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Abstract 

Let p be an integer greater than or equal to 2. The aim of this paper is to study the language 
associated to a p-paperfolding sequence. It is known that the number of factors of length n of 
a 2-paperfolding sequence (i.e. its complexity function) is P(n) = 4n for n > 7. It is also known 
that the language of all the factors of all 2-paperfolding sequences is not context-free and that its 
generating function is transcendental. 

We show that the complexity function of a p-paperfolding sequence is either strictly subaffine 
or ultimately linear. The first case never happens if p = 2 or 3. In the second case, the complexity 
function is either P(n) = 2n or P(n) = 4n for n large enough. We give a simple necessary and 
sufficient condition for the number of special factors to be p-automatic. We finally show that, 
for any given p, the language of all factors of all p-paperfolding sequences is not context-free, 
and that the associated generating series is not algebraic. 

0. Introduction 

Let u be a sequence taking its values in a finite alphabet. How “complicated” is it? 

One possible answer to this question is the following definition. 

Definition 1. The complexity (or factor-complexity) of a sequence is the function 

n H P(n) where P(n) is the number of factors (blocks) of length n of the 
sequence. 

For a survey on the complexity of sequences one can read [3]. A family of sequences 

for which the complexity function has been computed consists of the paperfolding 

sequences. These sequences are obtained by repeatedly folding a piece of paper onto 
itself. At each step, one can fold the paper in two different ways, thus generating 
uncountably many sequences. 

It is known that all the paperfolding sequences have the same complexity P(n). 
Furthermore, one has P(n) = 4n for n 2 7 (see [l, 41). 
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In [4], the authors also study the language ~8’ of all the factors of all paperfolding 
sequences. They compute the c~~~lex~ty~nction of this language (i.e. the number of 
words of given length in 8) and they show that 8 is not context-free and has 
a transcendental generating function. 

In this work we study the p-paperfolding sequences which are constructed by 
folding a piece of paper onto itself in p parts and iterating this process, ([l 11, see also 
[14] for related sequences). These sequences are Toeplitz sequences (see [3] for 
a survey) and some of their complexity functions are in O(n) (see Es]). We prove here 
the following results: 
l The complexity function of a 3-paperfolding sequence is either P(n) = 2n for n > 1 

or P(n) = 4n for n large enough. 
l If p > 4, the complexity function of a p-paperfolding sequence is either strictly 

subaffine or linear. In the first case we give a necessary and su~~ient condition for 
the number of special factors to be p-automatic. In the second case we show that, 
for n large enough, P(n) = 2n or P(n) = 4n. 

l For any given p the language of all factors of all p-paperfolding sequences is not 
context-free and its generating function is transcendental. 

1. p-paperfolding sequences 

1 .I. Construction 

Fold a piece of paper in p parts, (there are 2p- ’ possibilities, each of them is called 
a folding instruction). Repeat this operation an infinite number of times, then unfold 
the paper. One obtains on its edge a sequence of “mountains” and “valleys” which is 
by definition a p-paperfolding sequence. 

If at each step one chooses the same folding instruction, then the sequence is called 
a reg~lur p-pa~rfolding sequence. Otherwise it is called a generalized p-paperfolding 
sequence. 

For instance, one obtains a regular 3-paperfolding sequence by choosing at 
each step the folding instruction v A (this means that the paper is folded in three 
parts, the left side being folded towards up, and the right side being folded towards 
down): 

1 VA 
2 VAVVAAVA 
3 VAVVAAVAVVAVVAAVAAVAVVAAVA 

4 VAVVAAVAVVAVVAAVAAVAVVAAVA... 

One can also obtain a generalized 3-paperfolding sequence, choosing to fold 
randomly at each step the paper according to the folding instructions v v , v A, A v 

or A A. Take for instance for the lust three folding instructions equal to v A, v v 
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and A A. This gives: 

1 VA 

2 VAVVAVVA 

3 VAVVAVVAAVAAVAAVAAVAVVAVVA 

4 VAVVAVVAAVAAVAAVAAVAVVAVVA... 

A first algorithm to construct a ~-pa~rfolding sequence is the following. Suppose 
that we have folded the paper n + 1 times, if we unfold it n times, we have a sequence 
obtained after n folds and, to obtain the sequence issued from our n + 1 folds, we have 
to unfold it a last time. Let w, be the word on the alphabet {v, A}, obtained after 
folding n times, but following the last n folding instructions. Let al . . . up_ 1 be the first 
folding instruction. One has 

w,+~ = w,alf(w,)a2f2(w,)...a,-ifP-‘(wnb 

where f(w,) is obtained by reading w, backwards and interchanging the symbols 
v and A, (of coursef’(w,) = wn). (From now on, the wordf(w) will be denoted by G). 

Taking again the generalized 3-paperfolding example: (the symbol 1 denotes the 
place of the third, second and first folding instructions) 

1 
- - b 

3VAVVAVVA AVAAVAAVA AVAVVAVVAJ... 
L 

I > 
4VAVVAVVA AVAAVAAVA AVAVVAVVA . . . 

A particular case is the 2-paperfolding. 

Example (general 2-~aperfol~ing sequences). One can obtain all 2-pa~rfolding se- 
quences by randomly folding a paper in two (at each step the left side on or under the 
right one). The preceding algorithm gives, (denoting v by 0 and A by l), choosing 
0 at the first step, 1 at the second, 1 at the third, and 0 at the fourth: (1 denotes again 
the place of the third, the second and the first foIding instructions) 

It has been shown in [1] that for any 2-paperfolding sequence, the complexity 
function is P(n) = 4n for n 3 7. 
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1.2. p-paperfolding sequences defined as Toeplitz sequences 

Definitions. Let us consider the alphabet d = (0, l}. Let a,, (n > 0) be a sequence of 
words of length p - 1 over &, (a, = a,, [ I].. . a,, [p - 11). 

One defines ‘0 = 1, ‘1 = 0, and ‘a, = ‘a, [l] ‘a,, [2]. . .‘an[p - 11. One also defines 
a, = a”[p - l] . ..a.[l], and denotes by d, the word ‘7Y,,. 

Let l be a new symbol. A periodic word over ~9 u {o}(cr . ..[rci . ..[rCi . ..Cr...) 
will be denoted (cl c2.. . (YT)OD. 

Let B, the sequence defined over d u {o} by 

B, = (a,o&o)“. 

Let AA = B0 and for n E N, define the periodic sequence A,‘, 1 by replacing the 
letters l of A,’ by the letters of B,+ 1. When n goes to infinity, the sequence Ai tends to 
a limit over .&. This limit, denoted by A’ is called the p-paperfolding sequence 
according to the sequence of instructions (B,), a 1. 

From now on, A’ will denote a sequence obtained as above. One writes 
A’= A1[k-JkEN*. 

In the same way, for i 2 1, let A& = Bi_ 1 and for n E N define the periodic sequence 
A’ a+1 obtained by replacing the letters l in Ai by the letters of B, _ 1 + i. This sequence 
also tends to a limit A’. From now on, A’ will denote such a p-paperfolding sequence. 

A finite word occurring at least one time in a p-paperfolding sequence will be called 
a p-paperfolding word. 

Finally a finite word m = m [ l] . . . m [n] is said to be 2-periodic if Vj, 1 < j < n - 2, 

m[j] = m[j + 21. 

Proposition 2. This construction yields exactly the p-paperfolding sequences. 

The proof is left to the reader. 

1.3. Example 

With p = 2, a,, is reduced to a single symbol: Vn, a,, = 0 or a,, = 1. Let us construct 
a prefix of such a Toeplitz sequence, with a0 = 0, a, = 1, a2 = 1 and a3 = 0: 

BO=(OoloOoloOoloOoloOolo...), 

Bl =(1.0.1.0.1.0.1.0.1.0....), 

B2=(1e001000100010001000...), 

B3=(Oo10001000100010001e...). 

This gives us, for the AZ sequences (0 < n G 3): 

A~=0.1.0.1.0.1.0.1.0.1...., 
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then: 

B1= 1 0 0 0 1 0 0 0 1 l . . . 

A~=0~1~0~1~0~1~0~1~0~1~... 

A:=011.001.011.001.011.... 

hence 

B2 = 1 0 0 0 1 . . . 

A:=011e001.011.001.011.... 

A:=0111001.0110001.0111... 

and 

B3 = 0 0 

A:=0111001.0110001.0111... 

A:=011100100110001.0111... 

We recognize here the beginning of the example given in the preceding paragraph. 

2. Induction formulas satisfied by the complexity of p-paperfolding sequences 

2.1. v-factors 

Let v E [O,p - l] be an integer, and i 2 1. A v-factor of A’ is a factor of A’ beginning 
at least once at an index j E v (modp). We define q:(m) as being the number of 
v-factors of A’ of length m. 

We also define 

v=p-1 

cp’w = 1 d(m). 
v=o 

We finally define Plven(m) (resp. Pi,,(m)) as being the number of factors of A’ of 
length m beginning at least once at an even (resp. odd) index P’(m) as being the 
number of factors of A’ of length m. In general, 

P’(m) G Pi,,,(m) + PL(m) 

and 

P’(m) < vi(m). 

Lemma 3. No factor of length greater than or equal to p + 2 of a p-paperfolding 
sequence M is 2-periodic. 
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Proof. From the construction of these Toeplitz sequences, it is clear that any letter of 
index (kp - 1) is different from the letter of index kp + 1. Indeed, AL = (mo Ao mo 
mo . ..) and the last letter of m is different from the first letter of A. As any factor of 
M of length greater than or equal to p + 2 contains a letter of index multiple of 
p which is neither its first nor its last letter, the result holds. 0 

Lemma 4. Let k be an integer not multiple of p. Then no factor of length greater than or 

equal to p + 2k of a p-paperfolding sequence is 2k-periodic. 

The proof is exactly as above. 

We now give a first lemma which will allow us to compute the factors of a p- 
paperfolding sequence by counting separately the factors which begin at a given index 
modulo p. 

Synchronization lemma. For any distinct numbers v and v’ E [0, p - 11, any factor M of 

length greater than or equal to p(p + 2) - 1 of a p-paperfolding sequence cannot be 

simultaneously v-factor and v’-factor. 

Proof. Let u be a factor of M of length n B p(p + 2) - 1 occurring simultaneously at 
an index ii and an index ia, with iI f iz (mod p). 

As n 2 p(p + 2) - 1 and iI f iz (modp), there are at least p + 2 letters of index 
multiple of p in the first or in the second occurrence of u (possibly in both). Let us 
suppose they are in the first one. These letters form a word w of length greater than or 
equal to p + 2, which is a factor of the p-paperfolding sequence obtained by “forget- 
ting” the first folding instruction. 

This word w is also the subword of the second occurrence of u formed with the 
letters congruent to iz - iI (mod p). As iI - iz f 0 (mod p), the word w is 2-period. But 
1 w) 2 p + 2. This contradicts the Lemma 3. 0 

We now give two induction lemmas which will help us to compute the complexity 
functions of the p-paperfolding sequences. 

Lemma 5. Zf aI = aI, then Vi, 0 < i < p - 1, Vj 2 p, one has 

Vfti) = p2(li,j), 

where li,j is the number of integers multiple of p in [i, i + j - 11. 

Lemma 6. One has 

0 
ri # 0 and ri + rj - 1 G p, 

ri = rj = 0, 

1 otherwise. 

with ri, rj the remainders of the euclidian division of i and j by p. 
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Proof. Define 

1 otherwise. 

By definition, 

Case 1: If i E 0 (modp): 

If j - 0 (mod p) then l~+~-l~=l~]+l~l-l and li,j=l~i=k,j. 

If j f 0 (mod p) then [i+~-l]=li-+[i] and li.i=1’61+1=k~.j* 

Case 2: If i $0 (modp): 

hence 

which may be written: 

Ii, j = ~ = ki, j 1’1 
and 

li+:-l]=[~]+l~J+l ifri+rj>,p+l 
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and then 

li,j= ’ + l=ki,j. 0 11 P 

Proof of Lemma 5. Let 

2 = {factors of A’ of length j beginning at an index = i (modp)}. 

Let Y = {factors of A* of length Ii, j}. The map which associates to a word m of 2 the 
subword m’ of Y which is composed with the letters of m of indices multiple of p is 
clearly bijective, hence the result holds. 0 

We now give the second induction lemma. 

Lemma7. Zfd, #a,,thenVj 2p 

vf (j) = p,2,en(4 j) + pkkl(k, jb 

with 

li # 0 and ri + rj - 1 < p, 

li = ‘j = 0, 

1 otherwise. 

Proof. we recall that li,j is the number of integers multiple of p in [i, i + j - 11. Let 
r = {factors of A’ of length j beginning at least once at an index z i(modp)}. Define 
OO and Or by 

OO = {factrors of A* of length li, j beginning at least once at an even index}, 

and 

Or = {factors of A* of length Ii, j beginning at least once at an odd index}. 
Let 

0 = (0, x (0)) u (0, x {l}). 

Define the map Q as follows: 

a+ 0, 

where rntp) is the subword of m formed of the letters of m of indices multiple of p. 
This map is clearly bijective, hence the result. 0 

We now give a general induction lemma. 
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General induction lemma. (i) Zfril # al then Vj 2 p, 

and 

rp’(j + 1) - cp’(j) = (P&(1;] + 1) - P&(1;])) 

+ (P:&&l+ 1) - P.L@l)). 

rj being the remainder in the euclidian division of j by p, 

(ii) Zfa, = al then 

Vj 2 p, cp’(_i) = (P - rj)P ‘([il) + rjP'(lbl+ 1) 
and 

cp'(j + 1) - q’(j) = P2 (I;]+ l)-Pfl;J), 

where rj is the remainder in the euclidian division of j by p. 

(iii) Zf p is odd then Vu, E Ap- ‘, one has Vj > p: 

PL(j + 1) + PL,(j + 1) - PLd(j) - PL(j) 

Proof. (i) Using Lemma 7, the proof is the same as for the following point. 
(ii) One has, using Lemma 5, q’(j) = Ciz{ cp’(li,j). By counting separately the 

values of i giving the same number li,j, one has: 

qpl (8 = (P - rj)Cp ‘(lfl) + rj~2(l~] + 1). 

This last equality implies the result. 
(iii) One has, for odd p and for j > p, the following. 
If j = 0 (mod p) and j E 0 (mod 2), then 
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Ifj f 0 (modp) and j E 0 (mod2), then 

P,‘dd(A + e”e”w = (P - rj + 2) Podd ( 2 ([g) + PL(p-1)) 

+(rj-2,(pzdd([b] + 1) +pkm([i] + 1)). 

Ifj 3 0 (modp) and j f 0 (mod2), then 

P,ldd(j) + pb!en(j) = (p - rj + 4) 

If j f 0 (modp) and j f 0 (mod2), then 

P,ldd(j) + piYen = = (p - rj + 3) Podd ( 2 (l;]) + %“(lg)) 

+(~j-3)(p~dd(~~J+l)+~~~.“(~~J+l)). 

In each case the point (iii) holds. This concludes the proof of the lemma, Cl 

3. A necessary and sufficient condition for the number of special factors 

of a p-paperfolding sequence to be automatic 

In this part we study the number of specialfactors: a factor w of a p-paperfolding 
sequence is called special if and only if w0 and wl are both factors of this sequence. 
The number of special factors of length n is given by P(n + 1) - P(n), if P is the 
complexity function of this paperfolding sequence (this holds for any binary sequence). 

Proposition 8. Ifthere exists an integer j, such that Lij, # ajo, thenfor any i >, j, andfir 

any j 2 pi one has 

If Qj,, E N *, cijO = aj,, then for any integer i and any integer j such that j 2 pi one has 

P’(j + 1) - P’(j) = Pi+l ([$I + I)- Pi+@]). 
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Proof. This proposition is an easy consequence of the Synchronization Lemma and of 
the General Induction Lemma. 0 

Theorem 9. Let m be a word of length p - 1. Let Cj, be the complexity function of the 

word: (mOfiOml&l)“, Ci be the sum Podd + P,,,, of the same word. Let 

c’(m) = (C,!,(2) - CA(l),..., Ci(p’) - C,!,(p - 1)) and c’(m) = (C:(2) - C:(l),..., 

G(P) - G(P - 1)). 
Let a, be a sequence offolding instructions. Let no E N u { + co }, such that Vj 2 n,, 

ai = di. Let c be the map c(n) = (‘(a,) ifn < no andt;(n) = c2(n) otherwise. Then the 

sequence (P’(n + 1) - P’(n)) is p-automatic ifand only if the sequence (5,) is ultimately 

periodic. 

Proof. The complexity function P of any p-paperfolding sequence verifies P(1) = 2 
and P(2) = 4, P,,,,(l) = 2, Podd(l) = 2, P,,,,(2) = 4 and Podd(2) = 4. Hence the se- 
quence (A”) and (a,O&,Oa,l8,1)” have the same complexity function for arguments 
smaller than or equal to p. 

The p-kernel of a sequence u = u [nlnE N* is the set of sequences of the form 
u [pkn + rlnG Mt with k E N* and 0 Q r < pk - 1 (this terminology has been introduc- 
ed by Salon in the multi-index case in [12,13]). A sequence u is p-automatic if and 
only if its p-kernel is finite (see [6]). Proposition 8 helps us to compute easily the 
p-kernel of this sequence and to realize that it is finite if and only if the sequence 5, is 
ultimately periodic. 0 

4. Computation of the complexity function 

Theorem 10. If the complexity function of a p-paperfolding sequence is ultimately aj’ine, 

then it is ultimately linear. 

Proof. If the complexity function P’ is ultimately affine, then the functions P’(i 2 1) 
are all ultimately affine, say P’(n) = ain + bi. Furthermore, the a/s are eventually 
equal. 

LetNo~Nu{cO)suchthatforanyn~No6,=a,. 
If No = + cc then all the als are the number 4. One has cpl (n + 1) - q’(n) = 

(Pidd + p&)(L n/p’ ] + 1) - (PLdd + p&)(L n/p’ 1) for i as large as we wish and 
n >pi. (i is such that di f ai). For n = pi one has q’(n + 1) -q’(n) = 

(P6dd + P:,,,H~) - U%., + ~:ven)U) (G eneral Induction Lemma). Hence cpl (n + 1) - 
q’(n) = 4. But cp(n) = P’(n) if n 2 p(p + 2) - 1, and P’(n) = aln + bl if n is large 
enough. So P’(n) = 4n + bl for n large enough. We have then 
q’(n) - cp(p’) = 4(n - pi). But cpl(pi) = 4~‘. (Lemma 7). Hence P’(n) = 4n. 

If No < + cc then let i > No be an integer. We have ai = 2. One has (General 
Induction Lemma) ‘pi(n + 1) - q’(n) = pifj(L n/pjJ + 1) - Pi+j(L n/p’]) for j 2 0. 
Taking n = pj with j large enough, we have cpi(n + 1) - q’(n) = 2 for n large enough. 
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But we have q’(n) = P’(n) for n 2 p(p + 2) - 1 (Synchronization Lemma) and 
P’(n) = ain + bi for n large enough. We conclude that ai = 2. In this case 
cp’(n) - cp’(pj) = 2(n - pj) and cp’(pj) = 2pj (Lemma 5). q 

Theorem 11. There exist words a in dp- ’ such that i’(a) = (2,2,. .., 2) and 

C”(u) = (4,4,..., 4). The complexity function of A’ is ultimately ujine (hence ultimately 

linear) if and only if c(u,) = (2, 2 ,..., 2) for n large enough or i(u.) = (4,4,. . ., 4) for 

n large enough. 

Proof. For any number p and any sequence a, of folding instructions, (n E N *), 
the complexity function verifies P ‘(1) = 2, P’(2) = 4, P&(l) = 2, P:(2) = 4, 
P&,,(l) = 2 and Pzven(2) = 4. The word a = Op- ’ verifies [‘(a) = (2,2,. . . ,2) and 
[‘(a) = (4,4,..., 4). The complexity function of A’ is ultimately affine if and only if 
(P’(n + 1) - P’(n)) is constant for n large enough. If one wants this sequence to be 
ultimately constant, one must have {(a,) = (2,2,..., 2) for n large enough or, 

r(G) = (474,. . ., 4) for n large enough (Proposition 8). On the other hand, this condi- 
tion is sufficient using the same proposition. Cl 

Theorem 12. Zfp = 2, then P’(n) = 4nfor n large enough. 

Zfp = 3 and ifVi E N* bi = ai, then P’(n) = 2nfor n 2 1. 
Zf p = 3 and if there exists i such that rZi # ai, then P’(n) = 4n for n large enough. 

Zf p 2 4, then there exist folding instructions sequences leading to strictly sub-@ne 

complexity functions, and others leading to @tine (hence linear) complexity functions. In 

this lust case, tf Vi E N* rZi = ai, then P’(n) = 2n for n large enough, and if there exists 
i such that di # ui, then P’(n) = 4n for n large enough. 

Proof. If p = 2 (resp. p = 3) then Vu E dp- ‘, c(u) = (2) (resp. (2,2)). Hence the general- 
ized 2-paperfolding and the generalized 3-paperfolding sequences have ultimately 
linear complexities (Theorem 11). 

If p = 2, Vu E &Pm ‘, d # a, PAdd (1) = 2, P&,,(l) = 2, P&,(2) = 4, Px,(2) = 4 and 
hence P’(n + 1) - P’(n) = 4 for n large enough, which implies P’(n) = 4n for n large 
enough (Proposition 8 and Theorem 10). 

If p = 3 and Vi E N* di = ai, since P’(1) = 2, P’(2) = 4 and P’(3) = 6 one has 
P’(n) = 2n for n large enough, (Proposition 8 and Theorem 10). If there exists i such 
that di # ai, since P&(l) = 2, P&,,(l) = 2, P,&(2) = 4, P&(2) = 4, PLd(3) = 6, 
P,‘,,,(3) = 6, one has P’(n) = 4n for n large enough (Proposition 8 and Theorem 10). 

If p > 4, the cardinality of the image of 5 is strictly greater than 1, and there are 
folding instructions sequences leading to strictly subaffine complexity functions, 
(because for instance a = Op- ’ and a = Olp-’ have distinct images by c. Indeed, 
(Oplp-‘Oplp+‘)~ verifies P(1) = 2, P(2) = 4, P(3) = 6, hence its image by c begins by 
the numbers 2, 2 while (01p-20p-‘1001p-‘O~-211)~ verifies P(1) = 2, P(2) = 4, 
P(3) = 8, and its image by c begins with the numbers 2, 4). 
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The complexity function is ultimately affine if and only if 

C(G) = (2,2,..., 2) 

for IZ large enough or 

5(G) = (4,4,..., 4) 

for n large enough. In this case, we conclude as in the case p = 3. 0 

5. The language generated by the p-paperfolding sequences for a fixed p 
is not context-free 

In [4], the authors considered the language of all factors of all 2-paperfolding 
sequences. We will consider in the same way the language of all the p-paperfolding 
sequences for a fixed p. 

Lemma 13. Let w be a factor of A ‘. Then w” is not a factor of A’ as soon as 

n ap(p + 2). 

Lemma 14. Zfw” is afactor of A’ with n > p(p + 2) then the length ofw, denoted by 1 w 1, 

is a power of p. 

Proof. Let 

w” = A’[j]...A’[j + nlwl - 11. 

One has 

w1 = A’[j]...A’[j+(n- l)lwl- 11, 

which is equal to the factor 

w2 = A’[j + Iwl]...A’[j + nlwl - 11, 

these two factors being equal to w”- ‘. But I w”- ‘1 2 p(p + 2) - 1. These two factors 
must hence begin at a same index modulo p, (Synchronization Lemma), hence I WI is 
multiple of p. 

Now the subword w2 formed with the letters of w of index multiple of p is a factor of 
(the p-paperfolding sequence) A’, so is w;. If w2 is not the empty word, its length is 
a multiple of p, and the length of w is a multiple of p2. By an immediate induction, one 
shows that I WI is a power of p. 

Proof of Lemma 13. Let us suppose that I WI = pk. The word w” is a factor of A’. Let 
WY be the subword formed of the letters of w appearing at an index mutiple of p. This 
word wl is a factor of A’. Repeating this operation k - 1 times, we finally find a factor 
of Ak+’ of the form CC”, a belonging to d, and n > p(p + 2). This is in contradiction 
with the synchronization lemma. 0 
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Theorem 15. For any p, the language 3’ of all factors of all p-paperfolding sequences is 

not context-free. 

Proof. we will use here the same idea as in [4,5] (see also [9]). The pumping lemma 
for context-free languages (see [7]) easily implies that in any infinite context-free 
language, there are arbitrarily large powers. Lemma 13 hence implies that the 
language _Y of all factors of all p-paperfolding sequences is not context-free. 0 

Theorem 16. The generating series of the language Y is transcendental. 

Remark 17. This last proposition implies that, if the complementary language 
(0, l)*\s were context-free, then it would be ambiguously context-free (Chomsky- 
Sch~tzenberger’s Theorem). 

To prove this theorem, we need the following lemma. 

Lemma 18. The number N,(j) of factors of length j appearing in at least one p- 

paperfolding sequence verifies: 

Jvb(j) = 2j ifj < p + 1; 

Proof. A factor u [l J u [2] . . . u [ j] is a p-paperfolding word if and only if there exists 
j, E Cl, p], such that 

(a) thewordsm(k)=u[jo+kp+1)u[j,+kp+2]...u[or,](withjo+kp+l~j 
and &k = inf(j, + kp + p - 1, j) verify m(k) = &(k + l), 

(b) the word u [j,] u [j, + p] . . . u [ jO + fip] is a p-paperfolding factor with B the 
largest integer such that j, + /_?p < j. 

If j < p + 1 it is then clear that any factor of length j is a ~-pa~rfolding factor. 
If j 2 p(p + 2) - 1 then the synchronization lemma remains true for all factors of 

all p-paperfolding sequences and Jv,( j) may be obtained by summing J’J j) on the 
p-paperfolding factors beginning at indices congruent to v modulo p, for 1 G v < p. 

But, M;(j) = 2*- ‘Jyb(l~,j) (same proof as for the generalized induction lemma). 
The multiplicative factor comes from the choice that we have at each step for the 
folding instruction. Summing on v, one finds the result. 0 

Let us prove now Theorem 16. Let F(X) = CkkZt* N,(k)X’ the generating series 
of the language 64. Let us consider the following polynomials: 

rc=p=+2p-2 

PI(X)= C J'#W, 

k=O 

k=p+l 

Pz WI = C J(,OWk, 

k=O 
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and 
k=pt2 

Ps(X) = 1 Jvp(k)Xk. 
k=O 

One has 

r=p-lk=tm 

F(X) = PI(X) + C C Zpml((p - r)Np(k) + rNp(k + l))X’(Xp)k 
r=O k=pt2 

+ 2p- ‘(Np(p + 1) + (p - l)Np(p + 2))XP_ l(xp)p+ l. 

Let us consider 

r=p+l 

9(X) = PI(X) + C 2p-1((p - r)Xr(9(Xp) - P2(Xp))) 
r=O 

r2p-1Xr 
+----- xp (T(XP) - P3(XP)). 

The degree of the polynomial 

r=p-1 

PI(X) - 2p-1 1 
r=l 

(p - r)XrP2(Xp) - 2p-1$P3(Xp) 

+ 2”-‘(Np(p + 1) + (p - l)Np(p + 2))xp-‘(xp)p+’ 

is smaller than or equal to p(p + 2) - 1. Let us compute its leading coefficient. The 
polynomial Pi does not contribute to this coefficient because it degree is exactly 
p2 + 2p - 2. The coefficient of the term of degree p2 + 2p - 1 is hence 

- 2p-14(P + 1) - 2p-‘(p - l)Np(p + 2) + 2p-i(_4p(p + 1) 

+ (P - l)Np(p + 2)) = 0. 

Hence the degree of the polynomial 

r=p-1 

Pi(X) - 2p-1 C 
*=l 

(p - r)X’P2(Xp) - 2p-1$pP3(Xp) 

+ 2p-‘(Np(p + 1) + (p - l)Jvp(p + 2))xp-1(xp)p+’ 

is smaller than or equal to p(p + 2) - 2. 
Let us suppose firstly that this degree is greater than or equal to p(p + 1). Let us 

suppose moreover that 9 is a rational function of degree a. Since d f - 1 (modp), 
(p(p + 1) < d < p(p + 2) - 2), it is impossible to have equality crp + p - 1 = d, and 
one has hence u = max(ap + p - 1, d). 

If d > ap + p - 1, then a = d, which means that a > pa + p - 1, which is imposs- 
ible. 

Hence, ap + p - 1 > d and ct = crp + p - 1, which means that a = - 1 and a > d, 
which is clearly impossible. 

Finally, if d > p(p + 1) then 9 cannot be a rational function. 
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Let us prove now that the degree of the polynomial 

r=p-1 

Pi(X) - 2p-’ c 
r=l 

(p - r)xrP,(XP) - 2&$P3(X7 

+ 2p-‘(Np(p + 1) + (p - l)Np(p + 2))xp-1(xp)p+1 

is actually greater than or equal to p(p + 1). 
For that, it is sufficient to exhibit a p-paperfolding factor beginning at two different 

(modulo p) indices (not necessarily in the same p-paperfolding sequence). 
We can do that the following way. 

l If p is even: let u be the factor 

u = OPlP...O~. 
I , 

p + 1 paquets 

It can be obtained either as 

m10rfri 1 . ..mio 
I Y I 

ml repeated Lp/2 J + 1 times 

or as 

Omil~i...Om~ 
, Y J 

ml repeated Lp/2 J + 1 times 

with ml = Op-‘. 

l If p is odd: let u be the factor 

u = 010101 . ..Ol 
\ Y I 

p(p + 1) letters 

It can be obtained either as 

mzOmz0...m20. 
\ * I 

m2 repeated p + 1 times 

with 

m2 = 0101 . ..Ol (mz = &) 
I , 

p - 1 letters 

or as 

0m30m3...0m3 
. 

in3 repeated p + 1 times 
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with 

nI3 = lOlO... 10 

p - 1 letters 

Finally, 9(X) is not a rational function. 
Now 9 is an entire power series with convergence radius 1 and integer coefficients. 

The theorem of Polya-Carlson (see [lo]) asserts that 9 is either a rational function or 
a transcendental function. 

Since it is not rational, it is trancendental. 
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