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Abstract

It is known that for every real square matrix A there exists a nonsingular real symmetric
matrix S such that

SA = A′S,

where A′ denotes the transpose of A. Using the notion of an M-matrix we derive a criterion for
A to satisfy the above equality with a diagonal S of signature k. Such a matrix A will be called
Dk-symmetrizable and the paper presents some results on this concept. In particular we show
that a Dk-symmetrizable matrix shares many properties with a real symmetric matrix and that
any real matrix A, up to an orthogonal similarity, is Dk-symmetrizable for some k.
© 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

The spectrum localization problem is one of the most discussed problems in linear
algebra. It is studied both in its numerical and algebraic aspects. In particular, in
stability theory one wants to establish whether the spectrum of a matrix is included in
a given region W of the complex plane without actually computing the eigenvalues
of the matrix.
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Motivated by applications to linear and nonlinear stability for a general class of
numerical methods for ordinary differential equations [3], as well as by applications
to solving systems of linear equations with coefficient matrices that are symmetriz-
able by a diagonal matrix, we direct our attention to the case when W is the real
axis. The paper proposes the concept of Dk-symmetrizability as a tool to estimate
the number of real eigenvalues of a real matrix. For the background we refer the
reader to [2–4,6,11–13]. The basic concept of Dk-symmetrizability is introduced in
the following section. The main results of the paper are obtained in Section 3. In
Section 4, we introduce a concept of Sk-symmetrizability and study how it relates to
the concept of Dk-symmetrizability.

2. Notation and preliminaries

By Rn×n we denote the set of all n-by-n real matrices. Throughout our consider-
ations we use the symbol A for a matrix from Rn×n and we assume that A is non-
symmetric. For a symmetric A our results hold trivially. We will use 0 to denote both
the zero number and the zero vector—the context will make that clear.

For an n-by-r matrix U and index sets α ⊆ {1, . . . , n} and β ⊆ {1, . . . , r} by
U [α, β] we will denote the submatrix of U with row and column indices in α and β,
respectively (if n = r and α = β we will set U [α, α] = U [α]).

For X ∈ Rn×n by ρ(X) and X′ we will denote the spectral radius and the trans-
pose of X, respetively. Tr(X) and X2 will denote the trace of X and the sum of all
2-by-2 principal minors of X, respectively. As usual the symbols ⊗ and ◦ denote the
Kronecker product and the Hadamard product of matrices, respectively.

Recall that Kronecker matrix multiplication does not require any restriction on
the size of the matrices [7]. For our purposes if X = (xij) ∈ Rn×n and Y ∈ Rn×n,
then

X ⊗ Y =


x11Y · · · x1nY

...
...

xn1Y · · · xnnY


 .

The Hadamard product of X = (xij) ∈ Rn×n and Y = (yij) ∈ Rn×n (with size re-
strictions, see [7]) is the matrix X ◦ Y = (xijyij).

For X = (xij) ∈ Rn×n we define:

• The matrix X̆ := (x̆ij) = X − diag(x11, . . . , xnn).
• The matrix M(X) := (|X|E + I ) ◦ I − |X| = (mij) ∈ Rn×n, where E ∈ Rn×n is

the matrix of all ones and |X| := (|xij|).
• The matrix M(X) := (XX′) ◦ I − X ◦ X′ = (m̃ij) ∈ Rn×n.
• The (n − 1)n/2-by-n real matrix L(X) := (lij) = (I ⊗ X′ − X′ ⊗ I )[α, β], where

α =
n⋃

i=1

{
(i − 1)(n + 1) + 1

}
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and

β =
n−1⋃
i=1

{
i(n + 1) − n + 1, i(n + 1) − n + 2, . . . , in

}
.

Consequently,

x̆ij =
{

0 if i = j,

xij if i /= j,

mij =
{∑n

k=1,k /=i |xik| + 1 if i = j,

−|xij| if i /= j,

m̃ij =
{∑n

k=1,k /=i x
2
i,k if i = j,

−xijxji if i /= j

and

L(X) =




x12 −x21 0 · · · · · · 0

x13 0 −x31
...

...
. . .

...
...

. . . 0
x1n 0 0 −xn1
0 x23 −x32 0 · · · 0
...

. . .
. . .

. . . 0
...

. . .
. . . 0

0 · · · · · · 0 xn−1,n −xn,n−1




.

Definition 1. A matrix X = (xij) ∈ Rn×n is said to be sign-symmetric if

sign(xij) = sign(xji) for all 1 � i /= j � n,

where

sign(c) =



1 if c > 0,
0 if c = 0,
−1 if c < 0.

(Compare with the definition of a strongly combinatorially symmetric matrix in [6].)

Definition 2 [9]. A matrix X = (xij) ∈ Rn×n is said to be combinatorially symmetric
if xij /= 0 implies xji /= 0.

By T we denote the set of all diagonal matrices T ∈ Rn×n with diagonal entries
±1.
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By S we denote the set of all symmetric matrices S ∈ Rn×n with entries from
{−1, 0, 1}.

Definition 3. For a symmetric nonsingular matrix X ∈ Rn×n we define its signature
s(X) as the absolute value of the difference of the number of positive eigenvalues
and the number of negative eigenvalues.

We observe that for real symmetric nonsingular matrices the signatures come in
steps of two: if for example one positive eigenvalue moves to the negatives, then
the difference recorded in the signature changes by two. Moreover, observe that if
D1,D2 ∈ Rn×n are diagonal and s(D1) = n, then s(D1D2) = s(D2).

Definition 4. A matrix X ∈ Rn×n is said to be Dk-symmetrizable if there exists a
nonsingular diagonal matrix D ∈ Rn×n with s(D) = k and

DX = X′D.

Following [6,13] we observe that the Dk-symmetrizability of a matrix X defined
via left diagonal multiplication can also be expressed via diagonal similarity

D1/2XD−1/2 = D−1/2X′D1/2.

Comparing Definitions 3 and 4, it is clear that sign-symmetry of X is a necessary
condition of Dk-symmetrizability.

Using [6] we observe that a reducible sign-symmetric matrix X necessarily has to
be completely reducible, i.e., permutation similar to a direct sum. Then the question
of Dk-symmetrizability becomes a question about Dk-symmetrizability for each of
its summands. Hence the Dk-symmetrizability question for real sign-symmetric ma-
trices reduces to the Dk-symmetrizability question for irreducible sign-symmetric
matrices. We recall the notion of irreducibility.

Definition 5 [7]. A real matrix X ∈ Rn×n is reducible if either

(i) n = 1 and X = [0] or
(ii) n � 2 and there is a permutation matrix P ∈ Rn×n and some integer r with

1 � r � n − 1 such that

P ′XP =
[
Y V

� Z

]
.

Here Y is an r-by-r matrix, Z is an (n − r)-by-(n − r) matrix and � is the zero
(n − r)-by-r matrix.

A square matrix X is irreducible if it is not reducible.

Following the discussion preceding Definition 5 we additionally specify our ma-
trix A to be irreducible from now on.
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Definition 6 [1]. A matrix X ∈ Rn×n is an M-matrix if it can be expressed in the
form

X = cI − Y

with a nonnegative Y and c � ρ(Y ).
If c = ρ(Y ), then X is a singular M-matrix, otherwise it is a nonsingular M-

matrix.

For a nonsingular M-matrix X, its minimal real eigenvalue is positive [1,8]. It will
be denoted by q(X).

Definition 7. Let X ∈ Rn×n be partitioned as

X =
[
X11 X12
X21 X22

]
with square and nonsingular X11 and X22. Then the matrices

[X/X11] := X22 − X21X
−1
11 X12

and

[X/X22] = X11 − X12X
−1
22 X21

are called the Schur complement in X of X11 or X22, respectively.

We close this section by recalling some notions from graph theory.
The digraph G = (V ,H) is an ordered pair of two finite sets V and H, where

the set H consists of some ordered pairs of elements of V, i.e., H is included in
the cartesian product of V with itself. The elements of V are called vertices and the
elements of H are called arcs. A graph G1 = (V1, H1) is called a subgraph of G
if V1 ⊆ V and H1 ⊆ H . A path π from vertex i to vertex j, i /= j , is a sequence
i = i0, i1, . . . , ik = j of distinct vertices where (i0, i1), . . . , (ik−1, ik) are arcs. The
length of the path π is k. A p-cycle in G is a sequence γ of vertices i1, . . . , ip, ip+1 =
i1 where p � 2, in which i1, . . . , ip are distinct and (i1, i2), . . . , (ip−1, ik), (ip, i1)

are arcs. A connected graph is defined as a graph that contains an undirected path
between any two distinct vertices. A graph is called a tree if it is connected and does
not contain any cycles. The subgraph F of the connected graph G is called a spanning
tree of G if F is a tree and if F contains each vertex of G. The arcs of G not contained
in F are called the chords of F.

With a given n-by-n matrix A = (aij) we associate a digraph G(A) with n vertices
in the following way: G(A) = (N,H), where N = {1, . . . , n} and H is the set of
such arcs (i, k) for which aik /= 0. If i1, i2, . . . , ip, i1 is a p-cycle in G(A), p � 2,
then the sequence {ais is+1}ps=1, ip+1 = i1, is a p-cycle in A.

If âp = {ais is+1}ps=1, ip+1 = i1, is a p-cycle in A, then we denote the transposed
cycle {ais+1is }ps=1, ip+1 = i1, by â′

p.
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3. Results for Dk-symmetrizable matrices

We start by showing that Dk-symmetrizable matrices share many natural proper-
ties with the real symmetric matrices.

Proposition 1. Let A be Dk-symmetrizable, β ⊂ {1, . . . , n}, and let s(D[β]) = kβ .
Then A[β] is D̃kβ -symmetrizable, where D̃ = D[β].

The proof is obvious.

Proposition 2. Let A be Dk-symmetrizable and nonsingular. Then A−1 is Dk-sym-
metrizable.

Proof. From Definition 4 we have

DA−1 = D(DA)−1D = D(A′D)−1D = (A−1)′D. �

Proposition 3. Let A and B ∈ Rn×n be Dk-symmetrizable and let AB = BA. Then
AB is Dk-symmetrizable.

In particular, for every positive integer m, Am is Dk-symmetrizable if A is.

The proof is similar to the proof of Proposition 2 and is thus omitted.
From Proposition 3 and our comment on Dn-symmetrizability in Section 2 we

immediately get the following corollary.

Corollary 1. Let A and B ∈ Rn×n be Dn-symmetrizable and let AB = BA. Then AB
is sign-symmetric.

Proposition 4. Let B ∈ Rn×n and let A and B be D
(1)
k1

- and D
(2)
k2

-symmetrizable,

respectively, and let s(D(1) ⊗ D(2)) = k12. Then A ⊗ B is D̃k12-symmetrizable with
D̃ = D(1) ⊗ D(2).

Proof. By Definition 4 and the properties of the Kronecker product [8] we see that

(D(1) ⊗ D(2))(A ⊗ B) = (D(1)A) ⊗ (D(2)B)

= (A′D(1)) ⊗ (B ′D(2))

= (A′ ⊗ B ′)(D(1) ⊗ D(2))

= (A ⊗ B)′(D(1) ⊗ D(2)). �

Corollary 2. Let A and B ∈ Rn×n be D
(1)
n - and D

(2)
n -symmetrizable, respectively.

Then A ⊗ B is sign-symmetric.
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Proof. Since s(D(1) ⊗ D(2)) = n2, the Kronecker productA ⊗ B is D̃n2 - symmetriz-
able by Proposition 4. To complete the proof we refer to our comment on symmetriz-
ability with “full” signature n in Section 2. �

Proposition 5. Let B ∈ Rn×n be irreducible, let A and B be D
(1)
k1

- and D
(2)
k2

- sym-

metrizable, respectively, and let s(D(1) ◦ D(2)) = k12. Then A ◦ B is D̃k12 -symmetri-
zable with D̃ = D(1) ◦ D(2).

In particular, if B is symmetric, then A ◦ B is D
(1)
k -symmetrizable.

Proof. Set A = (aij), B = (bij), D(1) = diag(d(1)
1 , . . . , d

(1)
n ), and D(2) = diag(d(2)

1 ,

. . . , d
(2)
n ). Then a direct calculation yields

aijd
(1)
i = ajid

(1)
j and bijd

(2)
i = bjid

(2)
j , 1 � i, j � n,

from which we obtain

aijbijd
(1)
i d

(2)
i = ajibjid

(1)
j d

(2)
j .

Therefore

(D(1) ◦ D(2))(A ◦ B) = (A ◦ B)′(D(1) ◦ D(2)).

To complete the proof observe that a symmetric matrix is always Dn-symmetrizable
with D = I . �

Corollary 3. Let A be Dk-symmetrizable. Then A ◦ A is Dn-symmetrizable.
Moreover, if A is nonsingular, then A ◦ A−1 is Dn-symmetrizable.

Proof. As s(D ◦ D) = n and A−1 is Dk-symmetrizable by Proposition 2, the asser-
tion follows directly from Proposition 5. �

Keeping in mind that a Dn-symmetrizable matrix is sign-symmetric (see Section
2), we get the following result as an immediate consequence of Corollary 3.

Observation 1. Let A be nonsingular and Dk-symmetrizable. Then A ◦ A−1 is sign-
symmetric.

Proposition 6. Let D ∈ Rn×n be diagonal and nonsingular. Partition A as[
A11 A12
A21 A22

]
(1)

for a square nonsingular block A11. Partition D conformally as[
D(1) �
� D(2)

]
. (2)

If A is Dk-symmetrizable, then [A/A11] is D
(2)
k2

-symmetrizable, where k2 = s(D(2)).
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Proof. Definition 4 together with (1) and (2) yields

DA =
[
D(1)A11 D(1)A12

D(2)A21 D(2)A22

]
=

[
A′

11D
(1) A′

21D
(2)

A′
12D

(1) A′
22D

(2)

]
= A′D. (3)

Using the Schur complement, (3) yields

[DA/D(1)A11] = D(2)A22 − D(2)A21(D
(1)A11)

−1D(1)A12 = D(2)[A/A11]
and

[A′D/A′
11D

(1)] = A′
22D

(2) − A′
12D

(1)(A′
11D

(1))−1A′
21D

(2)

= (A22 − A21A
−1
11 A12)

′D(2)

= [A/A11]′D(2).

Since [DA/D(1)A11] = [A′D/A′
11D

(1)], the assertion follows. �

Proposition 7. Let D ∈ Rn×n be diagonal and nonsingular. Partition A as in (1)
with a square nonsingular A22 and D conformally as in (2).

If A is Dk-symmetrizable, then [A/A22] is D
(1)
k1

-symmetrizable, where k1 =
s(D(1)).

The proof is similar to the proof of Proposition 6 and is thus omitted.
Before we state and prove a characterization of Dk-symmetrizability we note that

this matrix property is independent of the diagonal entries of a matrix (see also [6]).
Therefore we may prescribe these as is convenient. In particular, we can transform a
given singular matrix to a nonsingular one.

Theorem 1. The following are equivalent.

(i) A is Dk-symmetrizable.
(ii) There exists T ∈ T such that s(T ) = k, TA is sign-symmetric, and M(TA) is a

singular M-matrix.
(iii) There exists T ∈ T such that s(T ) = k, TA is sign-symmetric, M(A) is a non-

singular M-matrix, and q((M(A))−1 ◦ M(A)) = 1.
(iv) There are a diagonal T ∈ T and a spanning tree � of G(A) such that

(a) s(T ) = k and TA is sign-symmetric,
(b) if for r > 2 âr is an r-cycle of TA corresponding to a chord of � and â′

r

is the transposed r-cycle, then âr = â′
r .

The proof relies on four results from [5,6,9]:

Result 1 [5, Theorem 5.4]. Let A = (aij) ∈ Rn×n, aij � 0 for i /= j , and suppose
that there exists a vector x > 0 such that Ax � 0. Then A is a singular M-matrix.
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Result 2 [5, Theorem 5.6]. Let A ∈ Rn×n be a singular irreducible M-matrix. Then
A has rank n − 1 and there exists a vector y > 0 such that Ay = 0.

Result 3 [6, Theorem 4]. Let A ∈ Rn×n be an M-matrix. Then q(A−1 ◦ A) � 1.
For irreducible A equality occurs if and only if A is Dn-symmetrizable for D with a
positive diagonal.

Result 4 [9, Theorem 3]. Let A = (aij) ∈ Rn×n be a real combinatorially symmetric
matrix. Then there exists a real diagonal matrix D such that D−1ĂD is symmetric if
and only if

(i) there is a spanning tree � of G(A) such that the 2-cycles of A corresponding to
the edges of � are all positive, and

(ii) if for r > 2 âr is an r-cycle of A corresponding to a chord of � and â′
r is the

transposed r-cycle, then âr = â′
r .

Proof (Theorem 1). (i) ⇒ (ii): Let D = diag(d1, . . . , dn) and define D̃ = diag(d̃1,

. . . , d̃n) by setting d̃i = |di |, i = 1, . . . , n. Thus for some T ∈ T, D can be ex-
pressed as

D = D̃T (4)

from which we immediately get s(T ) = k.
Using (4) we obtain from Definition 4 that

D̃(TA) = (TA)′D̃, (5)

which implies sign-symmetry of TA.
Using the definition of L(TA) we can write (5) as

L(TA)d̃ = 0, (6)

with d̃ = [d̃1, . . . , d̃n]T.

Then the solvability in d̃ of linear system (6) is equivalent to the solvability in d̃

of the linear system:

(L(TA))′L(TA)d̃ = 0. (7)

A direct calculation shows that

(L(TA))′L(TA) = M(TA) (8)

and therefore (7) becomes

M(TA)d̃ = 0.

By sign-symmetry of TA the off-diagonal entries of M(TA) are nonpositive and, as d̃

is positive, the implication in question follows from Theorem 5.4 in [5].
(ii) ⇒ (i): Observe that by the irreducibility of A we have that M(TA) is an irre-

ducible singular M-matrix. Then the system
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M(TA)x = 0 (9)

has a positive solution x = [x1, . . . , xn]′ according to Theorem 5.6 in [5]. Using (8),
system (9) becomes

(L(TA))′L(TA)x = 0

from which we get

(L(TA)x)′(L(TA)x) = 0. (10)

From (10) it follows that

L(TA)x = 0.

Using the definition of L(PTA), we have

D̂(TA) = (TA)′D̂ (11)

with D̂ = diag(x1, . . . , xn). Setting D = D̂T , formula (11) becomes DA = A′D
with s(D) = s(T ) = k. So, (ii) ⇒ (i).

(i) ⇒ (iii): The existence of T ∈ T such that s(T ) = k and TA is sign-symmet-
ric follows from the argument used in the corresponding part of the proof of (i) ⇒
(ii). The remaining part of condition (iii) follows from Theorem 4 in [6].

(iii) ⇒ (i): As TA is sign-symmetric and M(TA) = M(A) we conclude that TA
is D̂n-symmetrizable from Theorem 4 in [6]. Hence we have

D̂(TA) = (TA)′D̂ (12)

with s(D̂) = n. Setting D = D̂T , formula (12) becomes

DA = A′D,

where s(D) = s(T ) = k. So, (iii) ⇒ (i).
(i) ⇒ (iv): As A is Dk-symmetrizable with a diagonal matrix D, by the reasoning

used in the proof of (i) ⇒ (ii), there is a diagonal T ∈ T such that (iv)(a) holds.
Moreover, we can write D as D = |D|T and since s(|D|) = n, TA is Dn-symmetr-
izable by Definition 4. So, again by Definition 4, there is a positive diagonal D̂

(the square root of |D|) such that D̂TAD̂−1 is symmetric. Hence D̂ ˘(TA)D̂−1 is also
symmetric and, as TA is combinatorially symmetric, to show (iv)(b) it suffices to
apply Theorem 3 from [9].

(iv) ⇒ (i): By Theorem 3 from [9] there is a positive diagonal matrix D̂ such
that D̂TAD̂−1 is symmetric. Then by Definition 4, TA is Dn-symmetrizable with
D = D̂2. Setting Ḋ = DT it is easy to see that s(Ḋ) = s(T ) = k and that A satisfies
ḊA = A′Ḋ. Thus A is Dk-symmetrizable and the proof is complete. �

Remark 1. Observe that for a symmetric matrix C ∈ Rn×n, which is obviously
Dn-symmetrizable with D = I , M(C) is a singular M-matrix by Theorem 2. Thus
our theorem provides a way to construct singular M-matrices.

Proposition 8. Let S ∈ S and let A be Dk-symmetrizable. Then S ◦ A is Dk-
symmetrizable as well.
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As S is Dn-symmetrizable with D = I , the proof is a direct consequence of Prop-
osition 5.

As one application of Dk-symmetrizability we now evaluate the number of real
eigenvalues of a real matrix.

Theorem 2. Let A be Dk-symmetrizable.

(i) All the eigenvalues of A are real and s(A) = s(DA) if k = n.
(ii) A has at least k real eigenvalues if k < n.

Proof
(i) See Theorem 7.6.3 in [7].

(ii) Observe that A = D−1(DA) for the symmetric matrix DA and use Corollary 2 in
[11]. �

For Dn-symmetrizable matrices we can modify Theorem 2 as follows:

Theorem 3. Let A be Dn-symmetrizable and let S ∈ S. Then all the eigenvalues of
S ◦ A are real. Moreover, all the eigenvalues of any principal submatrix of A are
real.

Proof. The first part of the assertion is a direct consequence of Proposition 8 and
Theorem 7.6.3 from [7]. Let α be a proper subset of N = {1, . . . , n} and let S ∈ S
be such that S[N\α] is the zero matrix.

Then, as (S ◦ A)[N\α] is the zero matrix and all the eigenvalues of S ◦ A are real,
the remaining part of the assertion follows. �

With some further assumptions on A we can improve Theorem 2 for k < n. In
particular, we can extract a set M ⊂ Rn×n consisting of matrices with exactly n − 2
real eigenvalues.

Theorem 4. Let A be Dn−2-symmetrizable and let

(Tr(A))2 <
2n

n − 1
A2. (13)

Then A has exactly n − 2 real eigenvalues.

The assertion follows from Corollary 2 in [12] and Criterion 1 in [10].

Example. Let

A =
[

1 −1
1 1

]
.

Then A is D0-symmetrizable with D = diag(1,−1) and satisfies (13). So, by Theo-
rem 4, A has no real eigenvalues.
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4. Results on Sk-symmetrizable matrices

Both the theory and applications of Dk-symmetrizability suggest to consider more
general symmetrizers, namely to introduce the notion of Sk-symmetrizability.

Definition 8. A matrix X ∈ Rn×n is Sk-symmetrizable if there exists a nonsingular
and symmetric matrix S ∈ Rn×n with s(S) = k and

SX = X′S. (14)

Remark 2. It is known [11–13] that for every matrix X ∈ Rn×n there is a symmetric
and nonsingular matrix S ∈ Rn×n with

SX = X′S.

Hence, following Definition 8, every real square matrix is Sk-symmetrizable for
some k.

The following theorem shows how Sk-symmetrizability relates to Dk-
symmetrizability.

Theorem 5. The following are equivalent:

(i) A is Sk-symmetrizable.
(ii) There is an orthogonal Q ∈ Rn×n such that Q′AQ is Dk-symmetrizable.

Proof. (i) ⇒ (ii): By Schur’s unitary triangularization theorem there is an orthogo-
nal Q ∈ Rn×n such that QSQ′ is diagonal. Since A satisfies (14) we have

QSQ′QAQ′ = QA′Q′QSQ

which, by setting D = QSQ′, becomes

DQAQ′ = (QAQ′)′D.

As D is nonsingular and s(D) = s(QSQ′) = s(S) we see that (i) ⇒ (ii).
(ii) ⇒ (i): If QAQ′ is Dk-symmetrizable, we have

DQAQ′ = (QAQ′)′D (15)

with s(D) = k. After a slight manipulation (15) becomes

SA = A′S
with the symmetric and nonsingular matrix S = Q′DQ. Since obviously s(S) =
s(D), (ii) ⇒ (i) holds. �

Corollary 4. Every B ∈ Rn×n is Dk-symmetrizable up to an orthogonal similarity.

The proof is a direct consequence of Theorem 5 and Remark 2.
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We conclude the paper with a result which, in some sense, generalizes the singular
value decomposition [7] for the case of real square matrices.

Theorem 6. For every B ∈ Rn×n there exist orthogonal P and Q such that PBQ is
sign-symmetric and PQ ∈ T.

Proof. From Corollary 4 there is an orthogonal Q ∈ Rn×n such that

DQ′BQ = (Q′BQ)′D, (16)

where D is nonsingular and S(D) = k. Hence for some T ∈ T we can set D = |D|T
and P = TQ′ so that (16) becomes |D|PBQ = (PBQ)′|D|. Hence, as s(|D|) = n,
PBQ is Dn-symmetrizable and the orthogonality of P is obvious. It is easy to see
that PQ = TQ′Q = T and therefore PQ ∈ T. �
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