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Abstract

This paper provides exact probability results for waiting times associated with occurrences of two types of motifs in a random
sequence. First, we provide an explicit expression for the probability generating function of the interarrival time between two clumps
of a pattern. It allows, in particular, to measure the quality of the Poisson approximation which is currently used for evaluation of the
distribution of the number of clumps of a pattern. Second, we provide explicit expressions for the probability generating functions
of both the waiting time until the first occurrence, and the interarrival time between consecutive occurrences, of a structured motif.
Distributional results for structured motifs are of interest in genome analysis because such motifs are promoter candidates. As an
application, we determine significant structured motifs in a data set of DNA regulatory sequences.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Distributions associated with pattern occurrences in a random sequence of letters have been extensively studied in
the literature. Genome analysis is a most popular application area for such results (see [12] or [6], Chapter 6, for recent
surveys). The exact distribution of the number of occurrences of a pattern is usually obtained through the distribution
of the waiting time until the jth occurrence of the pattern. The latter distribution is derived either by recursive formulas
or through its probability generating function. The probability generating function approach leads to considering the
waiting time until the first occurrence of a pattern and the interarrival time between two consecutive occurrences of
a pattern. Explicit and calculable expressions for the probability generating functions of these quantities in Markov
sequences and for a single pattern or a set of patterns are found in [13,14,17].

Pattern occurrences may overlap in a sequence, but one may be interested in counting nonoverlapping occurrences
of a pattern. There are two ways for such counting (i) counting renewals or (ii) counting clumps of a pattern.
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In Section 2 below we consider clumps. For renewals see [2,4,10] and the references therein. A clump of a pattern
is a maximal set of overlapping occurrences of the pattern in a sequence. Poisson approximation results exist for the
distribution of the number of clumps (or declumped count) and these are theoretically valid when the sequence is long
and the pattern is rare enough [11,16]. There is no exact result for the distribution of the number of clumps in the
literature. In Section 2, we provide an explicit expression for the probability generating function of the waiting time
until the next clump occurrence (that is, the interarrival time between two consecutive clump occurrences). This leads
to the exact evaluation of the distribution of the declumped count of a pattern.

In Section 3 below we study the waiting time until the first occurrence of a more complex pattern called a structured
motif. A structured motif is composed of two patterns separated by a variable distance. The interest in this waiting time
is due to the biological challenge of identifying promoter motifs along genomes. Programs to extract automatically
structured motifs from DNA sequences exist (cf. [3,7,8]). Only statistically significant motifs should be suggested
to biologists as candidate promoters. The statistical significance of a motif in a sequence is identified through the
probability that the sequence contains at least one occurrence of the motif. Robin et al. [15] provides an approximation
to this probability. In Section 3 we provide explicit expressions for the probability generating functions of (i) the
first arrival time of a structured motif, and (ii) the intersite distance between consecutive occurrences of structured
motifs. This leads to exact evaluation of the aforementioned probability. These are the first exact probability results on
structured motifs in the literature. Note that our definition of a structured motif is slightly different from the usual one
(cf. [15]) but it accommodates all cases of structured motifs as long as the patterns involved in a structured motif do
not appear too frequently in the considered sequences. This is usually the case in practice.

In Section 4 we provide two applications to DNA sequences.

2. Clumps of a pattern

Let {X(n)}n�0 be an ergodic finite-state Markov chain with discrete-time parameter, state space {1, 2, . . . , N}, and
one-step transition probabilities pi,j , i, j = 1, 2, . . . , N . The pattern (word) of interest is w = w1w2 · · · wk, where
1�wi �N, i = 1, 2, . . . , k. For j ∈ {1, 2, . . . , k}, denote the probability generating function1 (p.g.f.) of the waiting
time to reach the pattern w1w2 · · · wj from state s by G

(s)
j (t) when we allow the initial state s to contribute to the

pattern and by G̃
(s)
j (t) when we do not allow s to contribute. Denote by G

(w1,w2,...,wr )
j (t), 1�r �j , the p.g.f. of the

waiting time to reach the pattern w1w2 · · · wj , given the pattern w1w2 · · · wr has already been reached (note that

G
(w1,w2,...,wj )

j (t) = 1). Introduce the indicator functions

Yi = I{an occurrence of w ends at position i in the sequence}.
Denote by �k the first return time to the pattern w1w2 · · · wk , that is

�k = inf{n�1 : Yi+n = 1|Yi = 1}.
Of course, �k represents the distance between two successive occurrences of the pattern (cf. Fig. 1). The possible values
of �k are 1, 2, . . . . Let

ci = P(�k = i), i = 1, 2, . . . (2.1)

The overlapping structure of the pattern dictates which of the ci, i ∈ {1, 2, . . . , k − 1}, are nonzero. For instance,
if w = 33133 then only c1 and c2 are zero. Of course, if there is no proper prefix to be also a suffix of the pattern
w1w2 · · · wk then ci = 0, for all i ∈ {1, 2, . . . , k − 1} (cf. Fig. 1(B)). The ci’s can be obtained recursively from Robin
and Daudin [13] or calculated after expanding in a series, up to k terms, the p.g.f. G�k

(t) of �k . An explicit expression
for G�k

(t) can be found in the previous reference. Also one may derive such easily using the automated approach

introduced in Stefanov [17]. Clearly the p.g.f. of �k is equal to G
(w1,w2,...,wJ )
k (t), where the G

(·)
k (·) have been introduced

a few lines earlier and J is the largest integer such that w1w2 · · · wJ is both a proper prefix and suffix to the pattern
w1w2 · · · wk . For instance, if w = 33133 then, J = 2. The integer k − J is also called the minimal period of the pattern
w1w2 · · · wk in the terminology introduced by Guibas and Odlyzko [5].

1 Recall that the probability generating function of a discrete random variable Y on {0, 1, 2, . . .} is defined by GY (t) := ∑∞
i=0 P(Y = i)t i .



870 V.T. Stefanov et al. / Discrete Applied Mathematics 155 (2007) 868–880

Fig. 1. Waiting times �k between two successive occurrences of w1w2 · · · wk : overlapping case (A), non-overlapping case (B).

Fig. 2. Waiting time �k between two successive clumps of w.

Introduce the following indicator functions

Ỹi = I{the first occurrence of w in a clump of w ends at position i}.
An occurrence of w is the first occurrence of w in a clump of w if and only if this occurrence is not overlapped by a
previous occurrence of w. That is,

Ỹi = Yi

k−1∏
u=1

(1 − Yi−u). (2.2)

The position of a clump of w is defined to be the end position of the first occurrence of w in this clump. Therefore, we
say there is a clump at position i if and only if Ỹi = 1.

2.1. Waiting time for the next clump occurrence

Denote by �k the interarrival time between two clumps of w, i.e. the distance between the first occurrences of w in
two successive clumps (cf. Fig. 2). More formally,

�k = inf{n�1 : Ỹi+n = 1 | Ỹi = 1}.
Due to the strong Markov property and Eq. (2.2), conditioning on {Ỹi = 1} in the above equation is equivalent to
conditioning on {Yi = 1}: P(Ỹi+n = 1 | Ỹi = 1) = P(Ỹi+n = 1 |Yi = 1). Therefore

�k
D= inf{n�1 : Ỹi+n = 1 |Yi = 1},

where ‘
D=’ means equality in distribution. In other words, �k has the same distribution as the distance between any

occurrence of w and the first occurrence of w in the next clump. We will call �k briefly the waiting time until the next
occurrence of a clump of w.

The following theorem provides a simple formula for the p.g.f. of �k in terms of the p.g.f. G�k
(t)=G

(w1,w2,...,wJ )
k (t)

where J has been introduced a few lines earlier.

Theorem 1. The probability generating function, G�k
(t), of �k—the waiting time until the next occurrence of a clump

of the pattern w1w2 · · · wk—is given by:

G�k
(t) =

(
G�k

(t) −
k−1∑
i=1

ci t
i

)(
1 −

k−1∑
i=1

ci t
i

)−1

, (2.3)

where the ci’s are given by (2.1).
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Fig. 3. Decomposition of the waiting time �k between two successive clumps.

Proof. Denote by �k the distance between two successive and overlapping occurrences of w1w2 · · · wk:

�k = (�k | �k < k)

and by �k the distance between two successive and non-overlapping occurrences of w1w2 · · · wk:

�k = (�k | �k �k).

Note that �k can be decomposed as the following sum of independent random variables (cf. Fig. 3):

�k =
L∑

g=1

�k,g + �k , (2.4)

where �k,g’s are independent copies of �k and L has a geometric distribution with probability of success (1 − �) (that
is, P(L = �) = ��(1 − �), ��0), where � is the probability of self-overlap of the pattern w, that is

� = P(�k < k) =
k−1∑
i=1

ci . (2.5)

Note that the support of the geometric distribution above is the set of all non-negative integers, that is {0, 1, 2, . . .}.
Let G�k

(t), G�k
(t) and Ggeom(p)(t) denote the p.g.f.’s of �k , �k and a geometric random variable with probability of

success p, respectively. Then, in view of (2.4), we have

G�k
(t) = Ggeom(1−�)[G�k

(t)]G�k
(t).

Since

Ggeom(p)(t) =
∞∑
i=0

p(1 − p)it i = p/[1 − (1 − p)t], (2.6)

we get

G�k
(t) = (1 − �)G�k

(t)

1 − �G�k
(t)

. (2.7)

It is straightforward to see that the p.g.f.’s of �k and �k (recall that �k = (�k | �k �k)) can be expressed in terms of the
p.g.f. of �k , G�k

(t), as follows:

G�k
(t) =

(
G�k

(t) −
k−1∑
i=1

ci t
i

)
(1 − �)−1, (2.8)

G�k
(t) =

(
k−1∑
i=1

ci t
i

)
�−1. (2.9)

Therefore, in view of (2.7)–(2.9), the statement of Theorem 1 holds. �
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Fig. 4. An h-gap cluster.

Two straightforward corollaries follow from Theorem 1. The first one is due to the fact that the number of letters
separating two consecutive occurrences of clumps of the pattern w is equal to �k − k (cf. Fig. 3). The second one is
due to the fact that the length of a clump, that is the number of letters that compose it, is equal to

∑L
g=1 �k,g + k

(cf. Fig. 3).

Corollary 1. The probability generating function of the number of letters separating two consecutive occurrences of
clumps of the pattern w1w2 · · · wk is

t−k

(
G�k

(t) −
k−1∑
i=1

ci t
i

)
(1 − �)−1.

Corollary 2. The probability generating function of the length of a clump of the pattern w1w2 · · · wk is

tk(1 − �)

(
1 −

k−1∑
i=1

ci t
i

)−1

.

2.2. Generalization to h-gap clusters

The method used in deriving Theorem 1 also covers a more general kind of clusters of a pattern. Recall that all
consecutive occurrences of the pattern in a clump are overlapping. Define an h-gap cluster of a pattern to be a string
consisting of occurrences of a pattern with the property that there are no more than h symbols separating any two
consecutive occurrences of the pattern and the string is not a substring of another string with that property (cf. Fig. 4).
Clearly, it is a generalization of a clump of a pattern.

Let �k be the waiting time, starting from the beginning of an h-gap cluster until reaching the beginning of the next
h-gap cluster. Following the same arguments as those used in the proof of Theorem 1, but considering �′

k=(�k | �k < k+
h + 1), �′

k = (�k | �k �k + h + 1) and L′ ∼ Geom(1 −∑k+h
i=1 ci), one gets the following.

Theorem 2. The probability generating function, G�k
(t), of the waiting time �k until the next occurrence of an h−gap

cluster of the pattern w1w2 · · · wk is given by

G�k
(t) =

(
G�k

(t) −
k+h∑
i=1

ci t
i

)(
1 −

k+h∑
i=1

ci t
i

)−1

, (2.10)

where the ci’s are given by (2.1).

Extensions of the above results to clumps and h-gap clusters composed of exactly �, or at least �, occurrences are
easily derivable in similar terms to those in the above theorems, and are therefore left to the reader.

2.3. Distribution of the number of clumps

Note that the distribution of the number of clumps, Ñ(n), of the pattern w in a sequence of length n with initial state
s, can be evaluated using the following identity:

P(Ñ(n)�m |X(0) = s) = P(T̃m �n |X(0) = s),
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Fig. 5. Positions of clumps and waiting times.

where T̃m is the position of the mth clump of w. More specifically, note that T̃m = T̃1 + ∑m
i=2 (T̃i − T̃i−1) where

�k,i := (T̃i − T̃i−1), i�2, is the waiting time between the (i − 1)th and ith clumps (cf. Fig. 5) and the �k,i’s are
independent copies of �k . Further, given the initial state is s, the position T̃1 of the first clump is the waiting time �(s)

k

until the first occurrence of w from state s.
Therefore, we have

P(Ñ(n)�m|X(0) = s) = P

(
�(s)
k +

m∑
i=2

�k,i �n

)
.

The right-hand term can be calculated by inverting the p.g.f. of the cumulative distribution function of �(s)
k +∑m

i=2 �k,i .

The latter equals (G�k
(t))m−1G

(s)
k (t)/(1 − t), where the p.g.f. G�k

(t) of �k is given in Theorem 1 above and the

p.g.f. G
(s)
k (t) of �(s)

k is given by Robin and Daudin [13] or Stefanov [17]. The above renders the probability of the

event (Ñ(n)�m) for any initial distribution. In particular, if the initial distribution is the steady-state one, that is
�s = P(X(0) = s), then

P(Ñ(n)�m) =
N∑

s=1

P(Ñ(n)�m|X(0) = s)�s . (2.11)

An algorithm for a rapid numerical inversion of p.g.f.’s, with any given accuracy, is provided in Abate and Whitt [1].
This algorithm was used for the numerical evaluation in the examples discussed in Section 4.1.

3. Structured motifs

3.1. Two boxes

Let w1 and w2 be two patterns of length k1 and k2, respectively. The alphabet size is finite and equals N. A structured
motif m formed by the patterns w1 and w2, and denoted by m = w1(d1 : d2)w2, is a string with the following property.
Pattern w1 is a prefix and pattern w2 is a suffix to the string and the number of letters between the two patterns is not
smaller than d1 and not greater than d2 (cf. Fig. 6). Also it is assumed that patterns w1 and w2 appear only once in
the string. The usual definition of a structured motif in DNA sequence analysis does not impose the latter restriction.
This is not a strong restriction in practice because the probability for w1 and w2 to occur more than once in a sequence
smaller than k1 + d2 + k2 letters is negligible. We will then get identical significance of the structured motifs, if they
are counted with or without the above restriction.

The aim is then to determine the p.g.f. of the waiting time �(s)
m to reach for the first time the structured motif m from

state s in a text generated by the Markov chain introduced at the beginning of Section 2.
Some notation follow. Denote by

W the pattern family consisting of the two patterns w1 and w2, that is, W = {w1, w2};
the waiting time to reach a pattern family is conventionally called a ‘sooner time’;

Tij , i, j ∈ {1, 2} the waiting time to reach pattern wj from pattern wi ;
T

(s)
j the waiting time to reach pattern wj from state s;

rij , i, j ∈ {1, 2} the probability that the first pattern from the family W to be reached is wj , given we
start from pattern wi , that is rij = P(Tij = inf1�u�2(Tiu)).
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Fig. 6. A structured motif w1(d1 : d2)w2.

Further, denote by Xij , i, j ∈ {1, 2}, the interarrival time between two consecutive occurrences of the pattern family
W, given the starting pattern is wi and the reached pattern is wj . That is,

Xij = (Tij |Tij = inf
u

(Tiu)).

Let

aij (x) = P(Xij = x). (3.1)

Recall that GY (t) denotes the p.g.f. of a random variable Y .
In order to reach the structured motif m, we need to reach first the pattern w1 and, from this occurrence of w1, to

reach the pattern w2 such that d1 + k2 �X12 �d2 + k2. Introduce the following random variables:

F12 = (X12 |X12 < d1 + k2 or X12 > d2 + k2),

S12 = (X12 | d1 + k2 �X12 �d2 + k2).

F12 corresponds to an occurrence of w2 that fails to achieve the structured motif, whereas for S12, w2 achieves the
structured motif. Similarly to (2.8), it is easy to see that the p.g.f.’s of F12 and S12 are given by

GF12(t) =
⎛⎝GX12(t) −

d2+k2∑
x=d1+k2

a12(x)tx

⎞⎠ (1 − qS)−1, (3.2)

GS12(t) =
⎛⎝ d2+k2∑

x=d1+k2

a12(x)tx

⎞⎠ q−1
S , (3.3)

where qS is the probability of success (w2 achieves the structured motif), i.e. the probability that d1+k2 �X12 �d2 +k2.
Namely, we have

qS =
d2+k2∑

x=d1+k2

a12(x), (3.4)

where the a12(x) are defined in (3.1).
The following theorem provides explicit and calculable expressions for the p.g.f.’s of the waiting times to reach for

the first time the structured motif m = w1(d1 : d2)w2 from either state s or from pattern w2.

Theorem 3. The probability generating function G
(s)
m (t) of the first arrival time of a structured motif m starting from

state s, and the probability generating function G
(w2)
m (t) of the first arrival time of a structured motif m starting from

pattern w2, admit the following explicit expressions

G(s)
m (t) =

r12qSG
T

(s)
1

(t)GS12(t)

(1 − (1 − r12)GX11(t))(1 − (1 − qS)(r12GT21(t)GF12(t)/(1 − (1 − r12)GX11(t))))
, (3.5)

G(w2)
m (t) = r12qSGT21(t)GS12(t)

(1 − (1 − r12)GX11(t))(1 − (1 − qS)(r12 GT21(t)GF12(t)/(1 − (1 − r12)GX11(t))))
, (3.6)

where GF12(t), GS12(t), and qS are given in (3.2)–(3.4).
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(i) success with probability qs

d1 ≤ d ≤ d2

w2 w1 w2

w1 w2

T21 X11,1 X11,2 X11,L S12

(ii) failure with probability 1 – qs

d ∉[d1;d2]

T21 X11,1 X11,2 X11,L F12

T12

T12

w1w2 w1 w1 w1

w1 w1 w1 w1

Fig. 7. Reaching w1 from w2, then w2 from w1. (i) w2 achieves the structured motif w1(d1 : d2)w2, (ii) w2 fails to achieve the structured motif.

The quantities r12, GX11(t) and GT21(t) are provided in Robin and Daudin [14] whereas G
T

(s)
1

is given in Robin and

Daudin [14]. These quantities can also be calculated from the results in Stefanov [17].

Proof. Consider first the waiting time �(w2)
m to reach for the first time a structured motif m = w1(d1 : d2)w2, starting

from pattern w2. Then in order to reach a structured motif one should first reach pattern w1. The p.g.f. of the waiting
time to reach for the first time w1 from w2 is equal to GT21(t). After w1 has been reached, one is waiting for an
occurrence of pattern w2. Of course, there are two cases at the time we reach pattern w2 after an elapsed time T12.
Either (i) an occurrence of the structured motif m is reached i.e. there is a correct intersite distance between w1 and
w2 and no occurrences of w1 has occurred in between (this happens with probability qS) or (ii) no occurrence of the
structured motif is reached. Now we use arguments similar to those used in the proof of Theorem 2.1 of Stefanov
[17] to show that, due to the strong Markov property, the p.g.f. of T12, conditioned on either a ‘success’ (that is, a
structured motif has been reached) or a ‘failure’, is equal to (i) Ggeom(r12)[GX11(t)]GS12(t) in the ‘success’ case, and
(ii) Ggeom(r12)[GX11(t)]GF12(t) in the ‘failure’ case. This is illustrated in Fig. 7. The elapsed timeT12 conditioned on
either a ‘success’ or a ‘failure’ can be decomposed with respect to the occurrences of w1 within that elapsed time as
follows:

T12|‘success’
D=

L∑
a=1

X11,a + S12 case (i)

T12|‘failure’
D=

L∑
a=1

X11,a + F12 case (ii),

where the X11,a’s are independent copies of X11, and L is geometrically distributed with parameter r12 (L counts the
number of times w1 re-occurs before w2).

Therefore, the p.g.f. of T12 conditioned on either a ‘success’ or a ‘failure’ is given by

GT12|‘success’(t) = Ggeom(r12)[GX11(t)]GS12(t) case (i)

GT12|‘failure’(t) = Ggeom(r12)[GX11(t)]GF12(t) case (ii).

In the failure case (ii), we reached pattern w2 without reaching a structured motif yet, so we have to wait again for the
next w1 and then the next w2, and so on until the success of case (i). The structured motif will finally be reached after
L′ failures (cf. Fig. 8), where L′ is geometrically distributed with parameter qS (L′ counts the number of times w1 is
followed by w2 but not at a valid distance to reach the structure motif).
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failure 1 failure 2 failure L '

success

Fig. 8. Reaching the structured motif w1(d1 : d2)w2 from w2. The squares stand for the occurrences of w2, and the circles stand for the occurrences
of w1 like in Fig. 7.

Finally, in view of the strong Markov property and the preceding arguments, it is clear that the waiting time �(w2)
m

may be decomposed as follows:

�(w2)
m

D= T21 +
L′∑

b=1

(
L1∑

a=1

X11,ab + F12,b + T21,b

)
+

L2∑
c=1

X11,c + S12,

where all random variables in the right-hand side are mutually independent, the T21,b’s are independent copies of T21,
the F12,b’s are independent copies of F12, the X11,ab’s are independent copies of X11, and L1 and L2 are geometrically
distributed with parameter r12. Therefore, we get the following explicit expression for G

(w2)
m (t):

G(w2)
m (t) = GT21(t)Ggeom(qS)[Ggeom(r12)[GX11(t)]GF12(t)GT21(t)]Ggeom(r12)[GX11(t)]GS12(t).

Using the expression (2.6) for the p.g.f. of the geometric distribution one gets that (3.6) holds.
Likewise, one gets the following expression for G

(s)
m (t):

G(s)
m (t) = G

T
(s)
1

(t)Ggeom(qS)[Ggeom(r12)[GX1,1(t)]GF12(t)GT21(t)]Ggeom(r1,2)[GX11(t)]GS12(t).

This yields the explicit expression given in (3.5). The proof of Theorem 3 is complete. �

Remark 1. Note that the p.g.f. of the intersite distance between two consecutive occurrences of the structured motif
w1(d1 : d2)w2 is equal to G

(w2)
m (t).

Remark 2. As we did in Section 2.3 for the number of clumps, the above theorem can be used to get the p.g.f. of the
number of occurrences of a structured motif in a random sequence.

3.2. More than two boxes

Our methodology can be extended to structured motifs consisting of more than two boxes of patterns.A few comments
on such extensions follow.

Consider a structured motif consisting of three boxes. That is, let w1, w2, and w3 be three patterns of length k1, k2, and
k3, respectively. A structured motif m formed by the patterns w1, w2, and w3, and denoted by m = w1(d1 : d2)w2(d3 :
d4)w3, is a string with the following property. Patterns w1 and w3 are a prefix and a suffix, respectively, to the string;
pattern w2 appears between the patterns w1 and w3, and the number of letters separating it from w1 is not smaller than
d1 and not greater than d2, and the number of letters separating it from pattern w3 is not smaller than d3 and not greater
than d4. Further, it is assumed that a structured motif does not contain occurrences of the patterns w1 and w2 between
the first two boxes and also it does not contain occurrences of the patterns w1 and w3 between the last two boxes. In
other words, in a structure motif, according to this definition,

(i) pattern w1 appears only once (at the beginning of the motif),
(ii) pattern w2 appears in the second box and does not appear between the first two boxes while it is allowed to appear

arbitrarily between the second and third boxes,
(iii) pattern w3 appears in the third box and does not appear between the last two boxes while it is allowed to appear

arbitrarily between the first and second boxes.
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Here again, these technical restrictions will have a negligible effect on the significance of structured motifs in DNA
sequence analysis because a box is unlikely to occur more than once in a very short sequence, where short sequence is
meant to be a small portion of the structured motif.

A very careful scrutiny of the details in the proof of our results above reveals that our method can be extended to the
case of structured motifs consisting of three boxes if the distributions of the following quantities are available:

(i) the waiting time to reach for the first time the structured motif w1(d1 : d2)w2;
(ii) the waiting time to reach for the first time the structured motif w1(d1 : d2)w2, given pattern w1 has been reached;

(iii) the waiting time to reach the pattern family consisting of the two patterns w1 and w3, given the sequence has
pattern w2 as a prefix.

The distributions of (i) and (ii) are found from our results above on structured motifs consisting of two boxes. The
distribution of (iii) can be recovered using the results in Stefanov [17]. In other words, an extension to structured motifs
consisting of three boxes relies on availability of relevant results for structured motifs consisting of two boxes (as
provided in this paper), and applying similar arguments to those used in the proofs above.

Likewise, our method can be extended to structured motifs consisting of four or more boxes along similar lines to
those above. That is, results on motifs with b boxes will be derivable using results for motifs with (b − 1) boxes and
applying similar arguments to those introduced in this paper.

4. Applications to DNA sequences

4.1. Exceptional number of clumps

The aim of this section is to measure the quality of the Poisson approximation which is currently used for distribution
evaluation concerning the number of clumps of a pattern [16]. For this, we consider the complete genome of the phage
Lambda (n = 48502) whose estimated transition matrix on the {a,c,g,t} alphabet is given by⎛⎜⎝

0.2994 0.2086 0.2215 0.2705
0.2830 0.2198 0.2740 0.2232
0.2540 0.2820 0.2480 0.2160
0.1813 0.2232 0.3164 0.2791

⎞⎟⎠ .

Denote by p(w) the p-value P(Ñ(w)�Ñobs(w)), where Ñobs(w) is the observed number of clumps of the word w in
the Lambda genome. We have first computed, for all the words of length 3, 4, 5 and 6, an approximation p̃(w) of the
p-value by approximating the number of clumps by a Poisson variable with parameter E(Ñ(w)). The expected number
of clumps of w = w1w2 · · · wk is given by

E(Ñ(w)) = (1 − �)E(N(w)),

where � is the probability of self-overlap given by (2.5), N(w) is the number of occurrences of w, and the expected
count E(N(w)) is

E(N(w)) = (n − k + 1)�w1

k−1∏
i=1

pwi,wi+1,

where� is the stationary distribution of the Markov chain. For the most exceptional words, i.e. words with an approximate
p-value close to zero (clumps significantly frequent) or close to one (clumps significantly rare), we have also calculated
their exact p-values using the method introduced in Section 2 above. The exact and approximated p-values are listed
in Tables 1–4. The observed numbers of clumps are also displayed.

Note that for 6-letter words, the approximate p-values are of the same order of magnitude as the exact p-values. This
indicates that the Poisson approximation is good for rare words. As the words become shorter, and then more frequent,
the difference between the two quantities often increases. For some 4- and 5-letter words, the approximate p-values
(or 1 − p̃(w) for exceptionally rare clumps) can be ten times larger than the exact p-values (or 1 − p(w)). For some
3-letter words, one may observe a factor of 103 between the two probabilities.
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Table 1
3-letter words with the most exceptional number of clumps in the Lambda genome

Exceptionally frequent clumps Exceptionally rare clumps

w Ñ(w) p̃(w) p(w) w Ñ(w) 1 − p̃(w) 1 − p(w)

tag 217 9.843 × 10−42 1.715 × 10−43 cag 1131 1.283 × 10−47 1.002 × 10−48

ttg 734 2.684 × 10−26 4.507 × 10−29 ctg 1169 5.448 × 10−34 4.721 × 10−37

caa 697 1.467 × 10−19 1.854 × 10−21 tat 742 9.581 × 10−14 1.525 × 10−14

cta 287 3.240 × 10−17 5.848 × 10−19 ccg 884 1.527 × 10−13 1.902 × 10−14

cga 629 1.390 × 10−9 3.005 × 10−10 cgg 963 2.039 × 10−11 2.913 × 10−12

tcg 581 3.088 × 10−9 8.100 × 10−10 acc 679 2.112 × 10−6 1.037 × 10−6

ggg 468 5.824 × 10−8 1.720 × 10−8 tga 1091 3.045 × 10−5 1.164 × 10−5

aat 838 9.032 × 10−8 1.534 × 10−8 tca 855 2.567 × 10−4 1.507 × 10−4

ccc 346 2.279 × 10−5 1.332 × 10−5 ttc 842 3.397 × 10−4 1.890 × 10−4

ctt 603 2.938 × 10−5 1.576 × 10−5 aac 853 1.823 × 10−3 1.229 × 10−3

Table 2
4-letter words with the most exceptional number of clumps in the Lambda genome

Exceptionally frequent clumps Exceptionally rare clumps

w Ñ(w) p̃(w) p(w) w Ñ(w) 1 − p̃(w) 1 − p(w)

ctag 14 1.043 × 10−27 6.037 × 10−28 ccgg 328 3.473 × 10−27 5.752 × 10−28

ttgg 126 4.956 × 10−21 1.204 × 10−21 gcag 392 6.670 × 10−25 8.328 × 10−26

tagg 33 7.907 × 10−21 4.433 × 10−21 cagc 328 1.091 × 10−17 3.269 × 10−18

taga 44 3.247 × 10−16 2.084 × 10−16 caga 305 2.655 × 10−17 8.352 × 10−18

caag 106 3.313 × 10−16 1.390 × 10−16 ctga 334 4.380 × 10−17 1.124 × 10−17

cttg 115 7.053 × 10−16 3.127 × 10−16 gctg 392 7.292 × 10−17 1.569 × 10−17

ttag 62 2.378 × 10−12 1.567 × 10−12 ctgg 325 1.746 × 10−16 5.484 × 10−17

cgag 95 2.392 × 10−11 1.534 × 10−11 tcag 279 2.639 × 10−15 1.034 × 10−15

caat 162 3.894 × 10−10 1.793 × 10−11 tatc 229 7.375 × 10−15 3.539 × 10−15

ccaa 125 8.295 × 10−10 4.479 × 10−11 cagg 280 4.446 × 10−13 2.165 × 10−13

Table 3
5-letter words with the most exceptional number of clumps in the Lambda genome

Exceptionally frequent clumps Exceptionally rare clumps

w Ñ(w) p̃(w) p(w) w Ñ(w) 1 − p̃(w) 1 − p(w)

aattg 32 5.194 × 10−12 3.828 × 10−12 gcaga 141 1.240 × 10−20 6.617 × 10−21

ttggg 20 5.752 × 10−11 4.810 × 10−11 ccgga 112 1.840 × 10−18 1.134 × 10−18

ttgga 21 6.154 × 10−11 5.185 × 10−11 tccgg 100 1.168 × 10−15 8.014 × 10−16

acttg 13 2.900 × 10−10 2.578 × 10−10 gccgg 114 6.098 × 10−13 4.331 × 10−14

taggg 3 6.652 × 10−10 6.222 × 10−10 ctgaa 124 1.021 × 10−12 6.856 × 10−13

tcgag 9 1.465 × 10−9 1.339 × 10−9 gctgg 124 7.483 × 10−12 5.249 × 10−13

ctagc 3 1.609 × 10−9 1.490 × 10−9 gccag 104 1.084 × 10−11 8.508 × 10−12

gctag 5 3.240 × 10−9 2.979 × 10−9 cggtg 108 1.844 × 10−11 1.369 × 10−12

ttgcg 36 1.031 × 10−8 8.359 × 10−9 ctgac 89 2.909 × 10−10 2.299 × 10−11

tctag 2 1.201 × 10−8 1.149 × 10−7 cagca 108 3.747 × 10−10 3.010 × 10−11

Furthermore, the approximate p-values (or 1−p̃(w)) happen to be always larger than the exact p-values (or 1−p(w))
which indicates that the Poisson approximation is conservative. It is indeed easier and much faster to compute the
approximate p-values with the Poisson approximation rather than the exact ones. For instance, if the calculations
are executed on Apple PowerMac G4 then it takes on average 850 s to calculate an exact p-value for a k-letter word
(k = 3, 4, 5, 6) whereas the corresponding approximate p-value is calculated almost instantaneously.
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Table 4
6-letter words with the most exceptional number of clumps in the Lambda genome

Exceptionally frequent clumps Exceptionally rare clumps

w Ñ(w) p̃(w) p(w) w Ñ(w) 1 − p̃(w) 1 − p(w)

ttgggc 1 2.059 × 10−7 1.990 × 10−7 gccgga 55 4.009 × 10−17 3.279 × 10−17

cgcgcg 1 6.523 × 10−7 6.263 × 10−7 tgccgg 46 7.197 × 10−10 6.479 × 10−10

cgaatt 2 3.083 × 10−6 3.008 × 10−6 gccagc 42 1.134 × 10−9 1.070 × 10−9

cacaat 1 3.475 × 10−6 3.379 × 10−6 ccggac 32 2.143 × 10−9 1.986 × 10−9

ggcgcc 1 3.997 × 10−6 3.884 × 10−6 gcagaa 47 2.453 × 10−9 2.262 × 10−9

gccggc 1 4.244 × 10−6 4.125 × 10−6 tatcag 30 3.864 × 10−9 3.685 × 10−9

gaattg 5 5.720 × 10−6 5.523 × 10−6 atcacc 32 1.144 × 10−8 1.080 × 10−8

tttgcg 5 7.964 × 10−6 7.670 × 10−6 ctgacc 30 6.092 × 10−8 5.730 × 10−8

gcatgc 6 9.011 × 10−6 8.510 × 10−6 ccggtg 34 7.187 × 10−8 6.735 × 10−8

gacttg 1 2.223 × 10−5 2.204 × 10−5 cagaaa 42 6.636 × 10−8 6.228 × 10−8

It is also important to note that the words are mainly ranked in the same order with respect to their exact p-values or
their approximate p-values.

4.2. Significance of structured motifs

We have considered the same data set as that considered in Robin et al. [15]. It is composed of a set S of 130
sequences of length n = 100 located just before 130 genes of the bacterium B. subtilis, and 71 structured motifs of the
form m = w1(16 : 18)w2 (6�k1, k2 �7) which are good candidates as promoter motifs for the bacterium. Promoters
are usually located on the DNA sequences in front of genes; they are recognized by the RNA polymerase to bind to
the DNA and to start the gene transcription. Because promoters have to be in such regulatory sequences, a challenging
question is to find motifs that are present in a significant number of sequences. Therefore, for each of the 71 structured
motifs m, we have counted the number Qobs of sequences from S containing at least one occurrence of m. To know
if this number Qobs is significant, we calculate the p-value P(Q�Qobs) where Q is the random number of sequences
amongst a set of |S| random sequences of length n which contain m. The random sequences are drawn according to
the first-order Markov chain whose parameters are estimated from the sequence resulting of the concatenation of the
130 observed sequences.

Denote by 	n(m) the probability for the motif m to occur in a random sequence of length n. It is calculated by using
the p.g.f. of �m given by Theorem 3 above (the initial state s is selected according to the stationary distribution of the
chain), that is

	n(m) = P(�m �n).

The random variable Q is then distributed according to the binomial distribution B(|S|, 	n(m)); the p-values can then
be easily calculated. There were 3277 s required to calculate the 71 p-values on IBM F80 computer (RS64III processor,
450 MHz), i.e. 46 seconds on average per structured motif. Only motifs with a p-value less than 10−3 are listed
in Table 5.

These exceptional structured motifs are close to the known consensus w1=ttgaca and the so-called tata-box for
w2 [9].

Note that the observed counts Qobs are smaller than those in Robin et al. [15] because we have not allowed errors
in w1 and w2.

5. Conclusion

We provided the exact distributions (in terms of probability generating functions) of relevant quantities related to
occurrences of clumps of patterns or structured motifs. Only approximations of these distributions have been proposed
and used in practice so far. Our exact distributional result on the number of clumps demonstrates that the usual Poisson
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Table 5
The most significant structured motifs (p-value < 10−3)

w1 (d1 : d2) w2 Qobs 	n(m) p-value

ttgactt (16:18) ataataa 3 1.16 × 10−5 5.77 × 10−10

tgactt (16:18) ataataa 3 3.02 × 10−5 1.00 × 10−8

ttgactt (16:18) atactaa 2 4.01 × 10−6 1.37 × 10−7

tgactt (16:18) atactaa 2 1.04 × 10−5 9.18 × 10−7

ttgaca (16:18) tataatg 2 1.60 × 10−5 2.18 × 10−6

ttgaca (16:18) tatatta 2 2.36 × 10−5 4.75 × 10−6

ttgact (16:18) tatact 2 2.38 × 10−5 4.81 × 10−6

ttgaca (16:18) tataata 2 2.48 × 10−5 5.23 × 10−6

ttgaca (16:18) atataat 2 2.74 × 10−5 6.39 × 10−6

tgacttt (16:18) taataa 2 3.63 × 10−5 1.12 × 10−5

gacttt (16:18) taataa 2 1.06 × 10−4 9.52 × 10−5

gttgaca (16:18) tataata 1 3.89 × 10−6 5.09 × 10−4

gttgaca (16:18) atataat 1 4.30 × 10−6 5.63 × 10−4

ttgacac (16:18) ataataa 1 4.88 × 10−6 6.39 × 10−4

gttgac (16:18) ctataat 1 4.88 × 10−6 6.39 × 10−4

approximation of this count is very efficient for rare words. Moreover, we provided a powerful technique, based on
random sums, for treating occurrences of complex motifs in Markovian sequences.

In a forthcoming paper we will present two extensions of our results. These concern structured motifs consisting
of more than two boxes of patterns (a brief comment on such an extension has been made in Section 3.2 above)
and structured motifs with degenerated boxes (that is, errors in reading the patterns in the boxes are allowed). These
extensions could not be included in the present paper because they are too technical. Note that the probabilistic problems
for structured motifs are much more sophisticated than designing pattern matching algorithms to count structured motifs.
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