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Abstract

Oilseed rape is used as both food and a renewable energy resource. Physiological

parameters, such as the amino acid aspartic acid, can indicate the growth status of

oilseed rape. Traditional detection methods are laborious, time consuming, costly,

and not usable in the field. Here, we investigate near infrared spectroscopy (NIRS)

as a fast and non-destructive detection method of aspartic acid in oilseed rape

leaves under herbicide stress. Different spectral pre-processing methods were

compared for optimal prediction performance. The variable selection methods were

applied for relevant variable selection, including successive projections algorithm

(SPA), Monte Carlo-uninformative variable elimination (MC-UVE) and random

frog (RF). The selected effective wavelengths (EWs) were used as input by

multiple linear regression (MLR), partial least squares (PLS) and least-square

support vector machine (LS-SVM). The best predictive performance was achieved

by SPA-LS-SVM (Raw) model using 22 EWs, and the prediction results were Rp

= 0.9962 and RMSEP = 0.0339 for the prediction set. The result indicated that

NIR combined with LS-SVM is a powerful new method to detect aspartic acid in

oilseed rape leaves under herbicide stress.
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1. Introduction

Nowadays, near infrared (NIR) spectroscopy combined with chemometrics is

widely applied for the detection of plant growing information in precision

agriculture (Yan et al., 2005). NIR is a fast and non-destructive method, which

makes it a promising application in the in vivo detection and field dynamic

monitoring. Along with the fast development of precision agriculture and

wireless sensor networks for agriculture, developing a fast and dynamic

detection method for plant growing information is a hotspot in the research

field throughout the world. In the specific field of oilseed rape (Brassica napus

L.), the growing information, especially under certain stress, is very important

for a better understanding of the function mechanism and metabolic pathways

(Zhou, 2001). NIR spectroscopy is quite a promising method for such a

purpose. Some applications using NIR have been introduced into the oilseed

rape study, such as the detection of chlorophyll of rape leaves (Fang et al.,

2007; Wang et al., 2008), and the determination of acetolactate synthase (ALS)

and protein content of oilseed rape leaves using visible/near infrared

(400–2500 nm) spectra (Liu et al., 2008; Liu et al., 2009; Liu et al., 2011).

During the cultivation of oilseed rape, weed control is an important procedure

for higher yield and better quality.

Since the amount of labor for farming is showing a downward trend, more

chemicals are applied to remove and control the weeds. Recently, a newly

developed herbicide, named propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)

benzylamino) benzoate (ZJ0273), has been applied to remove and control the

weeds. ZJ0273 is an ALS (acetolactate synthase)-inhibiting herbicide, which is

considered to be environmentally friendly (Tang et al., 2005; Chen et al., [4_TD$DIFF]2005).

However, studies are necessary on the function mechanism and metabolic path

of the herbicide on oilseed rape. Amino acids (like aspartic acid, valine and

proline) are important parameters for the understanding of herbicide function

mechanism and metabolic path during oilseed rape growth. Amino acid content

in oilseed rape leaves could reflect the influence and effects of the herbicide.

Traditionally, amino acids are detected by high-performance liquid

chromatography (HPLC) or automatic amino acid analyzer, which are laborious,

time consuming, costly, infeasible methods for in-field monitoring. Hence, a fast

and non-destructive amino acid detection method is quite necessary. NIR could

be used as a fast and accurate method to determine the amino acid content.

Therefore, NIR spectroscopy supplied an easy and convenient way to obtain the

amino acid data which was quite useful to study the function mechanism and

metabolic path of the herbicide on oilseed rape. However, to our knowledge,

there have been no reports about the determination of aspartic acid in oilseed

rape under the herbicide ZJ0273 stress using NIR spectroscopy.
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The objectives of this study were to investigate the feasibility of using NIR for

the amino acid detection, and compare the prediction performance of different

spectral preprocessing methods, linear and nonlinear calibration methods using a

wide wavelength region in the NIR with selection of effective wavelengths for

the detection of aspartic acid in oilseed rape leaves under herbicide stress.

2. Materials and methods

2.1. Sample collection

Samples used in this experiment were oilseed rape (Brassica napus, cv. ZS758)

planted in the farm of Zhejiang University, Hangzhou (30° 10′N, 120° 12′E). In
order to make a full consideration of the effects of herbicide on oilseed rape

leaf, three different concentrations (100, 200 and 500 mg/L) of herbicide ZJ2073

was foliar applied at the 5-leaf stage at the quantity of 500 L/ha.

Simultaneously, oilseed rape leaves without herbicide treatment were kept as

controls. Oilseed rape leaves were collected at three different times after

herbicide treatment, and 80, 80 and 88 leaf samples were collected at each time.

Some sample pre-treatment was performed before spectral collection. Firstly, the

collected leaf samples were dried, milled and then sieved through 60-mesh. The

whole oilseed rape leave sample was milled and sieved through 60-mesh and

there was none left of the leaf sample. The oilseed rape leaf was milled in order

to avoid the influence of different particle sizes. Besides, the oilseed rape leaf

sieved through 60-mesh was also a necessary step in preparation stages to detect

amino acid using the automatic analyzer. Secondly, each sample was separated

into two categories. The first category was used for spectral scanning, and the

second category was used for aspartic acid detection using traditional method by

automatic amino acid analyzer. All samples were randomly divided into three

sets, which were calibration set with 124 samples, validation set with 62

samples and prediction set with the remaining 62 samples. Each sample set

included all herbicide concentration treatments (100, 200, 500 mg/L and the

control group). The calibration and validation sets were only used for calibration

stage. The validation set was used as the test set which played the same role of

the samples of cross-validation method during calibration stage. The prediction

set was applied for assessment and evaluation of the prediction performance of

developed models.

2.2. Spectral acquisition

Spectral data of leaf samples within 1100–2500 nm were obtained by Foss NIR

Systems 5000 spectrometer (Foss NIR Systems, Denmark). Before the spectral

collection, the samples were taken out from the refrigerator until they were

equalized to the room temperature at 20–23 °C. The room humidity was around
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50–60%. The diameter of the sample cell was 1 cm. The reflectance mode was

used for spectral collection. The standard sample supplied by Foss Company

was used to calibrate the Foss NIR Systems 5000 spectrometer. A total of 700

data points for each spectrum were collected within 1100–2500 nm with a 2 nm

resolution. The reflectance spectra were collected for all leaf samples, and the

spectral data were stored for later analyses.

2.3. Aspartic acid analysis

The reference method to measure aspartic acid was an automatic amino acid

analyzer. The chemical pretreatment of oilseed rape leaf was based on the

Lisiewska method (Lisiewska et al., 2008). The content of amino acids was

determined using a HITACHI amino acid analyzer (Model: L-8900, Japan)

under a normal analytical condition. Two aspartic acid values were obtained for

each leaf sample, and the averaged value was used as the reference value for

each leaf sample. The content of amino acids was expressed as mg/100 mg of

dry matter (mg/100 mg DW).

2.4. Spectral pre-processing and [16_TD$DIFF]effective wavelengths selection

Seven different spectral pre-processing methods were applied for better

prediction performance in partial least squares (PLS) analysis models. These

pre-processing methods included Savitzky-Golay smoothing (SG), standard

normal variate (SNV), multiplicative scatter correction (MSC), first-derivative

(1st-Der), second-derivative (2nd-Der) and de-trending. Spectral pre-processing

was implemented by “The Unscrambler V 9.8” (CAMO AS, Oslo, Norway).

Another pre-processing method, direct orthogonal signal correction (DOSC), was

implemented by Matlab V7.0 (The Math Works, Natick, USA). These pre-

processing methods were applied mainly to remove the spectral baseline shift,

noise and light scatter influence (Chu et al., 2004; Westerhuis et al., 2001).

In the PLS models, the input data matrix was the full wavelength region

including 700 variables (1100–2500 nm with 2 nm increment). The full

wavelength region was a large data matrix, and thus the computation was

complex with long computation time. In order to make a streamlined model, a

relevant variable selection method was necessary before further comparison.

Herein, a newly developed method called successive projections algorithm

(SPA), was applied for comparison (Araújo et al., 2001; Galvão et al., 2008).

SPA was able to choose the most informative wavelengths with least collinearity

and redundancies though the projection procedure. SPA could make the relevant

wavelengths in the sequential order of importance, which means that variables

chosen earlier were more important. The selected relevant wavelengths were

named as effective wavelengths (EWs).
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Monte Carlo-uninformative variable elimination (MC-UVE) is a variable

selection method combining Monte Carlo (MC) sampling and uninformative

variable elimination (UVE). In MC-UVE, PLS models were built on the

calibration set and the prediction set randomly divided by predefined times of

MC sampling. The ratio of the mean and the standard deviation of the

regression coefficients of each variable is used to evaluate the importance of the

variables (Han et al., 2008).

Random frog (RF) is an efficient reversible jump Markov Chain Monte Carlo-like

approach for variable selection. RF initializes a subset with a predefined number of

variables (V0) and a candidate subset with another number of variables (V*). The

initialized subset is updated by the candidate set with a certain probability at each

iteration. The number of iterations should be predefined. After the finish of the

iterations, the selection probability of each variable is calculated as the variable

importance for variable selection (Li et al., 2012).

EWs were used as the input data matrix to develop calibration models using the

following methods: multiple linear regression (MLR), partial least squares

analysis (PLS) and least-squares support vector machine (LS-SVM).

2.5. MLR, PLS and LS-SVM methods

MLR and PLS analyses are widely utilized calibration methods for regression

models in NIR technology. MLR applies input variables directly to develop a

linear relationship between the spectral variables (X-variables) and aspartic acid

(Y-variable) in oilseed rape leaves. During PLS, the latent variables (LVs) were

first extracted from full wavelength region spectral variables and then used to

develop a linear correlation between these LVs and chemical constituents

(aspartic acid). The details of MLR and PLS can be found in the literature

(Andrews, 1974; Geladi and Kowalski, 1986). MLR and PLS were implemented

by “The Unscrambler V 9.8” (CAMO AS, Oslo, Norway).

LS-SVM is a newly developed statistical method, which is promising for

handling both linear and nonlinear problems. The LS-SVM procedure reduces

the computation time and requires a small sample database for a stable and

robust model (Suykens and Vandewalle, 1999). Three steps are needed before

performing LS-SVM. Firstly, the input data matrix should be selected. Herein,

the selected EWs by SPA were applied as the input data matrix. Secondly, the

kernel function should be suitable according to the input data and performing

result. Herein, radial basis function (RBF) was recommended for kernel function

for its ability of handling both linear and nonlinear relationships. Thirdly, the

model parameters gamma (γ) and sig2 (σ2) should be an optimal combination

within a probable search region. Herein, the optimal combination of gamma (γ)

and sig2 (σ2) were settled by a two-step grid search technique. The details of
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LS-SVM could be found in the literature (Suykens and Vandewalle, 1999;

Liu et al., 2008). All calculations were performed using Matlab software V 7.0

(The Math Works, Natick, MA, USA). The free LS-SVM V 1.5 toolbox

(Suykens, Leuven, Belgium) was applied with Matlab V7.0 to develop the

LS-SVM models.

After the development of a calibration model, the prediction performance should

be assessed, usually by the indices of correlation coefficient of prediction (Rp)

and root mean square error of prediction (RMSEP). A good model should have

a high Rp (much closer to 1) and a low RMSEP (Liu et al., 2008).

3. Results and Discussion

3.1. Spectral features of oilseed rape leaves

The raw and preprocessed spectra of oilseed rape leaves under herbicide stress

are shown in Figs. 1a–h . As shown in Fig. 1a, many peaks were observed

within the region of 1100–2500 nm, which might be corresponding to chemical

compositions with respect to the C-H, N-H or O-H bands (Workman Jr. and

Weyer, 2007). The SG, SNV and MSC pre-processing (Figs. 1b–d) retained
the main characteristic trends (peaks and valleys) in the spectral curves. There

is not a lot of variation between samples and implications for the pre-

processing methods of SG, SNV and MSC (Figs. 1b–d). The statistics of

aspartic acid of leaf samples in calibration, validation and prediction sets are

shown in Table 1. The calibration and validation sets included a large variation

of aspartic acid, which was useful to build a stable and robust model.

3.2. The performance of PLS models

Different PLS models were developed using aforementioned pre-processed

spectra. Different latent variables (LVs) were extracted and used during the

PLS calibration. The prediction set was used to assess the prediction

performance of developed models. The prediction results by PLS models are

shown in Table 2. Optimal performance was achieved by 1st-Der spectra with

Rp = 0.9789 and RMSEP = 0.0782. The scatter plots in the prediction set are

shown in Fig. 2. A good prediction precision was achieved, but the number of

input variables was 700. All 700 wavelengths were too many to be used

directly for the development of portable instruments or sensors. Some type of

effective wavelength selection procedure should be applied therefore to choose

a small number of relevant variables from these 700 wavelengths. Herein,

SPA, MC-UVE, RF were performed for such purpose.
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[(Fig._1)TD$FIG]

Fig. 1. The raw and preprocessed spectra of oilseed rape leaves: (a) Raw; (b) SG; (c) SNV; (d)

MSC; (e) 1st-Der; (f) 2nd-Der; (g) De-trending; (h) DOSC.
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3.3. EWs selection

In the PLS models, the best spectral pre-processing method was 1st-Der. Hence,

the 1st-Der spectra were applied for relevant variable selection. The Raw spectra

were also used for relevant variable selection as a comparison. For SPA, the

maximum number of selected variables was set to 30, and cross-validation was

also applied in the selection process. For MC-UVE, the number of MC sampling

was set as 10,000. For RF, the number iteration was set as 10,000. The selected

EWs are shown in Table 3. From Table 3, it could be found that some

wavelengths were selected similarly both by Raw and 1st-Der spectra. Some of

the selected wavelengths were different by different selection methods due to

the different selection principles and criterions. The wavelength around 1438 nm

was thought to be caused by the first overtone of the N-H stretching vibration

in protein (Workman Jr. and Weyer, 2007). The wavelengths of 2022, 2058 and

Table 1. Statistics of aspartic acid content of oilseed rape leaves.

Set Number Range (mg/100 g DW) Mean (mg/100 g DW) Standard deviation(mg/100 g DW)

Calibration 124 0.926-2.746 1.773 0.3810

Validation 62 0.937-2.579 1.775 0.3803

Prediction 62 0.932-2.662 1.773 0.3849

DW: dry matter.

Table 2. Prediction results of aspartic acid by the PLS model with different

preprocessing methods.

Model Treatment LV/EW/(γ, σ2) Calibration Prediction

[14_TD$DIFF]Rc RMSEC Rp RMSEP

PLS Raw 8/700/- 0.9715 0.0899 0.9766 0.0824

SG 7/700/- 0.9675 0.0956 0.9681 0.0958

SNV 5/700/- 0.9619 0.1037 0.9631 0.1029

MSC 5/700/- 0.9625 0.1030 0.9637 0.1021

1st-Der 6/700/- 0.9768 0.0813 0.9789 0.0782

2st-Der 4/700/- 0.9882 0.0582 0.9599 0.1111

De-trending 6/700/- 0.9687 0.0941 0.9731 0.0881

DOSC 6/700/- 0.9669 0.0968 0.9680 0.0958

LV: latent variable in PLS model; EW: effective wavelengths used in the models; (γ,σ2): parameters

of LS-SVM.

Rc: correlation coefficient of calibration; Rp: correlation coefficient of prediction; RMSEC: root

mean square error of calibration; RMSEP: root mean square error of prediction.
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2098 nm might be due to the combinations or combination transitions of N-H

stretch, N-H in plane bend, C¼O stretch and C-N stretch (Daszykowski et al.,

2008). The wavelengths of 2178, 2180, 2232 and 2272 nm might be due to the

N-H stretch and N-H in plane bending motion (Cowe et al., 1988). The

wavelength of 2308 nm could be related to the stretch and deformation

vibrations of the methylene group (Daszykowski et al., 2008). All selected EWs

in Raw or 1st-Der spectra were applied as inputs of the MLR, PLS and LS-SVM

models. This calibration method was a newly proposed combination calibration

method in a previous study (Liu et al., 2008a). The developed calibration

models using EWs were utilized for the fast determination of aspartic acid in

oilseed rape leaves under herbicide stress.

[(Fig._2)TD$FIG]

Fig. 2. Reference vs. predicted values of aspartic acid by PLS (1st-Der) in prediction set (The solid

line is regression line and the dash line is the target 45 degree line).

Table 3. Selected EWs by SPA, MC-UVE and RF.

Treatment No. Selected EWs (nm)

SPA Raw 22 2304, 2272, 1410, 2372, 1190, 1730, 2098, 1528, 1438, 2058, 1692, 1104, 1878, 2022, 2234, 2178,
2290, 1344, 2352, 1818, 1994, 1942

1st-Der 17 1684, 1950, 2180, 2232, 1298, 1720, 2308, 1534, 1528, 2326, 2096, 2492, 1110, 2442, 1310, 2336,
2276

MC-
UVE

Raw 22 1444, 1446, 2038, 1442, 2036, 2108, 1448, 2032, 1512, 2110, 1760, 1828, 1440, 2106, 1510, 1504,
1506, 2298, 2034, 1932, 1830, 1436

1st-Der 22 1248, 1146, 1430, 1330, 1144, 1328, 1246, 1428, 1660, 1148, 1250, 1714, 1658, 1712, 2284, 1432,
2384, 2382, 1662, 1224, 1716, 2286

RF Raw 22 1334, 1340, 1828, 1252, 1328, 1140, 1244, 1254, 1326, 1816, 1336, 1804, 1142, 1246, 1830, 2198,
1342, 2200, 1332, 2362, 2202, 2082

1st-Der 26 1146, 1714, 1834, 1836, 1256, 1300, 2342, 1154, 1328, 1166, 1330, 1658, 2384, 1470, 1390, 1468,
1660, 2284, 1338, 1824, 1144, 1236, 1388, 1686, 1744, 2344

No.: number of selected effective wavelengths.
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3.4. Calibration models using EWs

The MLR, PLS and LS-SVM models using EWs selected by SPA, MC-UVE

and RF were developed for aspartic acid detection (Liu et al., 2008). The results

of MLR, PLS and LS-SVM models using EWs selected by SPA, MC-UVE and

RF shown in Table 4 are all satisfactory with Rc and Rp over 0.95. For EWs

selected by SPA and MC-UVE, the calibration models using EWs selected from

the Raw spectra performed slightly better. The LS-SVM models performed

better than the corresponding MLR and PLS models. For EWs selected by RF,

the RF-MLR (1st-Der) and RF-PLS (1st-Der) models performed slightly better

than the RF-MLR (Raw) and RF-PLS (Raw) models. The RF-LS-SVM (1st-Der)

performed slightly better than RF-LS-SVM (Raw). It could be observed from

Table 4 that LS-SVM models performed best among all models, and models

using EWs selected by SPA performed best among all variable selection

methods. SPA-LS-SVM (Raw) obtained the best results with Rp = 0.9962 and

RMSEP = 0.0339. The scatter plots of the prediction set by SPA-LS-SVM

(Raw) are shown in Fig. 3. Comparing Fig. 3 with Fig. 2, the distribution of the

Table 4. Prediction results by the MLR, PLS and LS-SVM models using EWs.

Model Treatment LV/EW/(γ, σ2) Calibration Prediction

[15_TD$DIFF]Rc RMSEC Rp RMSEP

SPA-MLR Raw -/22/- 0.9811 0.0734 0.9833 0.0709

1st-Der -/17/- 0.9692 0.0934 0.9720 0.0898

SPA-PLS Raw 7/22/- 0.9754 0.0837 0.9747 0.0854

1st-Der 5/17/- 0.9703 0.0918 0.9749 0.0860

SPA-LS-SVM Raw -/22/(7.1×104, 171.6) 0.9936 0.0428 0.9962 0.0339

1st-Der -/17/(749.0, 427.7) 0.9907 0.0516 0.9871 0.0613

MC-UVE-MLR Raw -/22/- 0.9706 0.0914 0.9647 0.1009

1st-Der -/22/- 0.9682 0.0949 0.9551 0.1145

MC-UVE-PLS Raw 5/22/- 0.9509 0.1174 0.9554 0.1130

1st-Der 5/22/- 0.9545 0.1131 0.9516 0.1175

MC-UVE-LS-SVM Raw -/22/(143.8, 4.2) 0.9968 0.0306 0.9840 0.0715

1st-Der -/22/(56.8, 19.0) 0.9962 0.0336 0.9832 0.0736

RF-MLR Raw -/22/- 0.9771 0.0807 0.9632 0.1046

1st-Der -/26/- 0.9872 0.0604 0.9634 0.1038

RF-PLS Raw 5/22/- 0.9582 0.1085 0.9569 0.1109

1st-Der 6/26- 0.9759 0.0828 0.9679 0.0960

RF-LS-SVM Raw -/26/(9.9×104,110.3) 0.9903 0.0528 0.9889 0.0569

1st-Der -/26/(4.9×104, 7.5×103) 0.9895 0.0549 0.9730 0.0891
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prediction plots was closer to the regression line in Fig. 3, which also indicated

a better prediction performance in Fig. 3.

The models based on EWs selected by SPA, MC-UVE and RF obtained

acceptable prediction results as compared with full spectra models. The number

of wavelengths reduced at least 96.29% by wavelength selection. The prediction

results of calibration model using EWs were similar or better than the full

spectra calibration models. This indicated that SPA, MC-UVE and RF were

effective method for wavelength selection. These selected EWs would also be

important and helpful for the development of a portable instrument, which is

essential to achieve field monitoring of oilseed rape growth status and the study

of herbicide function mechanism and metabolic pathway in oilseed rape under

herbicide stress.

4. Conclusion

After comparing different spectral pre-processing methods (Raw, SG, SNV, MSC,

1st-Der, 2st-Der, de-trending and DOSC), an optimal PLS (1st-Der) model was

obtained for the determination of aspartic acid in oilseed rape leaves under

herbicide stress, and the prediction results were Rp = 0.9789 and RMSEP =

0.0782. Comparing all linear and nonlinear models (MLR, PLS and LS-SVM)

using effective wavelengths extracted by SPA, MC-UVE and RF, the best model

was SPA-LS-SVM (Raw) with Rp = 0.9962 and RMSEP = 0.0339, which was

also the best one in all developed models. The overall results indicated that near

infrared spectroscopy integrated with SPA-LS-SVM could be successfully applied

for the detection of aspartic acid. The obtained calibration model was helpful for

the fast detection of aspartic acid, which provides a short cut to obtain the basic

physiological data for the herbicide effects, function mechanism and metabolic

pathways in oilseed rape leaves. The selected effective wavelengths would be

useful for portable instrument development and the field monitoring of oilseed

rape growing status.

[(Fig._3)TD$FIG]

Fig. 3. Reference vs. predicted values of aspartic acid by SPA-LS-SVM (Raw) in prediction set

(The solid line is regression line and the dash line is the target 45 degree line).
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