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Abstract

We calculate bulk thermodynamic properties, such as the pressure, energy density, and entropy, in SU(4) and SU(8) lattice
gauge theories, for the range of temperaturesT � 2.0Tc andT � 1.6Tc, respectively. We find that theN = 4,8 results are
very close to each other, and to what one finds in SU(3), and are far from the asymptotic free-gas value. We conclude tha
explanation of the high-T pressure (or entropy) deficit must be such as to survive theN → ∞ limit. We give some examples o
this constraint in action and comment on what this implies for the relevance of gravity duals.
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1. Introduction

The thermodynamic properties of quantum ch
modynamics (QCD), besides being of fundamen
interest, are currently at the centre of intense ex
imental research. One of the most interesting p
nomena has to do with the range of temperaturesT ,
above the phase transition (or crossover) atT = Tc,
where the theory deconfines and chiral symmetr
restored. Traditionally, the description of this tran
tion assumed that the hadronic phase gives wa
a plasma, whose physical degrees of freedom
weakly interacting quarks and gluons. Recent exp
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mental results have, however, challenged this ‘sim
picture (for example, see[1] and references therein
and point to a picture of the ‘plasma’ as a very go
fluid in the accessible range ofT aboveTc. In fact,
numerical lattice results had already demonstrated
inadequacy of the simple quark–gluon plasma p
ture some time ago. Such lattice calculations, both
the pure gauge case[2] and with different kinds of
fermions[3], found a large deficit in the pressure a
entropy as compared to the Stephan–Boltzmann
dictions for a free gluon gas (for pure glue), whi
remained at the level of more than 10% even at te
peratures as high asT ∼ 4Tc. Further evidence tha
points in the same direction is the survival of hadro
states aboveTc, as seen in recent lattice simulatio
(for example, see[4] and references therein).

https://core.ac.uk/display/82633584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:barak@thphys.ox.ac.uk
http://dx.doi.org/10.1016/j.physletb.2005.08.127
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


114 B. Bringoltz, M. Teper / Physics Letters B 628 (2005) 113–124

per-
at-

e
n-
ers
ent

e-
in-
n-

re
-
ent
and

, the

en-

r,

not
ere
un-

it
to
we

he
on-

sure
-

le-
ns

a-

hat

tup,
ical
ous
ro-

ure,
pli-

dic

d

-
inte-

ard

ri-
pla-
ing
the
all

s,
od
These lattice calculations, and more recent ex
imental observations, have attracted considerable
tention (see, e.g.,[5] for a review). Approaches hav
ranged from modeling the system in terms of no
interacting quasi-particles with the quantum numb
of quarks and gluons but with temperature-depend
masses[6,7], to using higher-order perturbation th
ory (restricted by infrared divergences), sometimes
cluding nonperturbative contributions on the dime
sionally reduced 3D Euclidean lattice[8], large re-
summations (e.g.,[9] and references therein), or, mo
recently, a description[10] in terms of a large num
ber of loosely bound states that survive deconfinem
and come in various representations of the gauge
flavor groups, and where one can use, for example
lattice masses measured in[11].

In this Letter we ask whether this pressure (and
tropy) deficit is a dynamical feature not just of SU(3)

but of all SU(N) gauge theories—and, in particula
whether it survives theN → ∞ limit. In this limit
the theory becomes considerably simpler, although
(yet) analytically soluble, and so what happens th
should strongly constrain the possible dynamics
derlying the phenomenon. For example, in that lim
supersymmetric SU(N) gauge theories become dual
weakly coupled gravity models, and in that context
recall the frequently mentioned prediction[12], that
the pressure in the strong-coupling limit of theN = 4
and N = ∞ supersymmetric gauge theory is 3/4 of
its Stephan–Boltzmann value, which is similar to t
deficit, referred to above, that one finds in the n
supersymmetric case.

To address this question we calculate the pres
for T � 2Tc in SU(4), and SU(8) lattice gauge theo
ries and compare the results to similar SU(3) calcu-
lations available in the literature (which we supp
ment where it is useful to do so). Recent calculatio
of various properties of SU(N) gauge theories[13]
have demonstrated that SU(8) is in fact very close to
SU(∞) for most purposes and have provided inform
tion on the location,βc, of the deconfining transition
for variousLt andN [14,15]. Thus our calculations
should provide us with an accurate picture of w
happens to the pressure atN = ∞.

In the next section we summarise the lattice se
the relevant thermodynamics, and provide numer
checks that our system is large and homogene
enough for our thermodynamic relations to be app
priate. We then present our results for the press
entropy and related quantities. We discuss the im
cations of our findings in the concluding section.

2. Lattice setup and methodology

The theory is defined on a discretised perio
Euclidean four-dimensional space–time withL3

s × Lt

sites. HereLs,t is the lattice extent in the spatial an
Euclidean time directions. The partition function

Z(T ,V ) =
∑

s

exp

{
−Es

T

}

(2.1)= exp

{
−F

T

}
= exp

{
−f V

T

}

defines the free energyF and the free energy den
sity, f , and can be expressed as a Euclidean path
gral

(2.2)Z(T ,V ) =
∫

DU exp(−βSW).

HereT = (aLt )
−1 is the temperature andV = (aLs)

3

is the spatial volume. When we changeβ, so as to
change the lattice spacinga(β), we change bothT and
V , if Ls andLt are kept fixed. In the large-N limit,
the ’t Hooft couplingλ = g2N is kept fixed, and so
we must scaleβ = 2N2/λ ∝ N2 in order to keep the
lattice spacing fixed in that limit. We use the stand
Wilson actionSW given by

(2.3)SW =
∑
P

[
1− 1

N
Re TrUP

]
.

Here P is a lattice plaquette index, andUP is the
plaquette variable obtained by multiplying link va
ables along the circumference of a fundamental
quette. We perform Monte Carlo simulations, us
the Kennedy–Pendelton heat bath algorithm for
link updates, followed by five over-relaxations of
the SU(2) subgroups of SU(N).

2.1. The method used

In lattice calculations of bulk thermodynamic
one can choose to use either the “integral” meth
(e.g.,[2]) or the “differential” method (e.g.,[16] or a
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new variant[17]) or one can attempt a direct eval
ation of the density of states (e.g.,[18]). We choose
to use the first of these methods since the num
cal price involved in using larger values ofN drives
us to smallerLt , which means that the lattice spa
ing is too coarse (about 0.15 fm) for the differential
method. We have performed preliminary checks
the applicability of the Wang–Landau algorithm[19]
for the evaluation of the density of states in the SU(8)

gauge theory, but found it numerically too costly f
the present work.

The properties we will concentrate on are the pr
surep, the energy density per unit volumeε, and the
entropy S, as a function of temperature. These
given by

(2.4)p = T
∂

∂V
logZ(T ,V ) = T

V
logZ(T ,V ) = −f,

(2.5)ε = T 2

V

∂

∂T
logZ(T ,V ),

(2.6)
S

V
= ε − f

T
= ε + p

T
,

where the second equality in the first and last lines
lows if the system is large and homogeneous, i.e.,V

is large enough. In addition, it is useful to consider
quantity

(2.7)∆ ≡ ε − 3p = T 5 ∂

∂T

p

T 4
,

which vanishes for an ideal gluon plasma. Again
second equality requires a large enoughV . To calcu-
late the pressure at temperatureT in a volumeV with
lattice cut-offa(β), we express logZ in the integral
form

p(T ) = T

V
logZ(T ,V )

(2.8)= 1

a4(β)L3
sLt

β∫
β0

dβ ′ ∂ logZ

∂β ′ .

(There is in general an integration constant, but it w
disappear when we regularise the pressure later o
this section.) This integral form is useful because i
easy to see from Eqs.(2.2), (2.3)that

(2.9)
∂ logZ

∂β
= −〈SW〉 = Np〈up〉,
whereNp = 6LtL
3
s is the total number of plaquette

and up ≡ Re TrUP /N . So the pressure can be o
tained by simply integrating the average plaquette o
β. This pressure has been defined relative to that o
unphysical ‘empty’ vacuum and will therefore be u
traviolet-divergent in the continuum limit. To remov
this divergence we need to define the pressure r
tive to that of a more physical system. We shall follo
convention and subtract fromp(T ) its value atT = 0,
calculated with the same value of the cut-offa(β).
Thus our pressure will be defined with respect to
T = 0 value. Doing so we obtain from Eqs.(2.9), (2.8)

(2.10)a4[p(T ) − p(0)
] = 6

β∫
β0

dβ ′ (〈up〉T − 〈up〉0
)
,

where〈up〉0 is calculated on someL4 lattice which
is large enough for it to be effectively atT = 0. We
replacep(T )−p(0) → p(T ), where from now on it is
understood thatp(T ) is defined relative to its value a
T = 0, and we useT = (aLt )

−1 to rewrite Eq.(2.10)
as

(2.11)
p(T )

T 4
= 6L4

t

β∫
β0

dβ ′(〈up〉T − 〈up〉0
)
.

We remark that when ourL3
sLt lattice is in the confin-

ing phase, then〈up〉 is essentially independent ofLt

and takes the same value as on aL4
s lattice (see below)

This should become exact asN → ∞ but is accurate
enough even for SU(3). Thus as long as we chooseβ0
in Eq. (2.11)such thata(β0)Lt > 1/Tc then the inte-
gration constant, referred to earlier, will cancel.

Finally, we evaluate∆ in Eq.(2.7)as follows:

(2.12)
∆

T 4
= T

∂

∂T

p

T 4

(2.13)= ∂β

∂ logT

∂

∂β

p

T 4

(2.14)= 6L4
t

(〈up(β)〉0 − 〈up(β)〉T
) ∂β

∂ loga(β)
.

To evaluate∂ log(a(β))/∂β we can use calculations o
the string tension,σ , in lattice units. For example, i
[20] the calculated values ofa

√
σ are interpolated inβ

for variousN and one can take the derivative of the
terpolated form to use in Eq.(2.14). One could equally
well use the calculated mass gap or the deconfin
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temperature. All these choices will give the same
sult up to modestO(a2) differences.

2.2. Average plaquette

We see from the above that what we need to
is to calculate average plaquettes closely enoughβ
so as to be able to perform the numerical integra
in β. And we need the average plaquettes not o
on theLtL

3
s lattice but also on a reference ‘T = 0’

L4 lattice at each value ofβ. However, we mostly
need values forβ � βc, wherea(βc)Lt = 1/Tc, since
p(T ) − p(0) 
 0 onceT < Tc.

We performed calculations in SU(4) on 163 × 5
lattices and in SU(8) on 83 × 5 lattices for a range
of β values corresponding toT/Tc ∈ [0.89,1.98] for
SU(4), and toT/Tc ∈ [0.97,1.57] for SU(8). Since
we useLt = 5, while the data for SU(3) in [2] is for
Lt = 4,6,8, we also performed simulations for SU(3)

on 203 × 5 lattices withT/Tc ∈ [1,2]. The results are
presented inTables 1–3.

In addition to the finiteT calculations we have pe
formed ‘T = 0’ calculations on 204 lattices for SU(3),
and on 164 lattices for SU(4). These have the advan
tage of being on the same spatial volumes as the co
sponding finiteT calculations, and we know from pre
vious calculations[21,22] that, for the range ofa(β)

involved, these volumes are large enough to be, ef
tively, at zeroT . For SU(8), however, using 84 lattices
would not be adequate for the largestβ-values, as we
Table 1
Statistics and results of the Monte Carlo simulations for SU(4)

β T > 0 T = 0

sT (lattice sweeps)× 10−3 s0 (lattice sweeps)× 10−3

10.55 0.537478(84) 10 0.537487(81) 5
10.60 0.543862(58) 20 0.543797(25) 15
10.62 0.546212(64) 10 0.546068(33) 10
10.64 0.550279(70) 10 0.548208(16) 20
10.68 0.554213(32) 20 0.552177(16) 20
10.72 0.557649(30) 20 0.555861(14) 20
10.75 0.560051(27) 20 0.558462(13) 20
10.80 0.563923(32) 20 0.562587(16) 20
10.85 0.567592(24) 20 0.566453(17) 20
10.90 0.571107(17) 20 0.570118(16) 20
11.00 0.577707(17) 20 0.576981(11) 20
11.02 0.578985(18) 20 0.578279(11) 20
11.10 0.583911(20) 20 0.583352(12) 20
11.30 0.595398(13) 20 0.595039(10) 20

Table 2
Statistics and results of the Monte Carlo simulations for SU(8)

T > 0 T = 0

β sT Ls (lattice sweeps)× 10−3 β s0 (lattice sweeps)× 10−3

43.90 0.525330(80) 14 5 43.85 0.523819(37) > 20
43.93 0.526873(79) 8 19.5 44 0.528788(18) > 20
44.00 0.531307(50) 10 > 20 44.35 0.538491(13) > 20
44.10 0.534164(34) 12 7 44.85 0.549794(9) > 20
44.20 0.536650(70) 14 5 45.7 0.565708(4) > 20
44.30 0.539181(30) 8 20
44.45 0.542629(38) 8 30
44.60 0.545812(35) 8 20
44.80 0.549968(37) 8 30
45.00 0.553926(38) 8 20
45.50 0.562992(28) 12 10
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Table 3
Statistics and results of the Monte Carlo simulations for SU(3)

β T > 0 T = 0

sT (lattice sweeps)× 10−3 s0 (lattice sweeps)× 10−3

5.800 0.568664(100) 10 0.567667(29) 11
5.805 0.569688(153) 20 0.568438(23) 11
5.810 0.570624(55) 10 0.569218(18) 11
5.815 0.571297(81) 10 0.569996(26) 11
5.820 0.572205(78) 10 0.570788(16) 11
5.900 0.583058(38) 10 0.581854(20) 11
6.150 0.609377(27) 10 0.608971(8) 11
6.200 0.613966(31) 10 0.613628(13) 11
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will see below. (The same is not true for the finiteT

calculation on 83 ×5 lattices where it is 1/aT that sets
the scale for finite volume corrections.) We, therefo
take instead the SU(8) calculations on larger lattice
in [22], and interpolate between the values ofβ used
there, to obtain average plaquettes at the valuesβ
we require. To perform this interpolation we fit wi
the ansatz

〈up〉0(β) = 〈up〉P.T.
0 (β) + π2

12

G2

Nσ 2

(
a
√

σ
)4

(2.15)+ c4g
8 + c5g

10,

where〈up〉P.T.
0 (β) is the lattice perturbative result t

O(g6) from [23] andN = 8. Our best fit hasχ2/dof=
0.93 with dof= 2, and the best fit parameters arec4 =
−6.92, c5 = 26.15, and a gluon condensate ofG2

Nσ2 =
0.72.

For the scaling of the lattice spacing withβ, needed
in Eq. (2.15) and Eq.(2.14) and in the temperatur
scale, we used the interpolation ofa

√
σ as a function

of β, as given in[20].1 For the temperature scale w
need in addition to locate the value ofβ that corre-
sponds toT = Tc for the relevant value ofLt , and for
this we have used the values in[15,20]. In the case
of SU(3) we compared the resultingT/Tc(β) with
that of[2] where the physical scale was set byTc. We
find that the two functions lie on top of each other

1 This is excluding the first threeβ values in the case
of SU(4), which are outside the interpolation regime
[20]. In that case we have performed a new interpo
tion fit to include these points as well. This gave t
string tensionsa

√
σ = 0.3739(15),0.3440(10),0.3336(10) and

the derivatives−d loga/dβ = 1.83(7),1.55(7),1.48(5) for β =
10.55,10.60,10.62.
Lt = 6. This is consistent with the fact that the SU(3)

value ofTc/
√

σ for Lt = 5,6 are the same within on
sigma[15]. This is true for SU(8) as well, where the
value ofTc/

√
σ for a = 1/(5Tc), anda = 1/(8Tc), are

the same within one sigma[20], and we find no poin
to perform similar comparisons there. For SU(4) the
value ofTc/

√
σ at a = 1/(5Tc),1/(6Tc) is ∼ 5, and

∼ 3.7 sigma away from the value ata = 1/(8Tc) [20],
which may suggest that in this caseT/Tc(β) at values
of β that correspond toT 
 8/(5Tc) will be smaller
when fixing the physical scale withTc rather than with
the string tension. Nevertheless, the shift between
two is at the level of∼ 2%, and will not change the re
sults presented here. In addition, to fixT/Tc(β) by fix-
ing Tc, requires a larger scale calculation ofβc(Lt ,Ls)

that will include evaluation of finite volume corre
tions, similar to what was done forLt = 5 in [15].
In view of the small shifts and the high calculation
price, we shall ignore this potential ambiguity in th
Letter.

2.3. Finite volume effects

For N = 4,8, one is able to use lattice volum
much smaller than what one needs for SU(3) [2]. That
this is so for the deconfinement transition, has b
explicitly demonstrated in[15,20], and is theoretically
expected, much more generally, asN → ∞. The main
remaining concern has to do with tunnelling betwe
confined and deconfined phases nearTc. WhenV →
∞ tunnelling occurs only atβ = βc (in a calculation of
sufficient statistics) and the system is in the appro
ate pure phase forT < Tc and forT > Tc. On a finite
volume, where this is no longer true, one minimis
finite-V corrections by calculating the average plaq
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Table 4
Finite volume effects for plaquette average in the deconfined phase on aLt = 5 lattice, for SU(8)

β Ls = 8 Ls = 10 Ls = 12 Ls = 14

43.95 – 0.529788(100) 0.529944(65) –
44.00 0.531343(45) 0.531307(50) – –
44.10 0.534219(54) – 0.534164(34) –
44.20 0.536714(33) – 0.536689(54) 0.536650(70)
44.25 – – 0.537954(60) 0.537850(100)
44.30 0.539181(29) – – 0.539220(100)
45.50 0.563093(41) – 0.562992(28) –
or
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ttes only in field configurations that are confining, f
T < Tc, or deconfining, forT > Tc. This ensures tha
the system is as close as possible to being ‘large
homogeneous’ as is required in the derivations of
section. Because the latent heat grows∝ N2 [20] the
regionδT aroundTc in which there is significant tun
nelling shrinks asδT ∝ 1/N2 for a givenV . Hence,
we can reduceV as N increases without increasin
the ambiguity of the calculation. For SU(3), where the
phase transition is only weakly first order, freque
tunneling occurs in the vicinity ofTc in the volume
we use, and it is not practical to attempt to sepa
phases. This will smear the apparent variation of
pressure acrossTc in the case of SU(3).

We now turn to a more detailed discussion of fin
volume effects. Ifξ is the longest correlation length
in lattice units, in a volume of lengthL, then finite
volume effects will be negligible ifξ � L. In addi-
tion finite volume corrections will be suppressed
N → ∞. In our particular context,ξ is given by the in-
verse mass of the lightest (non-vacuum) state that
ples to the loop that winds around the temporal tor
In both the confined and deconfined phases, th
masses decrease asT → Tc. Therefore, the larges
length scale is set by the masses atT = Tc. As N

increases these masses increase towards their li
with 1/N2 corrections that are quite large[20].

2.3.1. The deconfined phase
In the deconfined phase, on anL3

s × 5 lattice at
T = T +

c , the value ofξ is about 12.5 lattice spac-
ings for SU(3), while it is about 5.2, and 2.4 lattice
spacings for SU(4), and SU(8), respectively[20]. This
suggests that our choice ofLs = 16 for SU(4) and
Ls = 8 for SU(8) should be adequate. In addition, it
known from calculations ofTc [14,15,20]that on such
lattices the tunnelling is sufficiently rare that even
,

T = Tc one can reliably categorise field configuratio
as confined or deconfined and hence calculate the
erage plaquette in just the deconfined phase if on
wishes. For our supplementary SU(3) calculations we
useLs = 20 which is much smaller in units ofξ . In
practice this means that in this case we are unab
separate phases atT 
 Tc.

To explicitly confirm our control of finite volume
effects, we have compared the SU(8) value of〈up(β)〉
as measured in the deconfined phase of the our 83 × 5
lattice with otherL3

s × 5 results from other stud
ies [24]. As summarised inTable 4, the results are
consistent at the 2σ level.

2.3.2. The confined phase
As we remarked above (see below for explicit e

dence) we have〈up〉T 
 〈up〉0 in the confined phas
and so the contribution in Eq.(2.11) of the range of
β where the finiteT system is confined is very sma
Nonetheless, we include an integration over that ra
for completeness and so we need to discuss pos
finite V corrections for this case as well.

In the confined phase, on anL3
s × 5 lattice atT =

T −
c , the value ofξ is about 9.5 lattice spacings fo

SU(3), but drops to about 5 and 3.5 for SU(4) and
SU(8), respectively[20]. This leaves our choice o
Ls still reasonable for SU(4) but somewhat worse fo
SU(8). In Table 5we provide a finite volume check fo
the latter case that proves reassuring.

Finally we return to our earlier comment that for t
‘T = 0’ L4 lattice calculations, a sizeL = 8 in SU(8)

would not be large enough. This is demonstrated,
our largestβ-value, inTable 6, where we also presen
the value ofLt × T/Tc(β) (in our Lt = 5 calcula-
tions). In the confinedL4

s lattice, finite volume effects
will be suppressed when the latter is much sma



B. Bringoltz, M. Teper / Physics Letters B 628 (2005) 113–124 119
Table 5
Finite volume effects for plaquette average in the confined phase on aLt = 5 lattice, for SU(8)

β Ls = 8 Ls = 10 Ls = 12 Ls = 14

43.90 0.525750(87) – 0.525613(54) 0.525425(90)
43.95 – 0.527240(34) 0.527275(48) 0.527280(50)
44.00 – – 0.528867(33) 0.528810(50)
44.10 – – 0.531880(45) 0.531900(60)

Table 6
Finite volume effects for plaquette average in the confined phase on aL4 lattice, for SU(8). The last column is forLt = 5

β Ls = 8 Ls = 10 Ls = 16 Lt × T/Tc

44.00 0.528876(39) 0.528788(18) – 5.05
45.70 0.566089(23) – 0.565708(4) 8.20
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thanLs . Clearly, forβ = 45.70 andLs = 8, this is not
the case.

By contrast, for SU(4) the finite volume effects
seems not to be large on the 164 lattice as we checke
for our largest value ofβ = 11.30. There the value
of the plaquette on a 204 lattice is 0.595014(4) [21],
which is consistent within∼2.3σ with the value pre-
sented inTable 1. This is in spite of the fact that for thi
couplingLt × T/Tc = 10, and is not so much smalle
thanLs = 16.

3. Results

To obtain the pressure from the values of the
erage plaquette presented inTables 1–3we need to
perform the integration in Eq.(2.11), which we do
by numerical trapezoids. We have already remar
that the contribution to the pressure from the confin
phase is negligible. InTable 7we provide some accu
rate evidence for this. We show the values of the a
age plaquette onL4 lattices, corresponding toT 
 0,
as well as the values onL3

s × 5 lattices atT 
 Tc,
with the latter obtained separately in the confined
deconfined phases. (These volumes are large en
for there to be no tunnelling, or even attempted t
nelling, within our available statistics.) We see that
both SU(4) and SU(8) there is no visible differenc
between the plaquette atT = 0 andT = Tc in the con-
fined phase at, say, the 2σ level. Any difference (and
there obviously must be some difference) is clea
negligible when compared to the difference betwe
the confined and deconfined phases at (and aboveTc.
In presenting our results for the pressure, we s
normalize to the lattice Stephan–Boltzmann res
given by

(3.1)
(
p/T 4)

free-gas=
(
N2

c − 1
)π2

45
RI(Lt ).

HereRI includes the effects of discretization errors
the integral method[25,26]. For large values ofLt ,
and an infinite volume, it is given by

(3.2)

RI(Lt ) = 1+ 8

21

(
π

Lt

)2

+ 5

21

(
π

Lt

)4

+O
(

1

Lt

)6

.

Since some values ofLt discussed in this Let
ter are not very large, we shall use the full corr
tion, which includes higher orders in 1/Lt , instead
of Eq. (3.2). This was calculated numerically for th
infinite volume limit in [25] for Lt = 4,6,8, and we
supplement this calculation, with the same numer
routines[26], for other values ofLt . A summary of
RI(Lt ) in the infinite volume limit is given inTable 8.

We find that the full correction forLt = 5 is a
∼21% effect, which, without this normalisation, mig
obscure the physical effects that we are interested
This is an appropriate normalisation because we
pect Eq.(3.1) to provide theT → ∞ limit of p/T 4.
The same applies to the internal energy density, s
ε → 3p asT → ∞, and so when presenting our r
sults forε/T 4 we normalise it with the expression
Eq. (3.1). For similar reasons we shall use the sa
normalisation when presenting our results for the
tropy. For∆/T 4 it is less clear what normalisation on
should use since∆ = ε − 3p → 0 asT → ∞, but for
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rtical sizes
Table 7
The plaquette average in the confined phase,C, atT 
 Tc compared to theT = 0 value and to the value in the deconfined phase,D, for SU(4)

and SU(8)

β N Lattice 〈up〉 Phase T

10.635 4 323 × 5 0.549563(33) D Tc

323 × 5 0.547689(11) C Tc

104 0.547640(27) C 0

43.965 8 123 × 5 0.530352(23) D Tc

123 × 5 0.527725(27) C Tc

104 0.527648(24) C 0

Table 8
The lattice discretisation errors correction factorRI(Lt ) in the infinite volume limit

Lt = 2 Lt = 3 Lt = 4 Lt = 5 Lt = 6 Lt = 8

2.04526(4) 1.6913(2) 1.3778(1) 1.2129(6) 1.1323(1) 1.0659(1)

Fig. 1. The pressure, normalized to the lattice Stephan–Boltzmann pressure, including the full discretization errors. The symbol’s ve
are representing the largest error bars (which are received for the highest temperature). The solid line is for SU(3) andLt = 6 from [2].
us-

ar-

on
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a-

ed,
ne

d in
ease of comparison we shall once again normalise
ing Eq.(3.1).

To facilitate the comparison of our results with e
lier work on SU(3) [2], which was done forLt =
4,6,8, we have performed SU(3) simulations with
Lt = 5. The spatial size isLs = 20 which should be
sufficiently large in the light of our above discussi
of finite volume effects (and we note that it satisfies
empirical rule that one needsLs/Lt � 4 [27]).
We present ourN = 4 and N = 8 results for
p/T 4 in Fig. 1. We also show there our calcul
tions of the SU(3) pressure forLt = 5, as well as
theLt = 6 calculations from[2]. Although our errors
on the SU(3) pressure are probably underestimat
since the mesh inβ is quite coarse, nonetheless o
can clearly infer that the pressure in the SU(4) and
SU(8) cases is remarkably close to that in SU(3) and
hence that the well-known pressure deficit observe
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y

es of field
Fig. 2. Results for∆(T )/T 4 = T
∂p/T 4

∂T
, normalized by the same coefficient as we normalize the pressure. The solid line is for SU(3) and

Lt = 6 from [2].

Table 9
Plaquette average in the deconfined phase for lattice with fixed coupling, at different values ofLt , and withβ that corresponds to roughl
the deconfining temperature atLt = 5: β = 5.800,10.635,44.00 for N = 3,4,8. The data forLt = 5 are obtained forL = 64,32,10 for
N = 3,4,8 (for N = 3, δ〈up〉 is the difference between the plaquette as calculated within separate confined and deconfined sequenc
configurations)

N L3 × 5 83 × 4 83 × 3 83 × 2 104 −d loga/dβ

3 δ〈up〉 = 0.00080(5) 0.570987(37) 0.573311(34) 0.578121(27) 0.567642(29) 2.075(17)
4 0.549563(33) 0.551604(33) 0.554047(27) 0.559163(24) 0.547640(27) 1.440(23)
8 0.531202(92) 0.533066(25) 0.535991(24) 0.541518(17) 0.528788(18) 0.384(20)
d
lity
e
the

-
in

no
s a

r
s are

s on
d

ture
ary

e-
SU(3) is in fact a property of the large-N planar the-
ory.

In Fig. 2we present our results for∆/T 4 as calcu-
lated from Eq.(2.14). This quantity can be considere
as a measure of the interaction and non-conforma
of the theory, since it is identically zero both for th
noninteracting Stephan–Boltzmann case, and for
N = 4 supersymmetric SU(N) gauge theory. As re
marked above, we normalise with the expression
Eq. (3.1). We also note that in this case there are
errors from a numerical integration, and this enable
fair comparison with the SU(3) data of[2]. Compar-
ing the results for differentN we see that, just as fo
the pressure, the results for all these gauge theorie
very similar.
To see what is the behaviour of∆/T 4 at even
higher temperatures, we use the plaquette average
lattices withLt = 2,3,4,5, that have been calculate
at fixed couplings which correspond toT 
 Tc for
Lt = 5 [20]. We present the results inTable 9. For
the evaluation of∆ one needsd loga/dβ which we
present in the table as well.

In such calculations where one variesT by vary-
ing Lt , the lattice spacing varies asa = 1/Lt × 1/T

when expressed in units of the relevant tempera
scale, and so lattice spacing corrections will v
with T .

The resulting values of∆ in the case of SU(3) are
plotted inFig. 3 where they are compared to the r
sults obtained from calculations where one variesT
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Fig. 3. Results for∆(T )/T 4 = T
∂p/T 4

∂T
, normalized to the free-gas result. The lines are for SU(3) andLt = 4,6 from[2]. Triangles correspond

to Lt = 5, and changingβ , while circles correspond to changingLt and keeping a fixedβ = 5.800.

Fig. 4. Results for∆(T )/T 4 = T
∂p/T 4

∂T
for N = 3,4,8, by fixingβ = βc(Lt = 5), while changingLt = 2,3,4,5.
e the
the
es
we
by varyingβ at fixedLt . These calculations includ
ours forLt = 5 and those of[2] for Lt = 4,6.

As we see fromFig. 3 our Lt = 5 SU(3) results
do in fact lie between theLt = 4,6 results of[2]
as one would expect. We observe that theT de-
pendence is very similar in all cases, and that
remaining Lt dependence appears to be much
same for the different kinds of calculation. This giv
us confidence that performing calculations where
vary T by varying Lt at fixed β does not intro-
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rrors. The
Fig. 5. Results for energy density and entropy, normalized to the lattice Stephan–Boltzmann result, including the full discretization e
solid line is for SU(3) andLt = 6 from [2].
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duce any unanticipated and important systematic
rors.

Having performed this check, we compare inFig. 4
our results for∆ in the rangeTc � T � 2.5Tc that
corresponds to 5� Lt � 2. This comparison confirm
what we observed inFig. 2over a smaller range ofT :
∆ is very similar for all the values ofN (except very
close toTc), implying that this is also a property of th
N = ∞ planar limit.

Finally, we present inFig. 5our results for the nor
malized energy densityε = ∆ + 3p, and the entropy
per unit volumes = (ε + p)/T . The lines are the
SU(3) result of [2] with Lt = 6. Again we see very
little dependence on the gauge group, implying v
similar curves forN = ∞.

4. Summary and discussion

In this Letter we have analyzed numerically t
bulk thermodynamics of SU(4) and SU(8) gauge the-
ories. We found that the pressure, when normalize
the Stephan–Boltzmann lattice pressure, is practic
the same as for SU(3), in the rangeTc � T � 1.6Tc

that we analyze. We found the same to be the c
for the internal energy and entropy, as well as
the quantity∆ = ε − 3p (where we were able to ex
plore temperatures up toT 
 2.5Tc). All this implies
that the dynamics that drives the deconfined sys
far from its noninteracting gluon plasma limit, mu
remain equally important in theN = ∞ planar the-
ory. This is encouraging since that limit is simpler
approach analytically, in particular using gravity d
als.

Our results have been (mostly) obtained for latt
spacingsa = 1/(5T ) and it would be useful to per
form a larger scale calculation that allows us to p
form an explicit continuum extrapolation. Howeve
past SU(3) calculations of the pressure, and calcu
tions in SU(N) of various physical quantities, strong
suggest that our choice ofa already provides us with
reliable preview of what such a more complete cal
lation would produce.

Our results imply that any explanation of the QC
pressure deficit must survive the large-N limit, and
so should not be driven by special features part
lar to SU(3). This can provide a strong constraint
such explanations. For example, in approaches b
on higher-order perturbation theory, it tells us that
important contributions must be planar. In models
cussing on resonances and bound states, it mus
that the dominant states are coloured, since the



124 B. Bringoltz, M. Teper / Physics Letters B 628 (2005) 113–124

in
res-
t

ce
ua-

the
of

rv-
sing
re
ng

ntly

of
n

ap-
.

is-
the
par-
u-
on
he-
f a

at/

18.
ep-

er,

ph/

ev.

ep-

rke,
11.
34

7,

ep-

05)

183

27.
ep-

98)

00)

ys.

1,

04)
tribution of colour singlets will vanish asN → ∞.
Models using ‘quasi-particles’ should place these
colour representations that do not exclude their p
ence atN = ∞, and in fact give themT -dependen
properties which depend weakly onN . Also, topologi-
cal fluctuations should play no role in this deficit sin
the evidence is that there are no topological fluct
tions of any size in the deconfined phase at largeN

[28,29].
Finally, we emphasize that our conclusion that

SU(3) pressure and entropy deficits are features
the large-N gauge theory, means that these ‘obse
able’ phenomena can, in principle, be addressed u
AdS/CFT gravity duals. Indeed, it is precisely whe
the deficit is large that the coupling must be stro
and this is also precisely where, at largeN , such
dualities can be established. As has been freque
emphasized (see, for example,[16,17]) the deficit in
the normalized entropy is not far from the value
s/sfree-gas= 3/4 given by the AdS/CFT prediction. I
this Letter we have found that large-N gauge theories
show the same behaviour, as we see inFig. 5, where,
for the entropy, the horizontal linesnormalized/T 3 = 3
would correspond tos/sfree-gas= 3/4. Our results can
therefore serve as a bridge between the AdS/CFT
proach to large-N and the observable world of QCD
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