} be a multiplica-
tive Z-basis forT . Then

• t12 → u1u2t1t2 and for allg ∈ G tg(1),g(2) = ug(1)ug(2)tḡ(1)tḡ(2) whereḡ = gV4.
• x12 → (u1u2t1t2)

−1 and for all g ∈ G xg(1),g(2) = (ug(1)ug(2)tḡ(1)tḡ(2))
−1 where

ḡ = gV4.
• wij → u1uiuj t1t2t3.
• z → u1u2u3u4t1t2t3.

A direct calculation shows that this map is a group epimorphism whose kernelK has as a
Z-basis

{tij xij : 1� i < j � m}.

In terms of theyij ’s, tij xij = yiiy
−1
ij y−1

jj yji , and soK ∼= ZG/H−, that isZG/H tensored
with the sign representation ofG. Therefore, we have

0→ ZG/H− → M ⊕ Z → U ⊕ T → 0.

By [2, Lemma 7, Section 1]φ(M) = φ(ZG/H−) and the latter is equal to 0, since t
following sequence is exact

0→ ZG/H− → ZG/S2 → ZG/H → 0. �
Corollary 2.8. The invariants of the Noether setting of the groupG′ = T2 � S4 are stably
rational over the base fieldF .

Proof. By Lemma 2.6,F(B ⊗ I4)
S4 and F(G′)G′

are stably isomorphic, and by [
Lemma 1.4],F(B ⊗ I4)

S4 is stably rational overF sinceφ(B ⊗ I4) = 0. �

3. The center

In [10], Saltman gives a description ofZ2m, the center of the generic division algeb
of degree 2m with symplectic involution over a base fieldF , as a lattice invariant problem
over the Weyl groupW of PSpn. This description will formulated in Lemma 3.1. LetT

be the direct sum ofm copies ofZ2, let G = Sm and letW be the semidirect produc
of T by G, whereG acts onT by permutating the summands; equivalentlyW is the
wreath product ofT by Z2. We use the following notation some of which is the same a
Section 2.
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• G′ = S2m, andG = Sm.
• W = T � G, where we let{σ1, . . . , σm} generateT andT embeds intoG′ by sending

σi to the transposition(i,m + i).
• U2m

∼= ZG′/S2m−1 and we let the set{ui : i = 1, . . . ,2m} be itsZ-basis.
• Um

∼= ZG/Sm−1.
• I2m will be defined by the exact sequence 0→ I2m → U2m → Z → 0.
• Im will be defined by the exact sequence 0→ Im → Um → Z → 0.
• Y ′ will be theZW -lattice withZ-basis{yij : i, j = 1, . . . ,2m} and with the following

W -action.

We let G act on the set{1, . . . ,2m} with the usual action on{1, . . . ,m} and for k ∈
{1, . . . ,m} g(m + k) = g(k). Moreover,

σi(k) =



k if i 	= k modm,

m + i if i = k modm andi � m,

i − m if i = k modm andi > m.

Now for w ∈ W , wyij = yw(i),w(j).
The following lemma is in [10], we include the constructive part of the proof as it

be needed later.

Lemma 3.1. We have an epimorphism fromY ′ to I2m/Im with kernelY1, such thatF(Y1)
W

is stably isomorphic to the center of the generic division algebra of degree2m with sym-
plectic involution.

Proof. A Z-basis forI2m is the set{ui − um,um+i − u2m: i = 1, . . . ,m − 1, um − u2m},
and the sublattice withZ-basis{ui − um + um+i − u2m: i = 1, . . . ,m − 1} is isomorphic
to Im. Therefore, we have an exact sequence ofZW -lattices

0→ Im → I2m → S → 0.

We also have the exact sequence

0→ Y → Y ′ → I2m → 0

where the mapY ′ → I2m sendsyij to ui −uj . We form the pullback of the mapsY ′ → I2m

andIm → I2m to obtain the diagram
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0 0

S S

0 Y Y ′ I2m 0

0 Y Y1 Im 0

0 0

By [10, Proposition 1.5],F(Y1)
W is stably isomorphicF(V )PSpn and the latter is the cente

of the generic division algebra of degree 2m with symplectic involution by [7, pp. 377–378
and [8, p. 184]. �

Recall thatD2 = Hom(Im/2Im,F ∗). Let T1 be the subgroup ofT generated by
{σ1, . . . , σm−1}. We define

Ũ ∼= Z[W/T1Sm−1] ⊗ IT/T1,

where IT/T1 is the kernel of the augmentation map fromZ[T/T1] to Z. We have
ResG

′
W U2m = ResG

′
W ZG′/S2m−1 = ZW/T1Sm−1 by Mackey’s subgroup theorem [3, Th

orem 10.13].

Theorem 3.2. Keeping the above notation, there is aZW -lattice Y ′′ defined by the exac
sequence

0→ Y1 → Y ′′ → Ũ → 0

such thatF(Y ′′)W is equivalent to the invariants of the Noether setting of the gr
D2 � W .

Proof. As in Lemma 3.1,S ∼= I2m/Im. Let si = ui −um + Im for i = 1, . . . ,m− 1, and let
z = um − u2m + Im. Then it is immediate that the set{s1, . . . , sm−1, z} is aZ-basis forS.
Now consider the sublatticeK of S with Z-basis{ti = 2si + z: i = 1, . . . ,m − 1, tm = z}.
For i = 1, . . . ,m − 1 we have

ti = 2(ui − um) + um − u2m + Im

= ui − um − (um+i − u2m) + um − u2m + Im = ui − um+i + Im.
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SoK is isomorphic toUm as aG-module, andσi(tk) = −tk if k = i, σi(tk) = tk otherwise.
We have theW -exact sequence

0→ K → U2m → Um → 0

where the mapU2m → Um sendsui to ui mod m. ThereforeK = ZW ⊗T Sm−1 IT/T1 and
henceK ∼= Ũ .

A simple computation now shows thatS/Ũ ∼= D′
2 = Hom(D2,F

∗). Now we form the
pullback of the mapsY ′ → S andŨ → S to obtain

0 0

D′
2 D′

2

0 Y1 Y ′ S 0

0 Y1 Y ′′ Ũ 0

0 0

The middle vertical sequence gives aW -embedding ofF(Y ′′) into F(Y ′) and by Galois
theoryF(Y ′)D2 ∼= F(Y ′) asW -fields. Furthermore,F(Y ′)D2�W ∼= F(Y ′′)W . Since the ac
tion of D2 � W on F(Y ′) is faithful andF -linear, F(Y ′)D2�W is stably isomorphic to
F(D2 � W)D2�W by [1, Lemma 1.3]. �
Theorem 3.3. The fieldsF(Y ′′) and F(Y1) are stably isomorphic asW -fields. Conse
quently the center of the generic division algebra of degree 2m with symplectic invo
is equivalent to the invariants of the Noether settingF(D2 � W).

Proof. We have theZW -exact sequence

0→ Y1 → Y ′′ → Ũ → 0

and sinceUm
∼= ZW/T Sm−1 we also have

0→ Ũ → U2m → Um → 0.
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Let L = F(Y1). Then F(Y ′′) ∼= Lα(Ũ) for some α ∈ Ext1W(Ũ,L∗). We show that
Ext1W(Ũ,L∗) = 0. We have

Ext1W
(
Ũ ,L∗) ∼= Ext1W

(
ZW ⊗ZT Sm−1 IT/T1,L

∗) ∼= Ext1T Sm−1

(
IT/T1,L

∗)

by Shapiro’s Lemma. Set̂I = Hom(IT/T1,L
∗), then the inflation-restriction sequence giv

0→ H 1(T Sm−1/T1Sm−1, Î
T1Sm−1

) → H 1(T Sm−1, Î
) → H 1(T1Sm−1, Î

)
.

Now Î ∼= L∗ as aT1Sm−1-module, soH 1(T1Sm−1, Î ) = 0 by Hilbert’s Theorem 90, an
Î T1Sm−1 = HomT1Sm−1(I,L

∗) ∼= (L∗)T1Sm−1 ∼= (LT1Sm−1)∗. Then

H 1(T Sm−1/T1Sm−1, Î
T1Sm−1

) ∼= H 1(T Sm−1/T1Sm−1,
(
LT1Sm−1

)∗) = 0

again by Hilbert’s Theorem 90, since the action ofT Sm−1/T1Sm−1 onLT1Sm−1 is faithful.
Therefore Ext1W(Ũ,L∗) = 0 and henceF(Y ′′) ∼= L(Ũ) ∼= F(Y1 ⊕ Ũ ) asW -fields.

Since ResWG Ũ ∼= Um we choose the sameZ-basis for both, namely the set{u1, . . . , um}
with the natural action ofW , and we view this basis as multiplicative. SoL(Ũ) =
L(u1, . . . , um). Set

zi = 1+ u−1
i

1− u−1
i

,

then L(u1, . . . , um) = L(z1, . . . , zm) and the action ofW is L-linear, sinceσi(zk) =
(−1)δik zk where δ is the Kronecker delta. ThereforeF(Y1 ⊕ Ũ ) = L(z1, . . . , zm) and
L = F(Y ′′) are stably isomorphic asW -fields by [1, Lemma 1.3]. By Theorem 3.2 th
last statement follows. �
Theorem 3.4. The invariants of the Noether settings of the groupsD2 � W andD2 � G

are stably isomorphic overF . Consequently the center of the generic division algebr
degree2m with symplectic involution is equivalent to the invariants of the Noether se
F(D2 � G).

Proof. By [1, Lemma 1.3]F(M) andF(D2 � W) are stably isomorphic overF for any
F -vector spaceM on whichD2 � W acts linearly and faithfully. Note thatD2 � W =
(D2 × T ) � G by definition. So letM = F ⊗Z (Um ⊗ Im ⊕ Um) with the usualG-action
and with the following actions ofT andD2. We letT act trivially onUm ⊗ Im. Recall that
D2 = Hom(Im/2Im,F ∗). We obtain a faithfulD2 � G-faithful action onF(Um ⊗ Im) via
the exact sequence of Remark 2.5, namely

0→ B → Um → Z2 → 0,

which we now tensor byIm overZ

0→ B ⊗ Im → Um ⊗ Im → Im/2Im → 0.
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Now by Kummer theoryD2 � G actsF -linearly and faithfully onF(Um ⊗ Im). We take
{yij : i, j = 1, . . . ,m, i 	= j} as a multiplicative basis forUm ⊗ Im. We letD2 act trivially
onUm, and we letσk(ui) = −ui if k = i andσk(ui) = ui , otherwise. Then

F(M)T = F(yij )
(
u2

1, . . . , u
2
m

)

and by [1, Lemma 1.3]F(M)T is stably isomorphic toF(Um ⊗ Im) as aD2 � G-field.
Since the action ofD2 � G on F(Um ⊗ Im) is linear and faithful,F(Um ⊗ Im) is stably
isomorphic to the Noether settingF(D2 � G). The last statement follows from The
rem 3.3. �
Theorem 3.5. For s odd, the center of the generic division algebra of degree8s with
involution over an infinite fieldF of characteristic different from2 is stably rational overF .

Proof. We letG denote the symmetric group on 4 letters, and henceW = T � G where
nowT is direct sum of 4 copies ofZ2. Letn = 8s. By [10, Corollary 0.6 and Theorem 1.1
the centers of the generic division algebras of even degree with symplectic and orth
involutions are stably isomorphic. LetZs , Z8 andZn be the centers of the generic div
sion algebras of degreess, 8, andn with the appropriate involutions. The proof of [1
Lemma 5.2] shows that stable rationality ofZs andZ8 implies stable rationality ofZn. An
earlier proof from which this result follows can be found in [5,9]. By [10, Theorem 1.2Zs

is rational overF , thus it remains to prove thatZ8 is stably rational overF . We keep all the
above notation. By Theorem 3.3,Z8 is stably isomorphic to the invariants of the Noeth
settingF(D2 � W). By Theorem 3.4, these invariants are stably isomorphic to thos
D2 � G and the result now follows by Corollary 2.8.�
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