Hessenberg matrices and the Pell and Perrin numbers

Fatih Yilmaz*, Durmus Bozkurt
Selcuk University, Science Faculty Department of Mathematics, 42250 Campus Konya, Turkey

A R T I CLE I N F O

Article history:

Received 17 January 2011
Revised 15 February 2011
Accepted 16 February 2011
Available online 29 March 2011
Communicated by David Goss

Keywords:

Hessenberg matrix
Pell number
Perrin number

A B S TRACT

In this paper, we investigate the Pell sequence and the Perrin sequence and we derive some relationships between these sequences and permanents and determinants of one type of Hessenberg matrices.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Pell and Perrin sequences [1] are defined by the following recurrence relations, respectively:

$$
\begin{gathered}
P_{n}=2 P_{n-1}+P_{n-2}, \quad \text { where } P_{1}=1, P_{2}=2, \\
R_{n}=R_{n-2}+R_{n-3}, \quad \text { where } R_{0}=3, R_{1}=0, R_{2}=2
\end{gathered}
$$

for $n>2$. The first few values of the sequences are

n	1	2	3	4	5	6	7	8	9
P_{n}	1	2	5	12	29	70	169	408	985
R_{n}	0	2	3	1	2	5	5	7	10

[^0]The permanent of a matrix is similar to the determinant but all the signs used in the Laplace expansion of minors are positive. The permanent of an n-square matrix is defined by

$$
\operatorname{per} A=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where the summation extends over all permutations σ of the symmetric group S_{n} [6].
Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix with row vectors $r_{1}, r_{2}, \ldots, r_{m}$. We call A contractible on column k, if column k contains exactly two nonzero elements. Suppose that A is contractible on column k with $a_{i k} \neq 0 \neq a_{j k}$ and $i \neq j$. Then the $(m-1) \times(n-1)$ matrix $A_{i j: k}$ obtained from A replacing row i with $a_{j k} r_{i}+a_{i k} r_{j}$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{k i} \neq 0 \neq a_{k j}$ and $i \neq j$, then the matrix $A_{k: i j}=\left[A_{i j: k}^{T}\right]^{T}$ is called the contraction of A on row k relative to columns i and j. We know that if A is a nonnegative matrix and B is a contraction of A [2], then

$$
\begin{equation*}
\operatorname{per} A=\operatorname{per} B . \tag{1}
\end{equation*}
$$

It is known that there are a lot of relations between determinants or permanents of matrices and well-known number sequences. For example, in [2], the authors consider the relationships between the sums of Fibonacci and Lucas numbers by Hessenberg matrices.

In [4], Lee defined the matrix

$$
£_{n}=\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & \cdots & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & 1 & & \vdots \\
0 & 0 & 1 & 1 & \ddots & 0 \\
\vdots & \vdots & & \ddots & \ddots & 1 \\
0 & 0 & \cdots & 0 & 1 & 1
\end{array}\right]
$$

and showed that

$$
\operatorname{per}\left(£_{n}\right)=L_{n-1}
$$

where L_{n} is the nth Lucas number.
In [5], the author investigated general tridiagonal matrix determinants and permanents. Also he showed that the permanent of the tridiagonal matrix based on $\left\{a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}$ is equal to the determinant of the matrix based on $\left\{-a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}$.

In [3], the authors found $(0,1,-1)$ tridiagonal matrices whose determinants and permanents are negatively subscripted Fibonacci and Lucas numbers. Also, they give an $n \times n(1,-1)$ matrix S, such that $\operatorname{per} A=\operatorname{det}(A \circ S)$, where $A \circ S$ denotes Hadamard product of A and S. Let S be a $(1,-1)$ matrix of order n, defined with

$$
S=\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \tag{2}\\
-1 & 1 & \cdots & 1 & 1 \\
1 & -1 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & -1 & 1
\end{array}\right] .
$$

In the present paper, we consider the Pell and Perrin numbers as determinants and permanents of upper Hessenberg matrices, $A=\left(a_{i j}\right)$ is an upper Hessenberg matrix if $a_{i j}=0$ for $i>j+1$.

2. Determinantal representations of the Pell and Perrin numbers

In this section, we define one type of upper Hessenberg matrix of odd order and show that the permanents of these type of matrices are the Pell numbers. Let $H_{n}=\left[h_{i j}\right]_{n \times n}$ be an n-square matrix with $h_{t, t+2}=1, h_{s, s+2}=-1$ for $t=2,4, \ldots, \frac{n-3}{2}$ and $s=1,3, \ldots, \frac{n-1}{2}$ and $h_{i, j}=1$ for $|i-j| \leqslant 1$ and otherwise 0 . Namely:

$$
H_{n}=\left[\begin{array}{cccccccc}
1 & 1 & -1 & & & & & \tag{3}\\
1 & 1 & 1 & 1 & & & 0 & \\
& 1 & 1 & 1 & -1 & & & \\
& & \ddots & \ddots & \ddots & \ddots & & \\
& & & 1 & 1 & 1 & 1 & \\
& & & & 1 & 1 & 1 & -1 \\
& 0 & & & & 1 & 1 & 1 \\
& & & & & & 1 & 1
\end{array}\right]
$$

Theorem 1. Let H_{n} be an n-square matrix as in (3), then

$$
\operatorname{per} H_{n}=\operatorname{per} H_{n}^{(n-2)}=P_{n}
$$

where P_{n} is the nth Pell number.

Proof. By definition of the matrix H_{n}, it can be contracted on column 1. Let H_{n}^{r} be the r th contraction of H_{n}. If $r=1$, then

$$
H_{n}^{1}=\left[\begin{array}{ccccccc}
2 & 0 & 1 & & & & 0 \\
1 & 1 & 1 & -1 & & & \\
0 & 1 & 1 & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 1 & 1 & -1 \\
& & & & 1 & 1 & 1 \\
0 & & & & & 1 & 1
\end{array}\right]
$$

Since H_{n}^{1} also can be contracted according to the first column,

$$
H_{n}^{2}=\left[\begin{array}{cccccccc}
2 & 3 & -2 & 0 & 0 & & & \\
1 & 1 & 1 & 1 & 0 & & 0 & \\
& 1 & 1 & 1 & -1 & & & \\
& & 1 & 1 & 1 & 1 & & \\
& & & \ddots & \ddots & \ddots & \ddots & \\
& & & & 1 & 1 & 1 & -1 \\
& 0 & & & & 1 & 1 & 1 \\
& & & & & & 1 & 1
\end{array}\right]
$$

Going with this process, we have

$$
H_{n}^{3}=\left[\begin{array}{cccccccc}
5 & 0 & 2 & 0 & 0 & & & \\
1 & 1 & 1 & 1 & 0 & & 0 & \\
& 1 & 1 & 1 & -1 & & & \\
& & 1 & 1 & 1 & 1 & & \\
& & & \ddots & \ddots & \ddots & \ddots & \\
& & & & 1 & 1 & 1 & -1 \\
& 0 & & & & 1 & 1 & 1 \\
& & & & & & 1 & 1
\end{array}\right]
$$

and contracting H_{n}^{3} according to the first column

$$
H_{n}^{4}=\left[\begin{array}{cccccccc}
5 & 7 & -5 & 0 & 0 & & & \\
1 & 1 & 1 & 1 & 0 & & 0 & \\
& 1 & 1 & 1 & -1 & & & \\
& & 1 & 1 & 1 & 1 & & \\
& & & \ddots & \ddots & \ddots & \ddots & \\
& & & & 1 & 1 & 1 & -1 \\
& 0 & & & & 1 & 1 & 1 \\
& & & & & & 1 & 1
\end{array}\right]
$$

Continuing this method, we obtain the r th contraction

$$
\begin{aligned}
& H_{n}^{r}=\left[\begin{array}{ccccccccc}
P_{r+1} & 0 & P_{r} & 0 & 0 & & & & \\
1 & 1 & 1 & -1 & 0 & & & 0 & \\
& 1 & 1 & 1 & 1 & & & \\
& & 1 & 1 & 1 & -1 & & \\
& & & \ddots & \ddots & \ddots & \ddots & \\
& & & & 1 & 1 & 1 & -1 \\
& 0 & & & & 1 & 1 & 1 \\
& & & & & 1 & 1
\end{array}\right], \quad \text { if } r \text { is odd } \\
& H_{n}^{r}=\left[\begin{array}{ccccccccc}
P_{r} & P_{r-1}+P_{r} & -P_{r} & 0 & 0 & & \\
1 & 1 & 1 & 1 & 0 & & 0 & \\
& 1 & 1 & 1 & -1 & & \\
& & & 1 & 1 & 1 & 1 & & \\
& & & & & \ddots & \ddots & \ddots & \ddots
\end{array}\right], \quad \text { if } r \text { is even } \\
& \\
&
\end{aligned}
$$

where $2 \leqslant r \leqslant n-4$. Hence

$$
H_{n}^{n-3}=\left[\begin{array}{ccc}
P_{k} & P_{k-1}+P_{k} & -P_{k} \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

which, by contraction of H_{n}^{n-3} on column 1,

$$
H_{n}^{n-2}=\left[\begin{array}{cc}
P_{n} & 0 \\
1 & 1
\end{array}\right]
$$

By (1), we have $\operatorname{per}_{n}=\operatorname{per} H_{n}^{(n-2)}=P_{n}$.

Let $K(n)=\left[k_{i j}\right]$ be $n \times n$ matrix with $k_{11}=1, k_{12}=2, k_{13}=3, k_{21}=1, k_{23}=1$ and $k_{m, m+1}=$ $k_{m+1, m}=1$ for $m=3,4,5, \ldots, n-1$ and $k_{p, p+2}=1$ for $p=3,4, \ldots, n-2$. Clearly:

$$
K_{n}=\left[\begin{array}{ccccccc}
1 & 2 & 3 & 0 & & & \tag{4}\\
1 & 0 & 0 & 0 & & 0 & \\
& 1 & 0 & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 1 & 1 \\
& 0 & & & 1 & 0 & 1 \\
& & & & & 1 & 0
\end{array}\right]
$$

Theorem 2. Let K_{n} be an n-square matrix as in (3), then

$$
\operatorname{per}_{n}=\operatorname{per} K_{n}^{(n-2)}=R_{n}
$$

where R_{n} is the nth Perrin number.

Proof. By definition of the matrix K_{n}, it can be contracted on column 1. Namely,

$$
K_{n}^{1}=\left[\begin{array}{ccccccc}
2 & 3 & 0 & 0 & & & 0 \\
1 & 0 & 1 & 1 & 0 & & \\
0 & 1 & 0 & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & 0 \\
& & & 1 & 0 & 1 & 1 \\
& & & & 1 & 0 & 1 \\
0 & & & & & 1 & 0
\end{array}\right] .
$$

K_{n}^{1} also can be contracted on the first column,

$$
K_{n}^{2}=\left[\begin{array}{ccccccc}
3 & 2 & 2 & 0 & 0 & & 0 \\
1 & 0 & 1 & 1 & 0 & & \\
0 & 1 & 0 & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & 0 \\
& & & 1 & 0 & 1 & 1 \\
& & & & 1 & 0 & 1 \\
0 & & & & & 1 & 0
\end{array}\right]
$$

Continuing this process, we have

$$
K_{n}^{r}=\left[\begin{array}{ccccccc}
R_{r+1} & R_{r+2} & R_{r} & 0 & 0 & & 0 \\
1 & 0 & 1 & 1 & 0 & & \\
0 & 1 & 0 & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & 0 \\
& & & 1 & 0 & 1 & 1 \\
& & & & 1 & 0 & 1 \\
0 & & & & & 1 & 0
\end{array}\right]
$$

for $1 \leqslant r \leqslant n-4$. Hence

$$
K_{n}^{n-3}=\left[\begin{array}{ccc}
R_{n-2} & R_{n-1} & R_{n-3} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

which by contraction of K_{n}^{n-3} on column 1, gives

$$
K_{n}^{n-2}=\left[\begin{array}{cc}
R_{n-1} & R_{n} \\
1 & 0
\end{array}\right]
$$

By applying (1) we have $\operatorname{per} K_{n}=\operatorname{per} K_{n}^{(n-2)}=R_{n}$, which is desired.
Let S be a matrix as in (2) and denote the matrices $H_{n} \circ S$ and $K_{n} \circ S$ by A_{n} and B_{n}, respectively. Thus

$$
A_{n}=\left[\begin{array}{cccccccc}
1 & 1 & -1 & & & & & \\
-1 & 1 & 1 & 1 & & & 0 & \\
& -1 & 1 & 1 & -1 & & & \\
& & \ddots & \ddots & \ddots & \ddots & & \\
& & & -1 & 1 & 1 & 1 & \\
& & & & -1 & 1 & 1 & -1 \\
& 0 & & & & -1 & 1 & 1 \\
& & & & & & -1 & 1
\end{array}\right]
$$

and

$$
B_{n}=\left[\begin{array}{ccccccc}
1 & 2 & 3 & 0 & & & \\
-1 & 0 & 0 & 0 & & 0 & \\
& -1 & 0 & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & -1 & 0 & 1 & 1 \\
& 0 & & & -1 & 0 & 1 \\
& & & & & -1 & 0
\end{array}\right] .
$$

Then, we have

$$
\operatorname{det}\left(A_{n}\right)=\operatorname{per}_{n}=P_{n}
$$

and

$$
\operatorname{det}\left(B_{n}\right)=\operatorname{per} K_{n}=R_{n} .
$$

Acknowledgment

This research is supported by TUBITAK and Selcuk University Scientific Research Project Coordinatorship (BAP). This study is a part of corresponding author's PhD Thesis.

References

[1] K. Kaygısız, D. Bozkurt, k-generalized order- k Perrin number representation by matrix method, Ars Combin., in press.
[2] E. Kılıç, Dursun Taşçı, On families of bipartite graphs associated with sums of Fibonacci and Lucas numbers, Ars Combin. 89 (2008) 31-40.
[3] E. Kılıç, D. Taşçı, Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations, Ars Combin. 96 (2010) 275-288.
[4] G.Y. Lee, k-Lucas numbers and associated bipartite graphs, Linear Algebra Appl. 320 (2000) 51.
[5] D.H. Lehmer, Fibonacci and related sequences in periodic tridiagonal matrices, Fibonacci Quart. 12 (1975) 150-158.
[6] H. Minc, Permanents, Encyclopedia Math. Appl., vol. 6, Addison-Wesley Publishing Company, London, 1978.

[^0]: * Corresponding author.

 E-mail addresses: fyilmaz@selcuk.edu.tr (F. Yilmaz), dbozkurt@selcuk.edu.tr (D. Bozkurt).
 0022-314X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jnt.2011.02.002

