
Theoretical
Computer Science

EISEVIER Theoretical Computer Science 158 (1996) 35-51

About the p-paperfolding words

Michel Koskas

UniversitP Bordeaux I, Algoriihmique ArithmCtique eXp’perimentale. UMR no 9936 CNRS. 351,
tours de la Libkation F-33405 Talence Cedex. France

Received April 1994; revised December 1994
Communicated by D. Perrin

Abstract

Let p be an integer greater than or equal to 2. The aim of this paper is to study the language
associated to a p-paperfolding sequence. It is known that the number of factors of length n of
a 2-paperfolding sequence (i.e. its complexity function) is P(n) = 4n for n > 7. It is also known
that the language of all the factors of all 2-paperfolding sequences is not context-free and that its
generating function is transcendental.

We show that the complexity function of a p-paperfolding sequence is either strictly subaffine
or ultimately linear. The first case never happens if p = 2 or 3. In the second case, the complexity
function is either P(n) = 2n or P(n) = 4n for n large enough. We give a simple necessary and
sufficient condition for the number of special factors to be p-automatic. We finally show that,
for any given p, the language of all factors of all p-paperfolding sequences is not context-free,
and that the associated generating series is not algebraic.

0. Introduction

Let u be a sequence taking its values in a finite alphabet. How “complicated” is it?

One possible answer to this question is the following definition.

Definition 1. The complexity (or factor-complexity) of a sequence is the function

n H P(n) where P(n) is the number of factors (blocks) of length n of the
sequence.

For a survey on the complexity of sequences one can read [3]. A family of sequences

for which the complexity function has been computed consists of the paperfolding

sequences. These sequences are obtained by repeatedly folding a piece of paper onto
itself. At each step, one can fold the paper in two different ways, thus generating
uncountably many sequences.

It is known that all the paperfolding sequences have the same complexity P(n).
Furthermore, one has P(n) = 4n for n 2 7 (see [l, 41).

0304-3975/96/$15.00 0 1996-Elsevier Science B.V. All rights reserved

SSDi’ 0304-3975(95)00008-9

M. Koskas / Theoretical Computer Science 158 (1996) 35-51

In [4], the authors also study the language ~8’ of all the factors of all paperfolding
sequences. They compute the c~~~lex~ty~nction of this language (i.e. the number of
words of given length in 8) and they show that 8 is not context-free and has
a transcendental generating function.

In this work we study the p-paperfolding sequences which are constructed by
folding a piece of paper onto itself in p parts and iterating this process, ([l 11, see also
[14] for related sequences). These sequences are Toeplitz sequences (see [3] for
a survey) and some of their complexity functions are in O(n) (see Es]). We prove here
the following results:
l The complexity function of a 3-paperfolding sequence is either P(n) = 2n for n > 1

or P(n) = 4n for n large enough.
l If p > 4, the complexity function of a p-paperfolding sequence is either strictly

subaffine or linear. In the first case we give a necessary and su~~ient condition for
the number of special factors to be p-automatic. In the second case we show that,
for n large enough, P(n) = 2n or P(n) = 4n.

l For any given p the language of all factors of all p-paperfolding sequences is not
context-free and its generating function is transcendental.

1. p-paperfolding sequences

1 .I. Construction

Fold a piece of paper in p parts, (there are 2p- ’ possibilities, each of them is called
a folding instruction). Repeat this operation an infinite number of times, then unfold
the paper. One obtains on its edge a sequence of “mountains” and “valleys” which is
by definition a p-paperfolding sequence.

If at each step one chooses the same folding instruction, then the sequence is called
a reg~lur p-pa~rfolding sequence. Otherwise it is called a generalized p-paperfolding
sequence.

For instance, one obtains a regular 3-paperfolding sequence by choosing at
each step the folding instruction v A (this means that the paper is folded in three
parts, the left side being folded towards up, and the right side being folded towards
down):

1 VA
2 VAVVAAVA
3 VAVVAAVAVVAVVAAVAAVAVVAAVA

4 VAVVAAVAVVAVVAAVAAVAVVAAVA...

One can also obtain a generalized 3-paperfolding sequence, choosing to fold
randomly at each step the paper according to the folding instructions v v , v A, A v

or A A. Take for instance for the lust three folding instructions equal to v A, v v

M. Koslcas / Theoretical Computer Science 158 (1996) 35-51 37

and A A. This gives:

1 VA

2 VAVVAVVA

3 VAVVAVVAAVAAVAAVAAVAVVAVVA

4 VAVVAVVAAVAAVAAVAAVAVVAVVA...

A first algorithm to construct a ~-pa~rfolding sequence is the following. Suppose
that we have folded the paper n + 1 times, if we unfold it n times, we have a sequence
obtained after n folds and, to obtain the sequence issued from our n + 1 folds, we have
to unfold it a last time. Let w, be the word on the alphabet {v, A}, obtained after
folding n times, but following the last n folding instructions. Let al . . . up_ 1 be the first
folding instruction. One has

w,+~ = w,alf(w,)a2f2(w,)...a,-ifP-‘(wnb

where f(w,) is obtained by reading w, backwards and interchanging the symbols
v and A, (of coursef’(w,) = wn). (From now on, the wordf(w) will be denoted by G).

Taking again the generalized 3-paperfolding example: (the symbol 1 denotes the
place of the third, second and first folding instructions)

1
- - b

3VAVVAVVA AVAAVAAVA AVAVVAVVAJ...
L

I >
4VAVVAVVA AVAAVAAVA AVAVVAVVA . . .

A particular case is the 2-paperfolding.

Example (general 2-~aperfol~ing sequences). One can obtain all 2-pa~rfolding se-
quences by randomly folding a paper in two (at each step the left side on or under the
right one). The preceding algorithm gives, (denoting v by 0 and A by l), choosing
0 at the first step, 1 at the second, 1 at the third, and 0 at the fourth: (1 denotes again
the place of the third, the second and the first foIding instructions)

It has been shown in [1] that for any 2-paperfolding sequence, the complexity
function is P(n) = 4n for n 3 7.

38 M. Koskas / Theoretical Computer Science 158 (1996) 35-51

1.2. p-paperfolding sequences defined as Toeplitz sequences

Definitions. Let us consider the alphabet d = (0, l}. Let a,, (n > 0) be a sequence of
words of length p - 1 over &, (a, = a,, [I].. . a,, [p - 11).

One defines ‘0 = 1, ‘1 = 0, and ‘a, = ‘a, [l] ‘a,, [2]. . .‘an[p - 11. One also defines
a, = a”[p - l] . ..a.[l], and denotes by d, the word ‘7Y,,.

Let l be a new symbol. A periodic word over ~9 u {o}(cr . ..[rci . ..[rCi . ..Cr...)
will be denoted (cl c2.. . (YT)OD.

Let B, the sequence defined over d u {o} by

B, = (a,o&o)“.

Let AA = B0 and for n E N, define the periodic sequence A,‘, 1 by replacing the
letters l of A,’ by the letters of B,+ 1. When n goes to infinity, the sequence Ai tends to
a limit over .&. This limit, denoted by A’ is called the p-paperfolding sequence
according to the sequence of instructions (B,), a 1.

From now on, A’ will denote a sequence obtained as above. One writes
A’= A1[k-JkEN*.

In the same way, for i 2 1, let A& = Bi_ 1 and for n E N define the periodic sequence
A’ a+1 obtained by replacing the letters l in Ai by the letters of B, _ 1 + i. This sequence
also tends to a limit A’. From now on, A’ will denote such a p-paperfolding sequence.

A finite word occurring at least one time in a p-paperfolding sequence will be called
a p-paperfolding word.

Finally a finite word m = m [l] . . . m [n] is said to be 2-periodic if Vj, 1 < j < n - 2,

m[j] = m[j + 21.

Proposition 2. This construction yields exactly the p-paperfolding sequences.

The proof is left to the reader.

1.3. Example

With p = 2, a,, is reduced to a single symbol: Vn, a,, = 0 or a,, = 1. Let us construct
a prefix of such a Toeplitz sequence, with a0 = 0, a, = 1, a2 = 1 and a3 = 0:

BO=(OoloOoloOoloOoloOolo...),

Bl =(1.0.1.0.1.0.1.0.1.0....),

B2=(1e001000100010001000...),

B3=(Oo10001000100010001e...).

This gives us, for the AZ sequences (0 < n G 3):

A~=0.1.0.1.0.1.0.1.0.1....,

M. Koskas / Theoretical Computer Science 158 (1996) 35-51 39

then:

B1= 1 0 0 0 1 0 0 0 1 l . . .

A~=0~1~0~1~0~1~0~1~0~1~...

A:=011.001.011.001.011....

hence

B2 = 1 0 0 0 1 . . .

A:=011e001.011.001.011....

A:=0111001.0110001.0111...

and

B3 = 0 0

A:=0111001.0110001.0111...

A:=011100100110001.0111...

We recognize here the beginning of the example given in the preceding paragraph.

2. Induction formulas satisfied by the complexity of p-paperfolding sequences

2.1. v-factors

Let v E [O,p - l] be an integer, and i 2 1. A v-factor of A’ is a factor of A’ beginning
at least once at an index j E v (modp). We define q:(m) as being the number of
v-factors of A’ of length m.

We also define

v=p-1

cp’w = 1 d(m).
v=o

We finally define Plven(m) (resp. Pi,,(m)) as being the number of factors of A’ of
length m beginning at least once at an even (resp. odd) index P’(m) as being the
number of factors of A’ of length m. In general,

P’(m) G Pi,,,(m) + PL(m)

and

P’(m) < vi(m).

Lemma 3. No factor of length greater than or equal to p + 2 of a p-paperfolding
sequence M is 2-periodic.

40 M. Koskas / Theoretical Computer Science 158 (1996) 35-51

Proof. From the construction of these Toeplitz sequences, it is clear that any letter of
index (kp - 1) is different from the letter of index kp + 1. Indeed, AL = (mo Ao mo
mo . ..) and the last letter of m is different from the first letter of A. As any factor of
M of length greater than or equal to p + 2 contains a letter of index multiple of
p which is neither its first nor its last letter, the result holds. 0

Lemma 4. Let k be an integer not multiple of p. Then no factor of length greater than or

equal to p + 2k of a p-paperfolding sequence is 2k-periodic.

The proof is exactly as above.

We now give a first lemma which will allow us to compute the factors of a p-
paperfolding sequence by counting separately the factors which begin at a given index
modulo p.

Synchronization lemma. For any distinct numbers v and v’ E [0, p - 11, any factor M of

length greater than or equal to p(p + 2) - 1 of a p-paperfolding sequence cannot be

simultaneously v-factor and v’-factor.

Proof. Let u be a factor of M of length n B p(p + 2) - 1 occurring simultaneously at
an index ii and an index ia, with iI f iz (mod p).

As n 2 p(p + 2) - 1 and iI f iz (modp), there are at least p + 2 letters of index
multiple of p in the first or in the second occurrence of u (possibly in both). Let us
suppose they are in the first one. These letters form a word w of length greater than or
equal to p + 2, which is a factor of the p-paperfolding sequence obtained by “forget-
ting” the first folding instruction.

This word w is also the subword of the second occurrence of u formed with the
letters congruent to iz - iI (mod p). As iI - iz f 0 (mod p), the word w is 2-period. But
1 w) 2 p + 2. This contradicts the Lemma 3. 0

We now give two induction lemmas which will help us to compute the complexity
functions of the p-paperfolding sequences.

Lemma 5. Zf aI = aI, then Vi, 0 < i < p - 1, Vj 2 p, one has

Vfti) = p2(li,j),

where li,j is the number of integers multiple of p in [i, i + j - 11.

Lemma 6. One has

0
ri # 0 and ri + rj - 1 G p,

ri = rj = 0,

1 otherwise.

with ri, rj the remainders of the euclidian division of i and j by p.

M. Koskas / Theoretical Computer Science 158 (1996) 35-51

Proof. Define

1 otherwise.

By definition,

Case 1: If i E 0 (modp):

If j - 0 (mod p) then l~+~-l~=l~]+l~l-l and li,j=l~i=k,j.

If j f 0 (mod p) then [i+~-l]=li-+[i] and li.i=1’61+1=k~.j*

Case 2: If i $0 (modp):

hence

which may be written:

Ii, j = ~ = ki, j 1’1
and

li+:-l]=[~]+l~J+l ifri+rj>,p+l

42 M. Koskas / Theoretical Computer Science I58 (1996) 35-51

and then

li,j= ’ + l=ki,j. 0 11 P

Proof of Lemma 5. Let

2 = {factors of A’ of length j beginning at an index = i (modp)}.

Let Y = {factors of A* of length Ii, j}. The map which associates to a word m of 2 the
subword m’ of Y which is composed with the letters of m of indices multiple of p is
clearly bijective, hence the result holds. 0

We now give the second induction lemma.

Lemma7. Zfd, #a,,thenVj 2p

vf (j) = p,2,en(4 j) + pkkl(k, jb

with

li # 0 and ri + rj - 1 < p,

li = ‘j = 0,

1 otherwise.

Proof. we recall that li,j is the number of integers multiple of p in [i, i + j - 11. Let
r = {factors of A’ of length j beginning at least once at an index z i(modp)}. Define
OO and Or by

OO = {factrors of A* of length li, j beginning at least once at an even index},

and

Or = {factors of A* of length Ii, j beginning at least once at an odd index}.
Let

0 = (0, x (0)) u (0, x {l}).

Define the map Q as follows:

a+ 0,

where rntp) is the subword of m formed of the letters of m of indices multiple of p.
This map is clearly bijective, hence the result. 0

We now give a general induction lemma.

M. Koskas / Theoretical Computer Science 158 (1996) 35-51 43

General induction lemma. (i) Zfril # al then Vj 2 p,

and

rp’(j + 1) - cp’(j) = (P&(1;] + 1) - P&(1;]))

+ (P:&&l+ 1) - P.L@l)).

rj being the remainder in the euclidian division of j by p,

(ii) Zfa, = al then

Vj 2 p, cp’(_i) = (P - rj)P ‘([il) + rjP'(lbl+ 1)
and

cp'(j + 1) - q’(j) = P2 (I;]+ l)-Pfl;J),

where rj is the remainder in the euclidian division of j by p.

(iii) Zf p is odd then Vu, E Ap- ‘, one has Vj > p:

PL(j + 1) + PL,(j + 1) - PLd(j) - PL(j)

Proof. (i) Using Lemma 7, the proof is the same as for the following point.
(ii) One has, using Lemma 5, q’(j) = Ciz{ cp’(li,j). By counting separately the

values of i giving the same number li,j, one has:

qpl (8 = (P - rj)Cp ‘(lfl) + rj~2(l~] + 1).

This last equality implies the result.
(iii) One has, for odd p and for j > p, the following.
If j = 0 (mod p) and j E 0 (mod 2), then

M. Koskas J Theoretical Computer Science 158 (1996) 35-51

Ifj f 0 (modp) and j E 0 (mod2), then

P,‘dd(A + e”e”w = (P - rj + 2) Podd (2 ([g) + PL(p-1))

+(rj-2,(pzdd([b] + 1) +pkm([i] + 1)).

Ifj 3 0 (modp) and j f 0 (mod2), then

P,ldd(j) + pb!en(j) = (p - rj + 4)

If j f 0 (modp) and j f 0 (mod2), then

P,ldd(j) + piYen = = (p - rj + 3) Podd (2 (l;]) + %“(lg))

+(~j-3)(p~dd(~~J+l)+~~~.“(~~J+l)).

In each case the point (iii) holds. This concludes the proof of the lemma, Cl

3. A necessary and sufficient condition for the number of special factors

of a p-paperfolding sequence to be automatic

In this part we study the number of specialfactors: a factor w of a p-paperfolding
sequence is called special if and only if w0 and wl are both factors of this sequence.
The number of special factors of length n is given by P(n + 1) - P(n), if P is the
complexity function of this paperfolding sequence (this holds for any binary sequence).

Proposition 8. Ifthere exists an integer j, such that Lij, # ajo, thenfor any i >, j, andfir

any j 2 pi one has

If Qj,, E N *, cijO = aj,, then for any integer i and any integer j such that j 2 pi one has

P’(j + 1) - P’(j) = Pi+l ([$I + I)- Pi+@]).

M. Koskas 1 Theoretical Computer Science 158 (1996) 35-51 45

Proof. This proposition is an easy consequence of the Synchronization Lemma and of
the General Induction Lemma. 0

Theorem 9. Let m be a word of length p - 1. Let Cj, be the complexity function of the

word: (mOfiOml&l)“, Ci be the sum Podd + P,,,, of the same word. Let

c’(m) = (C,!,(2) - CA(l),..., Ci(p’) - C,!,(p - 1)) and c’(m) = (C:(2) - C:(l),...,

G(P) - G(P - 1)).
Let a, be a sequence offolding instructions. Let no E N u { + co }, such that Vj 2 n,,

ai = di. Let c be the map c(n) = (‘(a,) ifn < no andt;(n) = c2(n) otherwise. Then the

sequence (P’(n + 1) - P’(n)) is p-automatic ifand only if the sequence (5,) is ultimately

periodic.

Proof. The complexity function P of any p-paperfolding sequence verifies P(1) = 2
and P(2) = 4, P,,,,(l) = 2, Podd(l) = 2, P,,,,(2) = 4 and Podd(2) = 4. Hence the se-
quence (A”) and (a,O&,Oa,l8,1)” have the same complexity function for arguments
smaller than or equal to p.

The p-kernel of a sequence u = u [nlnE N* is the set of sequences of the form
u [pkn + rlnG Mt with k E N* and 0 Q r < pk - 1 (this terminology has been introduc-
ed by Salon in the multi-index case in [12,13]). A sequence u is p-automatic if and
only if its p-kernel is finite (see [6]). Proposition 8 helps us to compute easily the
p-kernel of this sequence and to realize that it is finite if and only if the sequence 5, is
ultimately periodic. 0

4. Computation of the complexity function

Theorem 10. If the complexity function of a p-paperfolding sequence is ultimately aj’ine,

then it is ultimately linear.

Proof. If the complexity function P’ is ultimately affine, then the functions P’(i 2 1)
are all ultimately affine, say P’(n) = ain + bi. Furthermore, the a/s are eventually
equal.

LetNo~Nu{cO)suchthatforanyn~No6,=a,.
If No = + cc then all the als are the number 4. One has cpl (n + 1) - q’(n) =

(Pidd + p&)(L n/p’] + 1) - (PLdd + p&)(L n/p’ 1) for i as large as we wish and
n >pi. (i is such that di f ai). For n = pi one has q’(n + 1) -q’(n) =

(P6dd + P:,,,H~) - U%., + ~:ven)U) (G eneral Induction Lemma). Hence cpl (n + 1) -
q’(n) = 4. But cp(n) = P’(n) if n 2 p(p + 2) - 1, and P’(n) = aln + bl if n is large
enough. So P’(n) = 4n + bl for n large enough. We have then
q’(n) - cp(p’) = 4(n - pi). But cpl(pi) = 4~‘. (Lemma 7). Hence P’(n) = 4n.

If No < + cc then let i > No be an integer. We have ai = 2. One has (General
Induction Lemma) ‘pi(n + 1) - q’(n) = pifj(L n/pjJ + 1) - Pi+j(L n/p’]) for j 2 0.
Taking n = pj with j large enough, we have cpi(n + 1) - q’(n) = 2 for n large enough.

46 M. Koskas / Theoretical Computer Science 158 (1996) 35-51

But we have q’(n) = P’(n) for n 2 p(p + 2) - 1 (Synchronization Lemma) and
P’(n) = ain + bi for n large enough. We conclude that ai = 2. In this case
cp’(n) - cp’(pj) = 2(n - pj) and cp’(pj) = 2pj (Lemma 5). q

Theorem 11. There exist words a in dp- ’ such that i’(a) = (2,2,. .., 2) and

C”(u) = (4,4,..., 4). The complexity function of A’ is ultimately ujine (hence ultimately

linear) if and only if c(u,) = (2, 2 ,..., 2) for n large enough or i(u.) = (4,4,. . ., 4) for

n large enough.

Proof. For any number p and any sequence a, of folding instructions, (n E N *),
the complexity function verifies P ‘(1) = 2, P’(2) = 4, P&(l) = 2, P:(2) = 4,
P&,,(l) = 2 and Pzven(2) = 4. The word a = Op- ’ verifies [‘(a) = (2,2,. . . ,2) and
[‘(a) = (4,4,..., 4). The complexity function of A’ is ultimately affine if and only if
(P’(n + 1) - P’(n)) is constant for n large enough. If one wants this sequence to be
ultimately constant, one must have {(a,) = (2,2,..., 2) for n large enough or,

r(G) = (474,. . ., 4) for n large enough (Proposition 8). On the other hand, this condi-
tion is sufficient using the same proposition. Cl

Theorem 12. Zfp = 2, then P’(n) = 4nfor n large enough.

Zfp = 3 and ifVi E N* bi = ai, then P’(n) = 2nfor n 2 1.
Zf p = 3 and if there exists i such that rZi # ai, then P’(n) = 4n for n large enough.

Zf p 2 4, then there exist folding instructions sequences leading to strictly sub-@ne

complexity functions, and others leading to @tine (hence linear) complexity functions. In

this lust case, tf Vi E N* rZi = ai, then P’(n) = 2n for n large enough, and if there exists
i such that di # ui, then P’(n) = 4n for n large enough.

Proof. If p = 2 (resp. p = 3) then Vu E dp- ‘, c(u) = (2) (resp. (2,2)). Hence the general-
ized 2-paperfolding and the generalized 3-paperfolding sequences have ultimately
linear complexities (Theorem 11).

If p = 2, Vu E &Pm ‘, d # a, PAdd (1) = 2, P&,,(l) = 2, P&,(2) = 4, Px,(2) = 4 and
hence P’(n + 1) - P’(n) = 4 for n large enough, which implies P’(n) = 4n for n large
enough (Proposition 8 and Theorem 10).

If p = 3 and Vi E N* di = ai, since P’(1) = 2, P’(2) = 4 and P’(3) = 6 one has
P’(n) = 2n for n large enough, (Proposition 8 and Theorem 10). If there exists i such
that di # ai, since P&(l) = 2, P&,,(l) = 2, P,&(2) = 4, P&(2) = 4, PLd(3) = 6,
P,‘,,,(3) = 6, one has P’(n) = 4n for n large enough (Proposition 8 and Theorem 10).

If p > 4, the cardinality of the image of 5 is strictly greater than 1, and there are
folding instructions sequences leading to strictly subaffine complexity functions,
(because for instance a = Op- ’ and a = Olp-’ have distinct images by c. Indeed,
(Oplp-‘Oplp+‘)~ verifies P(1) = 2, P(2) = 4, P(3) = 6, hence its image by c begins by
the numbers 2, 2 while (01p-20p-‘1001p-‘O~-211)~ verifies P(1) = 2, P(2) = 4,
P(3) = 8, and its image by c begins with the numbers 2, 4).

M. Koskas / Theoretical Computer Science 158 (1996) 35-51 41

The complexity function is ultimately affine if and only if

C(G) = (2,2,..., 2)

for IZ large enough or

5(G) = (4,4,..., 4)

for n large enough. In this case, we conclude as in the case p = 3. 0

5. The language generated by the p-paperfolding sequences for a fixed p
is not context-free

In [4], the authors considered the language of all factors of all 2-paperfolding
sequences. We will consider in the same way the language of all the p-paperfolding
sequences for a fixed p.

Lemma 13. Let w be a factor of A ‘. Then w” is not a factor of A’ as soon as

n ap(p + 2).

Lemma 14. Zfw” is afactor of A’ with n > p(p + 2) then the length ofw, denoted by 1 w 1,

is a power of p.

Proof. Let

w” = A’[j]...A’[j + nlwl - 11.

One has

w1 = A’[j]...A’[j+(n- l)lwl- 11,

which is equal to the factor

w2 = A’[j + Iwl]...A’[j + nlwl - 11,

these two factors being equal to w”- ‘. But I w”- ‘1 2 p(p + 2) - 1. These two factors
must hence begin at a same index modulo p, (Synchronization Lemma), hence I WI is
multiple of p.

Now the subword w2 formed with the letters of w of index multiple of p is a factor of
(the p-paperfolding sequence) A’, so is w;. If w2 is not the empty word, its length is
a multiple of p, and the length of w is a multiple of p2. By an immediate induction, one
shows that I WI is a power of p.

Proof of Lemma 13. Let us suppose that I WI = pk. The word w” is a factor of A’. Let
WY be the subword formed of the letters of w appearing at an index mutiple of p. This
word wl is a factor of A’. Repeating this operation k - 1 times, we finally find a factor
of Ak+’ of the form CC”, a belonging to d, and n > p(p + 2). This is in contradiction
with the synchronization lemma. 0

48 M. Koskas / Theoretical Computer Science 158 (1996) 35-51

Theorem 15. For any p, the language 3’ of all factors of all p-paperfolding sequences is

not context-free.

Proof. we will use here the same idea as in [4,5] (see also [9]). The pumping lemma
for context-free languages (see [7]) easily implies that in any infinite context-free
language, there are arbitrarily large powers. Lemma 13 hence implies that the
language _Y of all factors of all p-paperfolding sequences is not context-free. 0

Theorem 16. The generating series of the language Y is transcendental.

Remark 17. This last proposition implies that, if the complementary language
(0, l)*\s were context-free, then it would be ambiguously context-free (Chomsky-
Sch~tzenberger’s Theorem).

To prove this theorem, we need the following lemma.

Lemma 18. The number N,(j) of factors of length j appearing in at least one p-

paperfolding sequence verifies:

Jvb(j) = 2j ifj < p + 1;

Proof. A factor u [l J u [2] . . . u [j] is a p-paperfolding word if and only if there exists
j, E Cl, p], such that

(a) thewordsm(k)=u[jo+kp+1)u[j,+kp+2]...u[or,](withjo+kp+l~j
and &k = inf(j, + kp + p - 1, j) verify m(k) = &(k + l),

(b) the word u [j,] u [j, + p] . . . u [jO + fip] is a p-paperfolding factor with B the
largest integer such that j, + /_?p < j.

If j < p + 1 it is then clear that any factor of length j is a ~-pa~rfolding factor.
If j 2 p(p + 2) - 1 then the synchronization lemma remains true for all factors of

all p-paperfolding sequences and Jv,(j) may be obtained by summing J’J j) on the
p-paperfolding factors beginning at indices congruent to v modulo p, for 1 G v < p.

But, M;(j) = 2*- ‘Jyb(l~,j) (same proof as for the generalized induction lemma).
The multiplicative factor comes from the choice that we have at each step for the
folding instruction. Summing on v, one finds the result. 0

Let us prove now Theorem 16. Let F(X) = CkkZt* N,(k)X’ the generating series
of the language 64. Let us consider the following polynomials:

rc=p=+2p-2

PI(X)= C J'#W,

k=O

k=p+l

Pz WI = C J(,OWk,

k=O

M. Koskas / Theoretical Computer Science 1.58 (1996) 35-51 49

and
k=pt2

Ps(X) = 1 Jvp(k)Xk.
k=O

One has

r=p-lk=tm

F(X) = PI(X) + C C Zpml((p - r)Np(k) + rNp(k + l))X’(Xp)k
r=O k=pt2

+ 2p- ‘(Np(p + 1) + (p - l)Np(p + 2))XP_ l(xp)p+ l.

Let us consider

r=p+l

9(X) = PI(X) + C 2p-1((p - r)Xr(9(Xp) - P2(Xp)))
r=O

r2p-1Xr
+----- xp (T(XP) - P3(XP)).

The degree of the polynomial

r=p-1

PI(X) - 2p-1 1
r=l

(p - r)XrP2(Xp) - 2p-1$P3(Xp)

+ 2”-‘(Np(p + 1) + (p - l)Np(p + 2))xp-‘(xp)p+’

is smaller than or equal to p(p + 2) - 1. Let us compute its leading coefficient. The
polynomial Pi does not contribute to this coefficient because it degree is exactly
p2 + 2p - 2. The coefficient of the term of degree p2 + 2p - 1 is hence

- 2p-14(P + 1) - 2p-‘(p - l)Np(p + 2) + 2p-i(_4p(p + 1)

+ (P - l)Np(p + 2)) = 0.

Hence the degree of the polynomial

r=p-1

Pi(X) - 2p-1 C
*=l

(p - r)X’P2(Xp) - 2p-1$pP3(Xp)

+ 2p-‘(Np(p + 1) + (p - l)Jvp(p + 2))xp-1(xp)p+’

is smaller than or equal to p(p + 2) - 2.
Let us suppose firstly that this degree is greater than or equal to p(p + 1). Let us

suppose moreover that 9 is a rational function of degree a. Since d f - 1 (modp),
(p(p + 1) < d < p(p + 2) - 2), it is impossible to have equality crp + p - 1 = d, and
one has hence u = max(ap + p - 1, d).

If d > ap + p - 1, then a = d, which means that a > pa + p - 1, which is imposs-
ible.

Hence, ap + p - 1 > d and ct = crp + p - 1, which means that a = - 1 and a > d,
which is clearly impossible.

Finally, if d > p(p + 1) then 9 cannot be a rational function.

50 hf. Koskas / Theoretical Computer Science 158 (19%) 35-51

Let us prove now that the degree of the polynomial

r=p-1

Pi(X) - 2p-’ c
r=l

(p - r)xrP,(XP) - 2&$P3(X7

+ 2p-‘(Np(p + 1) + (p - l)Np(p + 2))xp-1(xp)p+1

is actually greater than or equal to p(p + 1).
For that, it is sufficient to exhibit a p-paperfolding factor beginning at two different

(modulo p) indices (not necessarily in the same p-paperfolding sequence).
We can do that the following way.

l If p is even: let u be the factor

u = OPlP...O~.
I ,

p + 1 paquets

It can be obtained either as

m10rfri 1 . ..mio
I Y I

ml repeated Lp/2 J + 1 times

or as

Omil~i...Om~
, Y J

ml repeated Lp/2 J + 1 times

with ml = Op-‘.

l If p is odd: let u be the factor

u = 010101 . ..Ol
\ Y I

p(p + 1) letters

It can be obtained either as

mzOmz0...m20.
\ * I

m2 repeated p + 1 times

with

m2 = 0101 . ..Ol (mz = &)
I ,

p - 1 letters

or as

0m30m3...0m3
.

in3 repeated p + 1 times

M. Koskas / Theoretical Computer Science 158 (1996) 35-51 51

with

nI3 = lOlO... 10

p - 1 letters

Finally, 9(X) is not a rational function.
Now 9 is an entire power series with convergence radius 1 and integer coefficients.

The theorem of Polya-Carlson (see [lo]) asserts that 9 is either a rational function or
a transcendental function.

Since it is not rational, it is trancendental.

Acknowledgements

The author would like to thank warmly Jean-Paul Allouche and Thomas Down-
arrowicz for comments on an earlier version and Desire Razafy Adriamampianina for
interesting discussions.

References

Cl1

VI

c31
c41

151

C61
c71

PI
c91

WI

Cl11
Cl21

Cl31

Cl41

J.-P Allouche, The number of factors in a paperfolding sequence, Bull. Austral. Math. Sot. 46 (1992)
23-32.
J.-P. Allouche and R. Bather, Toeplitz sequences, paperfolding, Towers of Hanoi, and progression-
free sequences of integers, Enseign. Math. 38 (1992) 315-327.
J.-P. Allouche, Sur la complexit des suites infines, Bull. Belg. Math. Sot. 1 (1994) 133-143.
J.-P. Allouche and M. Bousquet-Melou, Canonical positions for the factors in the paperfolding
sequences, Theoret. Comput. Sci. 129 (1994) 263-278.
J.-P. Allouche and M.’ Bousquet-Mtlou, Facteurs de suites de Rudin-Shapiro gentralisees, Bull. Be/g.
Math. Sot. (1994) 145-164.
Cobham, Uniform Tag Sequences, Math. Systems Theory 6 (1972) 164192.
J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation
(Addison- Wesley, Reading, MA 1979).
M. Koskas, Complexite de suites de Toeplitz, Discrete Math., to appear
S. Lehr, A result about languages concerning paperfolding sequences, Math. Systems Theory 25 (1992)
309-313.
G. Polya, Collected Papers, Vol. 1, in: R.P. Boas, ed., Singularities of analytic functions, (M.I.T. Press,
Cambridge, 1974).
D. Razafy Andriamampianina, Le p-pliage de papier, Ann. Pac. Sci. Toulouse Math. 5 (1989) 410-414.
0. Salon, Suites automatiques a multi-indices, Seminaire de Thborie des Nombres de Bordeaux, Expose
4 (1986-1987) 4-014-27 (Followed by an appendix of J. Shallit).
0. Salon, Suites automatiques a multi-indices at algebricitb, C.R. Acad. Sci. Paris Sbr I. Math. 305
(1987) 501-504.
Z.X. Wen and Z.Y. Wen, Somes studies on the (p, q)-type sequences, Theoret. Comput. Sci. 94 (1992)
373-393.

