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Objectives The purpose of this study was to investigate the relationship between hepatic triglyceride content and both myo-
cardial function and metabolism in type 2 diabetes mellitus (T2DM).

Background Heart disease is the leading cause of mortality in T2DM. Central obesity and hepatic steatosis, both hallmark
abnormalities in T2DM, have been related to increased risk of heart disease.

Methods Sixty-one T2DM patients underwent myocardial perfusion and substrate metabolism measurements by positron
emission tomography, using [15O]water, [11C]palmitate, and [18F]-2-fluoro-2-deoxy-D-glucose. In addition, whole-
body insulin sensitivity (M/I) was determined. Myocardial left ventricular function and high-energy phosphate
metabolism were measured using magnetic resonance imaging and [31P]-magnetic resonance spectroscopy,
respectively. Hepatic triglyceride content was measured by proton magnetic resonance spectroscopy. Patients
were divided according to hepatic triglyceride content (T2DM-low �5.56% vs. T2DM-high �5.56%).

Results In addition to decreased M/I (p � 0.002), T2DM-high patients had reduced myocardial perfusion (p � 0.001), glu-
cose uptake (p � 0.005), and phosphocreatine/adenosine triphosphate (PCr/ATP) ratio (p � 0.003), compared with
T2DM-low patients, whereas cardiac fatty acid metabolism and left ventricular function were not different. Hepatic
triglyceride content correlated inversely with M/I (Pearson’s r � �0.620, p � 0.001), myocardial glucose uptake (r �

�0.413, p � 0.001), and PCr/ATP (r � �0.442, p � 0.027). Insulin sensitivity correlated positively with myocardial
glucose uptake (r � 0.528, p � 0.001) and borderline with myocardial PCr/ATP (r � 0.367, p � 0.072), whereas a
positive association was found between cardiac glucose uptake and PCr/ATP (r � 0.481, p � 0.015).

Conclusions High liver triglyceride content in T2DM was associated with decreased myocardial perfusion, glucose uptake,
and high-energy phosphate metabolism in conjunction with impaired M/I. The long-term clinical implications of
hepatic steatosis with respect to cardiac metabolism and function in the course of T2DM require further
study. (J Am Coll Cardiol 2010;56:225–33) © 2010 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2010.02.049
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n the past few decades, the prevalence of obesity and type
diabetes mellitus (T2DM) has grown to epidemic pro-

ortions (1). T2DM patients are at increased risk of
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ardiovascular disease (CVD), particularly coronary artery
isease (CAD) and heart failure, and consequently, heart
isease is the most common cause of death in T2DM (2,3).
ardiac abnormalities in T2DM patients can, however,
evelop in the absence of hypertension or CAD. These
yocardial derangements are attributed to diabetic cardio-
yopathy (4), a disease entity with a high propensity to

rogress into overt congestive heart failure (5).
Several mechanisms have been proposed to underlie

iabetic cardiomyopathy (4), particularly, the metabolic
allmarks of the T2DM phenotype such as insulin resis-
ance, dyslipidemia, and hyperglycemia. These diabetes-
elated metabolic derangements are collectively thought to
ontribute to altered myocardial substrate handling and,

ubsequently, to the observed cardiac (diastolic) dysfunction
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(4). The underlying mechanisms
include oxidative stress, mito-
chondrial dysfunction, and com-
promised high-energy phosphate
metabolism (4).

Hepatic steatosis is a common
finding in patients with (uncom-
plicated) T2DM. It is associated
with a cluster of metabolic ab-
normalities, including insulin re-
sistance, hyperglycemia, dyslipi-
demia, and a proinflammatory
state, all factors known to ad-
versely affect the cardiovascular
system (6,7). Indeed, several
studies in humans showed an
association of fatty liver with an
increased carotid intima media
thickness (8), impaired flow-
mediated vasodilation (9), ad-
vanced atherosclerosis (10), and
CVD/CAD (6). Interestingly,
high liver fat was associated with
alterations in myocardial high-
energy phosphate metabolism in
healthy obese individuals (11),

nd myocardial glucose metabolism in T2DM patients with
AD (12). These studies have provided hypothesis-

enerating preliminary data regarding the potential mech-
nisms that could link liver steatosis to cardiac disease as a
isk factor for CVD. However, whether high liver fat
dversely affects metabolic or functional aspects of the heart
n asymptomatic patients with uncomplicated T2DM still
emains to be determined.

Using state-of-the-art imaging techniques, the aim of the
resent study was to assess the relationship between liver
riglyceride content and myocardial metabolism in T2DM
atients with verified absence of clinical ischemic heart
isease.

ethods

articipants. Sixty-one T2DM patients were selected from
previous study based on availability of positron emission

omography (PET) measurements (13). This 2-center study
as approved by the medical ethics committee of both

enters and performed in compliance with the Declaration
f Helsinki. All patients signed informed consent before
nclusion. Patients were recruited by advertisements in local
ewspapers. Male T2DM patients, age 45 to 65 years,
ithout diabetes-related complications were eligible. Inclu-

ion criteria were a glycosylated hemoglobin level of 6.5% to
.5% at screening, body mass index of 25 to 32 kg/m2, and
lood pressure not exceeding 150/85 mm Hg (with or
ithout the use of antihypertensive drugs). Patients were

Abbreviations
and Acronyms

CAD � coronary artery
disease

CVD � cardiovascular
disease

[18F]FDG � [18F]-2-fluoro-
2-deoxy-D-glucose

LV � left ventricular

MBF � myocardial blood
flow

MFAE � myocardial fatty
acid esterification

M/I � whole-body insulin
sensitivity

MMRglu � myocardial
metabolic rate of glucose
uptake

[31P]-MR � phosphorus-31
magnetic resonance

PCr/ATP �

phosphocreatine/adenosine
triphosphate

T2DM � type 2 diabetes
mellitus
xcluded if they had a history of or current hepatic disease a
r CVD and if they used insulin, fibrates, thiazolidinediones,
r other hormonal replacement therapy. Screening of patients
onsisted of medical history, physical examination, echocardio-
ram, and fasting blood and urine analyses. In addition,
atients underwent dobutamine-stress echocardiography to
onfirm absence of inducible ischemia. After successful screen-
ng, participants commenced with a 10-week run-in period
uring which their regular blood glucose–lowering agents were
hanged to glimepiride monotherapy and titrated until a stable
ose was reached during the 8 weeks before assessments to
xclude possible confounding effects on myocardial metabolism
f differential agents. The present baseline data were derived
rom a previously reported intervention study (13), in which
articipants were randomized to pioglitazone or metformin
fter baseline measurements to study the effects of these agents
n cardiac function and metabolism.
maging. The study protocol was performed during 2 visits
ithin the same week. During 1 visit, cardiac perfusion and

ubstrate metabolism were measured using PET, and during
he other visit, myocardial function was measured by mag-
etic resonance imaging and hepatic triglyceride content
nd myocardial phosphate creatine/adenosine triphosphate
PCr/ATP) ratio by proton magnetic resonance spectros-
opy and phosphorus-31 magnetic resonance ([31P]-MR)
pectroscopy, respectively. On both occasions, patients vis-
ted the clinical research unit at 8:00 AM after an overnight
ast of approximately 12 to 15 h. Glucose-lowering agents
ere not taken the morning before assessments.
ET. All PET examinations were performed at 1 center

Amsterdam) using an ECAT EXACT HR� scanner
Siemens/CTI, Knoxville, Tennessee). Patients received 2
atheters: 1 in an antecubital vein and 1 in a contralateral
and vein being wrapped in a heated blanket to obtain
rterialized blood. Myocardial perfusion (myocardial blood
ow [MBF]) studies were performed in 2-dimensional
cquisition using [15O]water (1,100 MBq) as tracer. Myo-
ardial glucose metabolism (MMRglu) and fatty acid uptake
tudies were performed in 3-dimensional acquisition mode
sing [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG, 170
Bq) and [11C]palmitate (185 MBq) as tracers, respec-

ively. MBF and fatty acid uptake were assessed in the
asting state, whereas MMRglu was measured under hyper-
nsulinemic euglycemic conditions. The scan protocol was
s follows. After a 10-min transmission scan for attenuation
orrection, [15O]water was injected (time � 10 min), and a
0-min dynamic emission scan consisting of 40 frames with
rogressively increasing frame length was acquired. Subse-
uently, a 30-min dynamic emission scan consisting of 34
rames with increasing frame length was performed after
11C]palmitate injection (time � 35 min). Hereafter, the
lamp was started (time � 65 min), as described previously
14), to approximate an isometabolic steady state (plasma
lucose level � 5 mmol/l) and measure whole-body insulin
ensitivity (M/I value). At steady state (time � 155 min),

fter a new transmission scan, [18F]FDG was injected and a
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0-min dynamic emission with increasing frame length of
0 frames was acquired. Blood samples were collected
uring all 3 scans at predefined time points to measure
lucose, nonesterified fatty acid, lactate, lipids, and insulin
evel. In addition, [11C]CO2 was measured during the
11C]palmitate scan (15). Total radiation exposure of the
ntire sequence of scans was 4.87 mSv.
ET data analysis. PET data were reconstructed using
ltered back-projection applying all appropriate corrections.
o generate myocardial time-activity curves, regions of

nterest were defined on resliced left ventricular (LV)
hort-axis (summed) [11C]palmitate and [18F]FDG images
nd subsequently projected onto the corresponding dynamic
mages. Regions of interest were drawn and grouped for
urther analysis, as previously described (16). Myocardial
egments exposed to liver spill-in were omitted from the
nalysis of [11C]palmitate data. Additional regions of inter-
st were defined in right ventricular and LV chambers for
11C]palmitate and [15O]water image-derived input func-
ions. A separate aorta ascendance region of interest was
efined for [18F]FDG image-derived input functions. Myo-
ardial perfusion was determined using the standard single-
issue compartment model (17). Because resting myocardial
erfusion is related to the rate-pressure product (RPP)
RPP � heart rate � systolic blood pressure), corrected
esting MBF (1,000 � MBF/RPP) was also calculated (18).

oreover, myocardial vascular resistance was calculated by
ividing the mean arterial pressure by myocardial rest
erfusion (18). [11C]palmitate time-activity curves were
nalyzed using a 3-tissue plasma input kinetic model,
hich, together with plasma nonesterified fatty acid con-

entrations, enabled calculation of myocardial fatty acid
ptake, oxidation, and esterification (myocardial fatty acid
ptake, myocardial fatty acid oxidation, and myocardial
atty acid esterification, respectively) (13,19). The
11C]palmitate image-derived input function was corrected
or [11C]CO2 metabolites and differences between plasma
nd whole blood concentrations as described elsewhere
13,19). MMRglu was calculated by multiplying the net
nflux constant for [18F]FDG, Ki, by the mean plasma
lucose concentration. For determination of Ki, Patlak
raphic analysis was used (20).

agnetic resonance imaging. The heart was imaged in
hort-axis orientation using electrocardiographically gated
reath holds with a sensitivity-encoding balanced turbo-
eld echo sequence. LV ejection fraction, cardiac output,
troke volume, LV end-diastolic volume, and LV end-
ystolic volume, LV mass, and their indexes calculated by
ividing each parameter through the body surface area
cardiac index, LV end-diastolic volume index, LV end-
ystolic volume index, and LV mass index), were deter-
ined by analyses of end-diastolic and -systolic images (21).
n electrocardiographically gated gradient-echo sequence
ith velocity encoding was performed to measure blood
ow across the mitral valve to determine LV diastolic

unction. Measures included the peak filling rate of the early l
lling phase (E) and of the atrial contraction (A), the ratio
f the peak filling rates (E/A), and the peak deceleration
radient of the early filling phase (E deceleration peak).
dditionally, an estimation of LV filling pressure (E/Ea)
as calculated (22). During magnetic resonance imaging,
lood pressure and heart rate were measured.
To quantify the amount of visceral and subcutaneous

bdominal fat, 3 consecutive transverse images were ob-
ained during 1 breath hold with the middle image at a level
ust above the fifth lumbar vertebra (23). All images were
nalyzed quantitatively using dedicated software (FLOW or

ASS, Medis, Leiden, the Netherlands).
epatic proton magnetic resonance spectroscopy. He-

atic proton magnetic resonance spectroscopy was per-
ormed as described previously (21,24). Briefly, to obtain
epatic proton magnetic resonance spectra, an 8-ml voxel
as positioned in the liver, avoiding gross vascular structures

nd adipose tissue depots. Both spectra with and without
ater suppression were obtained to calculate hepatic triglyc-

ride content as a percentage relative to water (100 �
riglyceride/water) (24). To quantify hepatic triglyceride
ontent, the methylene and water signals were corrected for
2 decay by use of the exponential relaxation equation: Sc �

0 exp(�TE/T2), where Sc represents the corrected signal;
E, the echo time; T2, the longitudinal relaxation time; and
0 the signal after application of the 90° pulse. T2 relaxation
imes for water and triglyceride of 50 and 60 ms, respec-
ively, were used as described by Szczepaniak et al. (24). A
atty liver was defined as hepatic triglyceride content ex-
eeding 5.56% (24,25).

yocardial proton magnetic resonance spectroscopy.
lectrocardiographically triggered [31P]-MR spectra of the
V anterior wall were acquired using a 100-mm diameter

urface coil. Volumes of interest were selected by image-
uided spectroscopy with 3-dimensional in-situ storage
mage sensor. Shimming was performed automatically and
uning and matching of the [31P] surface coil was performed
anually. Spectroscopic volume size typically was 7 � 7 �
cm. Acquisitions were based on 192 averaged free induc-

ion decays, and total acquisition time was 10 min. [31P]-
R spectra were corrected for partial saturation effects and

or the ATP contribution from blood in the cardiac cham-
ers. The myocardial PCr/ATP ratios of the spectra were
alculated and used as a parameter representing myocardial
igh-energy phosphate metabolism (26,27).
iochemical analyses. Samples were analyzed at 1 certified

entral laboratory (Amsterdam, the Netherlands). Glycosy-
ated hemoglobin was determined by high-performance
iquid chromatography (Menarini Diagnostics, Florence,
taly) (reference values: 4.3% to 6.1%). Plasma glucose was
uantified by the use of a hexokinase-based technique
Roche Diagnostics, Mannheim, Germany). Plasma triglyc-
rides, total cholesterol, and high-density lipoprotein cho-
esterol were determined using enzymatic colorimetric

ethods (Modular, Hitachi, Japan). Levels of low-density

ipoprotein cholesterol were calculated using Friedewald’s
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ormula (reference values: 2.0 to 4.6 mmol/l). Plasma insulin
evels were quantified by an immunoradiometric assay
Bayer Diagnostics, Mijdrecht, the Netherlands). Plasma
ree fatty acids were measured by an enzyme-linked immu-
osorbent assay (Wako Chemicals, Neuss, Germany). Ul-
rasensitive C-reactive protein was determined by an
nzyme-linked immunosorbent assay (DSL, Webster,
exas). The sensitivity was 1.6 �g/l, and the interassay

oefficients of variations ranged from 3% to 5%. In duplo
eterminations of plasma malondialdehyde, a marker of
xidative stress, were performed by high-performance liquid
hromatography after alkaline hydrolysis and reaction with
hiobarbituric acid (28). The intra-assay coefficient of vari-
tion was 5.7%.
tatistical analysis. Values are expressed as mean � SE or
edian (interquartile range). Normality was assumed if the

istogram showed a normal distribution, the Kolmogorov-
mirnoff test was �0.05, and skewness and kurtosis were
1.0. Non-normally distributed data were log-transformed.
omparisons between groups were made using independent
tests. Linear regression was used to adjust for body mass

ndex differences between groups. The chi-square test was
sed for nominal parameters. Univariate and multiple anal-
ses with a forward selection procedure were performed.
he aim of these analyses was to determine which variables

nfluence liver triglyceride content, MMRglu, and PCr/
TP. Those variables with p � 0.1 were subsequently

ntered in a forward multivariable regression analysis and
hose variables with p � 0.05 were considered indepen-
ently related to the dependent variable. As liver triglyceride
ontent was a skewed variable, this variable was log-
ransformed. Moreover, several independent variables were
og-transformed. Analyses were performed with SPSS soft-
are version 15.0 (SPSS Inc., Chicago, Illinois). A 2-tailed
robability value �0.05 was considered significant.

esults

ssessment of myocardial function, hepatic proton magnetic
esonance spectroscopy, and measurements of MMRglu were
uccessfully completed in all 61 patients. Because of tech-
ical reasons, [15O]water and [11C]palmitate data were not
vailable for 1 and 8 subjects, respectively. Due to the
emanding nature of the protocol, myocardial PCr/ATP
as offered as an optional test. Therefore, measurements
ere available only in a subgroup of 25 patients. These

ubjects did not differ in clinical characteristics from the
ther 36 patients.
ubject characteristics, hemodynamics, and myocardial

unction. Table 1 shows characteristics of the entire study
opulation, divided into groups with high and low hepatic
riglyceride content. Both groups did not differ with respect
o age, glycemic control, duration of diabetes, and use of
edication. Body mass index and plasma triglycerides,

owever, were higher in the T2DM-high group. Metabolic

haracteristics are given in Table 2, showing higher fasting T
lasma insulin and lactate and a borderline significant
ncrease in C-reactive protein in T2DM-high patients.
nder hyperinsulinemic euglycemic clamp conditions,
lasma fatty acid, and insulin levels were higher and M/I
as lower in T2DM-high patients. No differences were
bserved in myocardial hemodynamics, and LV systolic and
iastolic function and dimensions between T2DM-high
nd T2DM-low patients (Table 3).

yocardial perfusion and metabolism. MBF was lower
n T2DM-high than in T2DM-low patients (Fig. 1A), also
fter correction for rate-pressure product (1.07 � 0.04 vs.
.26 � 0.05 ml·g�1·mm Hg�1·10,000�1, p � 0.006). In
ontrast, myocardial vascular resistance was higher (118 � 5
s. 98 � 4 mm Hg·ml�1·min�1·m�1, p � 0.004). Both

MRglu (Fig. 1B) and the PCr/ATP ratio (Fig. 1C) were
ower in T2DM-high than in T2DM-low patients. The
lterations in myocardial fatty acid metabolism in T2DM-
igh patients did not reach statistical significance (myocar-
ial fatty acid uptake: 83 � 5 vs. 92 � 7 nmol·min�1·ml�1,
� 0.266; myocardial fatty acid oxidation: 82 � 5 vs.

9 � 6 nmol·min�1·ml�1, p � 0.361; myocardial fatty acid
sterification: 1 � 1 vs. 3 � 1 nmol·min�1·ml�1, p �
.368).
epatic triglyceride content and associations. According

o the definitions, T2DM-high patients compared with

ubject CharacteristicsTable 1 Subject Characteristics

T2DM-Low
(n � 29)

T2DM-High
(n � 32) p Value

Age (yrs) 57.3 � 0.9 56.4 � 1.0 0.507

Time since diagnosis of
diabetes (yrs)

4 (2–6) 4 (3–5) 0.858

Current smoker (%) 21 (6/29) 22 (7/32) 0.230

Body mass index (kg /m2) 27.1 � 0.6 30.1 � 0.6 0.001

Waist circumference (cm) 101 � 2 107 � 2 0.015

HbA1c (%) 7.0 � 0.2 7.3 � 0.2 0.306

Total cholesterol (mmol·l�1) 4.3 � 0.1 4.5 � 0.1 0.212

LDL cholesterol (mmol·l�1) 2.6 � 0.1 2.7 � 0.1 0.467

HDL cholesterol (mmol·l�1) 1.05 (0.85–1.23) 0.96 (0.81–1.10) 0.131

Triglycerides (mmol·l�1) 1.2 (0.8–1.6) 1.8 (1.2–2.4) 0.054

ALT (U·l�1) 26 (21–33) 36 (29–49) 0.004

�-GT (U·l�1) 21 (18–37) 41 (33–48) �0.001

Medications (%)

Statins 38 (11/29) 47 (15/32) 0.481

Any antihypertensive
medication

38 (11/29) 44 (14/32) 0.644

Beta-blockers 10 (3/29) 9 (3/32) 0.899

Diuretics 7 (2/29) 16 (5/32) 0.285

ACE inhibitors 17 (5/29) 19 (6/32) 0.878

Angiotensin II blocker 14 (4/29) 13 (4/32) 0.881

Calcium antagonists 3 (1/29) 6 (2/32) 0.613

Omega-3 1 (0/29) 0 (0/32) 0.337

ata are mean � SE or median (interquartile range).
ACE � angiotensin-converting enzyme; ALT � alanine aminotransferase; �-GT � gamma-

lutamyl transferase; HbA1c � glycosylated hemoglobin; HDL � high-density lipoprotein; LDL �

ow-density lipoprotein; T2DM-high or -low � type 2 diabetes patients with high or low liver
riglyceride content.
2DM-low patients had higher median hepatic triglyceride
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ontent (14.4% [9.6% to 18.9%] vs. 2.0% [1.2% to 3.8%] ).
epatic visceral fat (2.6 ml [2.5 to 2.8 ml] vs. 2.4 ml [2.5 to

.6 ml], p � 0.001) and subcutaneous fat (743 � 46 ml vs.
04 � 51 ml, p � 0.045) were higher in T2DM-high than
n T2DM-low patients. Univariable and multivariable re-
ression analyses of liver triglyceride content and myocardial
etabolism are shown in Table 4, revealing M/I and

isceral fat volume to be independently related to liver
riglyceride content, plasma fatty acid and lactate levels to be
ndependently related to MMRglu, and only MMRglu to
e independently related to PCr/ATP. Among others,
ignificant associations were seen between both myocardial

Biochemical and Metabolic Characteristics of thTable 2 Biochemical and Metabolic Charact

T2D

Fasting

Plasma glucose (mmol·l�1) 8

Plasma nonesterified fatty acids (nmol·l�1) 48

Plasma lactate (mmol·l�1) 1

Plasma insulin (pmol·l�1)

usCRP (mg·l�1)

Malondialdehyde (�mol·l�1)

During hyperinsulinemia

Plasma nonesterified fatty acids (nmol·l�1)

Plasma lactate (mmol·l�1) 1

Plasma insulin (pmol·l�1) 53

M/I value (mg·kg�1·min�1)/(pmol·l�1) 0.6

Data are mean � SE or median (interquartile range).
M/I value � whole-body insulin sensitivity adjusted during the stead

Table 1.

Hemodynamic Parameters, Cardiac Dimensions,in the Study PopulationTable 3 Hemodynamic Parameters, Cardiac
in the Study Population

T2

Hemodynamics

Systolic blood pressure (mm Hg)

Diastolic blood pressure (mm Hg)

Heart rate (beats/min�1)

Rate pressure product (beats/min�1·mm Hg)

Systolic function and dimensions

LV mass (g)

LV mass index (g·m�2)

LV end-systolic volume (ml)

LV end-systolic volume index (ml·m�2)

LV stroke volume (ml)

Ejection fraction (%)

Cardiac index (min�1·m�2)

Cardiac work (mm Hg·ml�1·min�1)

Diastolic function and dimensions

LV end-diastolic volume (ml)

LV end-diastolic volume index (ml·m�2)

E peak filling rate (ml·s�1)

E deceleration peak (ml·s�2·10�3)

E/A ratio

E/Ea

Data are mean � SE or median (interquartile range).

A � diastolic atrial contraction; E � early diastolic filling phase; E/Ea � esti

abbreviations as in Table 1.
lucose and fatty acid metabolism and plasma levels of
alondialdehyde. Correlations between liver triglyceride

ontent, MMRglu, and myocardial PCr/ATP ratio are
hown in Figure 2.

iscussion

n the present study, reduced myocardial perfusion, glucose
ptake, and PCr/ATP ratio were found in T2DM patients
ith high liver triglyceride content with verified absence of

nducible ischemia. LV function and dimensions, however,
ere similar to those of T2DM patients with low liver

udy Populationics of the Study Population

(n � 29) T2DM-High (n � 32) p Value

–10.7) 8.3 (6.9–9.6) 0.600

5–685) 510 (425–595) 0.986

–1.3) 1.2 (1.0–1.5) 0.030

7 90 � 10 0.006

0.6 7.0 � 1.4 0.064

0.5 9.8 � 0.4 0.976

11 130 � 13 0.001

–1.3) 1.1 (1.0–1.3) 0.754

8–611) 615 (571–744) 0.001

4–1.07) 0.37 (0.17–0.46) 0.002

; usCRP � ultrasensitive C-reactive protein; other abbreviations as in

Functionnsions, and Function

w (n � 29) T2DM-High (n � 32) p Value

� 2 125 � 2 0.443

� 1 76 � 1 0.646

� 2 62 � 1 0.794

� 288 7811 � 243 0.857

� 3 111 � 3 0.154

� 1 52 � 1 0.519

� 2 62 � 2 0.974

� 1 29 � 1 0.439

� 3 94 � 3 0.630

� 1 60 � 1 0.717

� 0.1 2.9 � 0.1 0.512

� 0.2 53.7 � 0.2 0.677

� 4 157 � 4 0.719

� 2 73 � 2 0.359

� 15 413 � 16 0.829

� 0.19 3.59 � 0.19 0.459

� 0.05 1.03 � 0.04 0.698

.7–13.0) 8.5 (6.6–11.4) 0.196
e Sterist

M-Low

.3 (6.8

0 (36

.0 (0.9

54 �

3.6 �

9.9 �

71 �
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5 (45

2 (0.4
andDime
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74

63
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3.0

52.6

155

76

409

3.37

1.05

9.8 (7
mate of the left ventricular filling pressure; LV � left ventricular; other
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riglyceride content. Moreover, liver triglyceride content
as inversely associated with myocardial substrate and
igh-energy phosphate metabolism. Furthermore, to the
est of our knowledge, this study is the first to show a direct
ositive relationship between myocardial glucose metabo-

Figure 1 Myocardial Perfusion, Glucose Uptake,
and High-Energy Phosphate Metabolism

Myocardial resting perfusion (n � 61) (A), metabolic rate of glucose metab-
olism (MMRglu) (n � 61) (B), and myocardial phosphocreatine/adenosine
triphosphate (PCr/ATP) ratio (n � 25) (C) in type 2 diabetes mellitus
(T2DM) patients with low (open bars) and high (solid bars) liver triglyceride
content.
ism and levels of myocardial PCr/ATP in human T2DM in a
ivo. In the present study, T2DM patients with increased
iver triglyceride content were characterized by lower high-
ensity lipoprotein cholesterol, higher plasma triglyceride
nd C-reactive protein levels, and lower insulin sensitivity
ompared with T2DM patient with low liver triglyceride
ontent. None of the patients had CVD or diabetes-related
omplications, allowing the assessment of early myocardial
bnormalities in the absence of potentially confounding
ffects of CAD and hypertension.

Myocardial glucose uptake was decreased in T2DM
atients with high versus low liver triglyceride content,
onfirming previous data from Lautamaki et al. (12), who
eported decreased PET-measured myocardial glucose con-
umption in nonstenotic myocardial segments of T2DM
atients with CAD and high liver triglyceride content. In
he present study, plasma fatty acid levels were inversely
elated to myocardial glucose metabolism; therefore, in-
reased substrate levels may explain reduced myocardial
lucose metabolism by reverse substrate competition. A
ore pronounced impairment of insulin signaling and

educed membrane-bound glucose transporter-4 in T2DM
atients with high liver triglyceride content, however, may
lso have contributed to decreased myocardial glucose me-
abolism (29,30).

Decreased resting myocardial perfusion and increased
yocardial vascular resistance, observed in the present

tudy, may indicate an early alteration in myocardial tissue
nd/or vascular properties in T2DM patients with high liver
riglyceride content. Although age, sex, and RPP are known
o influence resting myocardial perfusion (31), these were
imilar in the 2 groups and therefore cannot explain the
ifferences in myocardial perfusion between both groups.
nduced hyperinsulinemia has been shown to significantly
ncrease myocardial perfusion at rest in T2DM patients
ith CAD, also in nonaffected cardiac regions, emphasizing

he role of insulin action on myocardial perfusion (32). The
bserved difference in myocardial perfusion between both
roups in the present study may be related to the same
echanism because T2DM patients with high liver triglyc-

ride content were significantly more insulin resistant.
reviously, resting myocardial perfusion under hyperinsu-

inemia in nonstenotic cardiac segments was not different in
2DM patients with high versus low liver triglyceride

ontent and CAD, whereas myocardial glucose uptake was
ower in patients with high liver triglyceride content (12).
ecause myocardial perfusion and glucose metabolism were
easured under fasting and hyperinsulinemic conditions,

espectively, the present study design does not allow direct
omparisons. Nevertheless, it is likely that the relatively
mall decrease in myocardial perfusion is responsible for
nly a minor fraction of the decrease in myocardial glucose
etabolism in the T2DM patients with high liver triglyc-

ride content. The major fraction of this decrease presum-
bly is an intrinsic effect or related to substrate competition

s mentioned previously.



Univariable and Multivariable Linear Regression Analysis of Liver Triglyceride Content, Myocardial Metabolic Rate of Glucose, and PCr/ATP RatioTable 4 Univariable and Multivariable Linear Regression Analysis of Liver Triglyceride Content, Myocardial Metabolic Rate of Glucose, and PCr/ATP Ratio

Liver Trigyceride Content MMRglu·10 PCr/ATP

Univariable Multivariable Univariable Multivariable Univariable Multivariable

Retransformed
Regression Coefficient p Value

Retransformed
Regression Coefficient p Value

Regression
Coefficient p Value

Regression
Coefficient p Value

Regression
Coefficient p Value

Regression
Coefficient p Value

Plasma triglycerides (mmol·l�1)* 4.943 0.004 — — 0.033 0.025 — — 0.600 0.386 — —

Plasma lactate (mmol·l�1)* 19.953 0.004 — — 0.001 0.001 0.001 0.003 1.524 0.819 — —

Plasma fatty acids (�mol·l�1)* 1.690 0.604 — — 0.003 �0.001 0.006 �0.001 0.335 0.308 — —

Plasma insulin (pmol·l�1)* 0.155 �0.001 — — 1.774 0.003 — — 0.238 0.155 — —

HbA1c (%) 1.318 0.058 — — �0.489 0.004 — —- �0.014 0.869 — —

Malondialdehyde (�mol·l�1) 1.067 0.301 — — �0.182 0.012 — — 0.001 0.997 — —

Myocardial PCr/ATP 0.245 0.027 — — 2.116 0.015 — — NA NA — —

M/I value (10·mg·kg�1·min�1)/(pmol·l�1)* 0.136 �0.001 0.201 �0.001 1.164 �0.001 — — 2.547 0.072 — —

Liver triglyceride content (%)* NA NA — — 0.074 0.001 — — 0.479 0.027 — —

MMRglu (10·nmol·ml�1·min�1) 0.706 0.001 — — NA NA — — 0.109 0.015 0.109 0.015

MFAU (10·nmol·ml�1·min�1) 0.668 0.405 — — �1.073 0.072† — — �0.351 0.312 — —

MFAO (10·nmol·ml�1·min�1) 0.713 0.497 — — �1.051 0.088† — — �0.390 0.264 — —

Visceral fat volume (ml)* 15.668 �0.001 4.036 0.023 0.115 0.236 — — 1.794 0.585 — —

Subcutaneous fat volume (ml) 1.002 0.009 — — 0.001 0.780 — — 0.001 0.502 — —

Plasma usCRP (mg·l�1)* 1.959 0.037 — — 0.375 0.265 — — 1.754 0.451 — —

Body mass index (kg·m�2) 1.164 �0.001 — — �0.029 0.533 — — 0.001 0.972 — —

*For those independent variables, the regression coefficient is estimated for a difference of 1 U in the log of the independent variable. The transformed regression coefficient can be interpreted as follows: A difference of 1 unit log HbA1c is related to a 1.318 � higher liver
triglyceride content. †MMRglu was significantly related to MFAU (p � 0.010) and MFAO (p � 0.009) in those patients for whom PCr/ATP data were available.

HbA1c � glycosylated hemoglobin; M/I value � whole-body insulin sensitivity adjusted during steady state; MFAO � myocardial fatty acid oxidation; MFAU � myocardial fatty acid uptake; MMRglu � myocardial metabolic rate of glucose uptake; other abbreviations as
in Tables 1 and 2.
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High liver triglyceride content in T2DM patients was
lso associated with a decreased myocardial PCr/ATP ratio.

yocardial PCr/ATP is known to be decreased in a variety
f diseases, obesity and T2DM, among others (33–35). The
resent results in T2DM patients with verified absence of
nducible ischemia are in line with those of a previous study
y Perseghin et al. (11), who reported a reduced myocardial
Cr/ATP ratio in young nondiabetic men with high versus

Figure 2 Correlations Between Liver Triglyceride
Content, Myocardial Metabolism, and PCr/ATP Ratio

Correlation between liver triglyceride content and myocardial metabolic rate of
glucose (MMRglu) (A), between liver triglyceride content and myocardial phos-
phocreatine/adenosine triphosphate (PCr/ATP) ratio (B), and between MMRglu
and myocardial PCr/ATP (C) in those type 2 diabetes mellitus (T2DM) patients
in whom myocardial PCr/ATP data were available.
ow liver triglyceride content. Fatty acids, glucose, and c
actate are the primary energy substrates of the heart, with a
ubstrate preference depending on myocardial workload and
ubstrate supply in conjunction with feeding status (36).
lucose, however, is the most energy-efficient substrate

36). Experimental data suggest that increased fatty acids
elative to glucose metabolism lead to the formation of toxic
ipid-signaling molecules and oxidative stress, ultimately
esulting in mitochondrial dysfunction and reduced ATP
ynthesis (4,37). In the present study, inverse relationships
etween myocardial glucose and fatty acid metabolism and
lasma levels of malondialdehyde were found. Moreover, a
ositive relationship between myocardial glucose metabo-

ism and myocardial PCr/ATP ratio was found in T2DM
atients. The present study design precludes an assessment
f whether those associations describe a cause-and-effect
elationship. It may, however, be speculated that when
lucose relative to fatty acid metabolism contributes more to
otal ATP synthesis, this may result in a more favorable
yocardial energy level.
Although myocardial metabolism differed between

2DM patients with high and low liver triglyceride
ontent, no such differences were seen in myocardial
ystolic and diastolic function or dimensions. This find-
ng corresponds to the earlier work of Perseghin et al.
11), who found differences in PCr/ATP ratios, but not
n myocardial function and dimensions between nondia-
etic men with high compared with those with low liver
riglyceride content.
tudy limitations. The following limitations need to be
onsidered in the present study. First, PET measurements
ere performed under different conditions (i.e., fasting
erfusion and fatty acid measurements, but euglycemic
yperinsulinemic clamp conditions for measurement of
lucose metabolism). A euglycemic hyperinsulinemic clamp
s mandatory because under fasting conditions, virtually no
lucose metabolism will be present in insulin-resistant
yocardium. Differences in myocardial perfusion and glu-

ose metabolism in the 2 groups are therefore not readily
nterpretable. Second, there were substantially fewer myo-
ardial PCr/ATP data available than for the other measure-
ents. Third, only men were included, which limits gener-

lizability of the results to both sexes.

onclusions

n the absence of diabetes-related complications and induc-
ble ischemia, T2DM patients with high liver triglyceride
ontent showed decreased myocardial perfusion, glucose
ptake, high-energy phosphate metabolism, and whole-
ody insulin resistance compared with similar patients with
ow liver triglyceride content. The long-term clinical impli-
ations of this association between liver steatosis and altered

ardiac metabolism require further study in T2DM.
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