
H O S T E D  B Y
Contents lists available at ScienceDirect

International Soil and Water Conservation Research

journal homepage: www.elsevier.com/locate/iswcr

Original Research Article

Effect of land cover on channel form adjustment of headwater streams in a
lateritic belt of West Bengal (India)☆

Suvendu Roy⁎, Abhay Sankar Sahu

Department of Geography, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India

A R T I C L E I N F O

Keywords:
Headwater streams
Land cover
Channel Morphology
Canonical discriminant function
Spatial interpolation techniques

A B S T R A C T

Present work is exploring the influence of land cover on channel morphology in 34 headwater catchments of the
lateritic belt of West Bengal. Non-parametric tests (Mann-Whitney U and Kruskal-Wallis) and multivariate
analysis (Principal Component Analysis and Canonical Discriminant Function models) have successfully
differentiated the performance of land cover on channel morphology adjustment among the three groups of
headwater streams (forested, transitional, and agricultural) on the Kunur River Basin (KRB). Spatial
Interpolation Techniques reveal that intense land-use change, particularly forest conversion to agricultural
land, is significantly increasing channel widths (269%) and cross-section area (78%), whereas agricultural
channels become shallower (40%) than would be predicted from forested streams. Catchments with the
dominance of forest and agricultural land are classified as ‘C′ and ‘B′ types of streams respectively, as per
Rosgen's Stream Classification Model. Finally, the work claimed that transitional stream group is the definitive
area to exaggerate the river restoration plan to stabilize the anthropogenic deformation on channel morphology.

1. Introduction

Management of agricultural rivers, as well as forested rivers is a
major research concern to the countries of southeast Asia, when about
94% of the areas suitable for agriculture have already been cultivated
(Atapattu & Kodituwakku, 2009; FAO, 2002). To feeding the largest
percentage of world population in the southeast area, the century-old
practice (i.e. agriculture) is still expanding its coverage with significant
deforestation for agricultural land (Atapattu & Kodituwakku, 2009).
India lost nearly 7% of its forest cover in last two decades (1990–2010)
due to a rapid transformation of land cover by anthropogenic activities
(FAO, 2015). Thereby, river basins are considerably losing their canopy
cover, and the immediate indirect and/or direct effects have been faced
by headwater streams with the input of huge surface runoff and eroded
soil. Apart from the deteriorating of river water quality and declining
the biodiversity of a river (Alexander, Boyer, Smith, Schwarz, &
Moore, 2007; Blann, Anderson, Sands, & Vondracek, 2009), expan-
sion of agricultural land in the forested area may also significantly
contribute to change the channel morphology of headwater streams
(Lester & Boulton, 2008). From example, more than 98% of the North
American prairie and vast areas of forest have been replaced with
croplands under modern agricultural systems, which have been
associated with extensive modifications to natural drainage networks

(Blann et al., 2009).
Headwater streams (first order and second order streams, after

Strahler, 1957) are generally recognized as major external links within
the river system (Fritz, Johnson, & Walters, 2008) with contributing
> 90% of catchment stream flow (Deschamps, Pinay, & Naiman, 1999;
McIntosh & Laffan, 2005) and represents 50–70% of total stream
length within a river basin (Leopold, Wolman, & Miller, 1964; Meyer
& Wallace, 2001; Nadeau & Rains, 2007). According to McMahon and
Finlayson (2003), headwater streams are more prone to natural drying
than are downstream segments because they have smaller drainage
areas with less recharge potential and higher topographic elevations. In
addition due to drain over impermeable land with small source area
than large rivers, headwater streams cannot maintain their base-flows
for lower storage capacity (Burt, 1992). However, forested headwater
streams are hydrologically as well as geomorphologically more stable
than agricultural streams due to higher retention capacity, larger lag-
time, lower discharge, less sediment and stable bank slope (Ruprecht
& Schofield, 1991).

Since the expansion of human civilization, effect of land use – land
covers change (especially deforestation for croplands) becomes a major
research issue in fluvial geomorphology (Wang, Liu, Kubota, & Chen,
2007), due to significant influences on the alteration of chemical and
biological characteristics of river water (Garman & Moring, 1991;
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Mullen & Moring, 1988; Schnitzler, 1997), basin hydrology (Harden,
2006; Hewlett & Helvey, 1970; Nagasaka & Nakamura, 1999;
Zabaleta & Antiguedad, 2013), and sediment supply (Ausseil &
Dymond, 2008; Dunne, 1979; Golosov, 2006; Restrepo & Syvitski,
2006; Vorosmartry et al., 2003). However, the effect of deforestation on
the deformation in channel structure still needs more attention from
fluvial geomorphologists.

Hack and Goodlett (1960) had reported the relationship between
vegetation, topography and hydrological processes. Zimmerman,
Goodlett, and Comer (1967) documented the influence of vegetation
in the channel form of small streams. Wolman (1967) in a diagram
represents a correlation between the land cover type, river channel
condition and sediment yield within a river basin, wherein forested
land cover makes channel stable but with the transformation of forest
cover channel conditions have also altered significantly. The effects of
land use – land cover change on the in-stream bar formation (Begueria
et al., 2006; Hickin, 1984), channel planform (McKenney, Jacobson, &
Wetheimer, 1995), channel side slope (Allan et al., 2002), migration
rate of river meander (Begueria et al., 2006; Micheli, Kirchner, &
Larsen, 2004), channel width (Gurnell, 1997; Harden, 2006; Sweeney
et al., 2004), shape of the channel (Shepherd, Dixon, Davis, &
Feinstein, 2011) have been well studied across the world.

The prime objective of our study is to explore how the catchment
level variation in land cover may affect the channel morphology. The
main comparison is among the forested, transitional, and agricultural
headwater streams on the lateritic belt of Ajay-Damodar Interfluve or
Kunur River Basin in particular. The study has hypothesized that
forested headwater streams with the least amount of anthropogenic
impact will generate a lower volume of discharge with greater sinuosity
and width – depth ratio. As the land use shifts from dense forest to
degraded forest to agricultural land with an associated increase of
anthropogenic pressure, the volume of discharge will increase, width –

depth ratio will decrease, and sinuosity will approach straightness.

2. Materials and methods

2.1. Description of study sites

A total 34 sub-basins (SBs) of the headwater streams have been
studied throughout the lateritic belt of Ajay-Damodar Interfluve, which
administratively comes under the Barddhaman District of West Bengal,
India (Fig. 1). In Q-GIS, online mapping tool has been enabled to
extract land cover characteristics of all 34 micro-watersheds after
opening the recent view of Google Earth. Multilayer GIS analysis helps

to delineate the boundaries of selected sub-basins using ASTER GDEM
(30 m), Topographical Sheets of Survey of India (1: 50, 000), Google
Earth View. In dense forest area, field mapping using GPS has been
used to track the basin coverage. The area of sub-basins varies from
0.23 to 18.67 km2 and the range does not follow the normal distribu-
tion with the Skewness of 1.84 (SE 0.41) and Kurtosis of 2.71 (SE
0.79). The sub-basins are intentionally selected from single geological
lithotop to exclude the effect of varying geology among the study sites.
Geologically, the focused area is covered by the Cenozoic laterite of
Lalgarh formation, an oldest formation consists of reddish brown
latosol with iron-nodules (disintegrated duricrust) underlain the
lateritic hard pan and lithomarge clay parts having light pinkish white
sandy clay with few quantities of iron nodules (Roy & Banerjee, 1990).
Soil type is predominantly sandy-loam and facing the problem of
severe soil erosion in the form of rills and gullies (Roy, 2013).

The climate of the region is typical humid subtropical and
influenced by monsoon-fed rain. Annual average rainfall observed is
1380 mm and mean temperature is 25.8° C in the last 100 years, where
about 70–80% rainfall is falling from June to September only (IMD,
2014). Studied streams are ephemeral in nature and contain water only
during the rainy season and no woody debris has been observed in
these streams. Sites are numbered randomly within the Kunur River
Basin, a major right-bank sub-basin of the lower Ajay River Basin. The
Kunur River originates in the western upland of the district at about
100 m of altitude, flowing latitudinally from west to east for a length of
~114 km. There, elevation ranges from 20 to 131 m throughout the
basin. The drainage pattern is nearly dendritic and catchment extends
over an area of about 915.60 km2, having an elongated and asymme-
trical shape.

The basin has a forest cover (mainly wet deciduous type with Sal
species - Shorea robusta) spreading over almost 31.35% area, water
body holds around 10.35% area, 13.82% area is for human settlement,
41.74% for agricultural land and 2.73% area comes under barren land
or unsuitable areas for agriculture (Roy & Sahu, 2015). The region is
also facing huge anthropogenic pressure due to very high population
density about 1100 person/km2, where nearly 58% of populations are
still engaged in the agricultural sector (Census of India, 2011). Single
cropping system is basically following over the district with 64.74% of
net sown area and Kharif rice as the principal crop type (Neetu,
Prashanani, Singh, Joshi, & Ray, 2014).

2.2. Procedures to collect the information of channel geometry

Several intrinsic channel parameters (i.e., w – channel width; d –

Fig. 1. Location of sample sub-basins (SBs) within the lateritic belt of Ajay-Damodar Interfluve and as a part of Kunur River Basin.
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average depth; D – maximum depth; ER – entrenchment ratio; s –
slope; a – cross-section area; w/d – width-depth ratio; Q – bankfull
discharge capacity; SI – sinuosity index; τ0 - shear stress and ω - unit
stream power) have been computed from each sub-basin. All channel
cross-sections and longitudinal profiles were surveyed using Auto level
(Sokkia C410 ─ with 2.5 mm standard deviation for one km double run
leveling) followed by the standard protocols of VDFW (2009). Bankfull
indicators have been preferred for cross-section survey across the riffle
area. A total 40X length of bankfull channel width has been selected for
sinuosity index (SI) of all sample sub-basins. Visual to quasi-quanti-
tative interpretation have been also done to analysis reach wise
variation in channel conditions, such as bed materials, pool – riffle
distances, area of the pool etc. Bankfull discharge, stream power and
shear stress values have been estimated from the survey data to aid the
analysis of stream form and processes. The Manning's equation (Eq.
(1)) has been followed to calculate reach wise stream velocity (v) (m/s)
and associated discharge (m3/s). Reach wise shear stresses (τ0) (N m−2)
and unit stream powers (ω) (W m−2) are also estimated using the Eqs.
(2) and (3), respectively (Shepherd et al., 2011).

v n R s Q v a= (1/ ) and = ( × )2/3 1/2 (1)

where, v is velocity, n is the roughness coefficient, R is the hydraulic
radius, s is channel slope, Q is discharge and a is channel cross-section
area.

τ γ Rs= w0 (2)

where, τ0 is shear stress and γw is specific weight of water.

ω γ Q s w= /w (3)

where, Q is discharge and w is channel width.

2.3. Data analysis

2.3.1. Grouping of sample sub-basins
To run non-parametric test and discriminant analysis (explained

below), selected 34 sub-basins have been classified into three groups by
the name of purely forested (PF), transitional (T), and agricultural (A)
basins (Fig. 2), where (i) pure forested basins are characterized by >
80% of native forest (i.e. Sal Forest); (ii) transitional basins are dealing
with 50 – 70% of forest cover and < 45% of agricultural land, and (iii)
agricultural basin group is dominated by cultivated land ( > 45%) with
partly forest cover (10 – 20%) and notable percentage of settlement
area (5 – 15%). However, for Spatial Interpolation Technique (ex-
plained below) selected basins have been re-classified into two groups;
(i) forested streams with > 60% of forest cover (n =17), selected as

unmodified catchment and (ii) agricultural streams (n =11) with
maximum modification in catchment area by anthropogenic activities
(as nominated in earlier classification).

2.3.2. Non-parametric test
Against the assumption of normality of collected data, Shapiro-

Wilk's test (p < 0.05), visual inspection of the histograms, normal Q-Q
plots and box plot have showed that the catchment areas of three basin
groups are not following the normal distribution with the Skewness of
1.46 (SE 0.68), 2.43 (SE 0.62), and 0.76 (SE 0.66) for forested,
transitional and agricultural basins respectively. Therefore, Mann-
Whitney U test (for two groups separately) and Kruskal-Wallis test
(for three groups in together) have been used to established the
variability of channel morphology between three groups of sub-basin.

2.3.3. Multivariate analysis
Principal Component Analysis (PCA) has been applied to fifteen

parameters for 34 sub-basins of the KRB, in order to group the
parameters under different components based on significant correla-
tions. According to Sharma (2002), a principal component conveys all
essential information about the variables, ensuring economy in analysis
and description while obtaining relatively accurate results. In addition,
Canonical Discriminant Analysis (CDA) has been used to differentiate
the pattern existed within the three basins groups (forested, transi-
tional and agricultural) on the ten intrinsic variables of channel
morphology (i.e. channel width, maximum depth, mean depth, width
– depth ratio, cross-sectional area, channel slope, stream discharge,
sinuosity, shear stress and unit stream power). CDA allows preparing a
linear combination (canonical variable) that summarized between-
group variation, thereby allowing the study groups to be successfully
discriminated (Dunteman, 1984; Norusis, 1985; SAS, 1987). Wilks’
Lambda (λ) and F statistics from squared Mahalanobis distances have
been followed to describe the ability of the models to discriminate
permanence categories. Wilks’ λ can range from 0 (perfect discrimina-
tion) to 1 (no discrimination) among classes (Fritz, Johnson, &
Walters, 2008).

2.3.4. Spatial interpolation technique
Spatial Interpolation Techniques (SIT) has been applied to identify

and quantify the significant changes in channel geometry from the
transformation of forested catchment to agricultural catchment. A
convenient illustration of this approach has been provided by Gregory
and Park (1976) and Gregory (1976). SIT is an applied technique in
sub-basin scale analysis (Chin & Gregory, 2001; Hammer, 1972; Jeje
& Ikeazota, 2001; Nanson & Young, 1981; Park, 1977; Wolman,

Fig. 2. Distribution of land cover types (five) in percentage among the sample sub-basins (basin ID ordered based on the descending values of forest cover).
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1967), where channel-form properties are observed under modified
conditions and compare them with the natural or unmodified condition
at the same geographical area to detect the rate of changes and what
should be in natural condition (Hammer, 1972; Park, 1977).

Channel cross-sections have been surveyed in the field at 17 sites on
natural or unmodified channels within the forest cover area of Kunur
River Basin. Cross-section area, channel width and mean depth at
bankfull stage have been measured from each site. Power regression
has been established between drainage area, as an independent factor,
and three channel properties (w, d, & a) for the unmodified or natural
channels. T-test also used to formulate significant relationship (p <
0.05, n =17), which run to interpolate the channel properties under
modification by land cover changes. The calculated ratio between the
observed and predicted channel dimensions of the site also provides an
‘enlargement ratio’ (also may called ‘reduction ratio’) index (Gregory &
Park, 1976; Hammer, 1972).

2.4. Classification of stream reaches (after Rosgen, 1994)

Level II stream classification method of Rosgen (1994) has been
adopted to know the variation in stream type and nature of bank
stability among the sample sub-basins. Since mid 1990s, this classifica-
tion approach has been widely approved by governmental agencies,
particularly those funding restoration projects (Malakoff, 2004). Simon
et al. (2007) have identified some inconsistency in the Rosgen
classification. However, this method can be used to combine channel
morphological parameters to determine the present channel behavior
in respect to the purpose of our study. In this model, Rosgen (1994)
have introduced the term entrenchment ratio (ER) to make a quanti-
tative relation between river channel and its valley and to know the
level of channel incision and the condition of floodplain of study
reaches.

3. Results

3.1. Principal component analysis (PCA)

Two broad types of variables are taken to run PCA with fifteen
variables of 34 headwater streams – (i) intrinsic variables of channel
(i.e. channel width, maximum depth, mean depth, width – depth ratio,
cross-sectional area, channel slope, stream discharge, sinuosity, shear
stress and unit stream power) and (ii) extrinsic variables of basin (i.e.
forest area, water bodies, settlement area, agricultural area and other
land use – land cover). As the system is functioned with multivariate
components, PCA tries to identify the dominant components and
variables which run the system positively or negatively in a defined
direction of Eigen vector. To interpret the results of PCA, four principal
components have been taken into consideration because the Eigen
values of PC (Principal Component) 1, PC 2, PC 3 and PC 4 are greater
than 1 and about 80% of the variance is explained in fourth PC
(Table 1). Therefore, these four components have been interpreted
separately in below to know the positive and negative dominance of
variables in the system (Table 2).

PC 1: With 40% of explained variance and Eigen value of 6.004, it is

the most dominant and influential component in the relation
between channel morphology and basin land use – land covers
characteristics. This component signifies that this fluvial system is
not influenced or affected by the isolated variables but the combined
effect of all leading variables run the system. The result indicate that
the dominant trend in the data set is positively associated with the
variables w, D, d, a, S, A, and Q, and negatively associated with F. It
reflects positively associated variables are functioned with the fluvial
erosional processes, while forest cover adversely checks the system
in this region.
PC 2: In the second important component, channel slope, water
bodies and other land use – land cover variables are functioned
negatively with key dominance ( > 0.50). But only sinuosity index
gives a positive response (0.51) to the system with an important role
to the system. This component has about 17% of explained variance
with Eigen value of 2.518.
PC 3: With only 13% of explained variance and Eigen value of
1.923, PC 3 has only two positive intrinsic dominant factors – shear
stress (τ0) and unites stream power (ω) ( > 0.90).
PC 4: This component has only 11% of explained variance and
Eigen value of 1.587, but it has only one positive leading variable, i.e.
width – depth ratio (0.735) which has very low dominance in
previous three components.

Based on above analysis, we can say that channel width, maximum
channel depth, mean channel depth, cross-sectional area, channel
discharge, forest cover, settlement area, water bodies and agricultural
area, etc. variables are worked separately as well as combinedly with >
80% explained variance. Therefore, it is justified that multivariate
factors have driven the inter-relationships between fluvial morphology
of headwater streams and land use – land cover properties of the
region.

3.2. Non-parametric test for inter-group variability of channel
properties

Table 3 shows the absolute differences in variable means among the
three basin groups and Fig. 3(a – i) is comparing the range of absolute
values using quartiles of different channel parameters among the
groups. In addition Kruskal-Wallis test shows from forested to
agricultural streams via transitional stream group, channel width (w),
maximum depth (D), mean depth (d), cross-sectional area (a), bankfull

Table 1
Explained variance and Eigen values of four principal components.

Component Initial Eigen values

Total % of Variance Cumulative %

1 6.004 40.027 40.027
2 2.518 16.786 56.813
3 1.923 12.817 69.63
4 1.589 10.595 80.225

Table 2
Response of variables in four principal components and bold values are key dominance
factors in the system.

Variables PC 1 PC 2 PC 3 PC 4

w 0.621 0.494 −0.156 0.486
D 0.783 0.279 −0.06 −0.457
d 0.846 0.269 −0.086 −0.387
w/d −0.472 0.15 −0.038 0.735
a 0.842 0.457 −0.033 0.059
s −0.273 −0.623 −0.085 −0.156
F −0.876 0.363 0.022 −0.105
W 0.590 −0.542 −0.118 0.371
S 0.667 −0.491 −0.158 0.2
O 0.391 −0.704 0.173 0.179
A 0.863 −0.235 −0.011 0.051
Q 0.799 0.079 −0.16 −0.05
SI 0.169 0.510 −0.247 0.425
τ0 0.325 0.101 0.910 0.057
ω 0.225 0.107 0.945 0.131

[w= Channel Width; D = Channel Maximum Depth; d = Channel minimum depth; w/d =
Width-Depth Ratio; a = Cross-Section Area; s = Slope; F = Forest Cover; W = Area of
Water Body; S = Settlement; O = Other area, e.g. barren land, waste land, etc, A =
Agricultural Land; Q = Bankfull Discharge (based on manning equation), SI = Sinuosity
Index; τ0= Shear Stress; ω= Unit Stream Power]
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discharge (Q) are significantly (p < 0.01) increasing and width – depth
ratio (w/d) is insignificantly (p =0.218) decreased in agricultural
streams than forested (Tables 3, 4). However, not significant (p >
0.05) differences in channel sinuosity index (SI), shear stress (τ0), and
unit stream power (ω) have been observed from forested to agricultural
streams (Table 3).

To evaluate the inter-group differences in channel parameters,
Mann-Whitney U test shows values of w, D, d, a, and Q in agricultural
streams are significantly higher than forested stream, however no
significant differences have been observed in w/d, channel slope (s), τ0,
and ω (Table 4). In comparison of forested vs. transitional streams only

D and d are significantly changed, whereas no significant differences
have been observed in all channel parameters between transitional and
agricultural streams (Table 4).

3.3. Canonical discriminant analysis (CDA)

In CDA, two canonical discriminant functions have been fitted with
ten intrinsic channel variables to separate intergroup variability
(Table 5). The overall discriminant function is significant and it does
a good job of classifying the three channel groups (Wilks’λ=0.38, p <
0.01). In the first discriminant function (f1) 68.50% of variance has

Table 3
Descriptive statistic of ten channel properties for three different basin groups (Abbreviations are provided in Table 2).

Channel Properties Forested Transition Agricultural Total

Mean SD Mean SD Mean SD Mean SD

w (m) 2.56 0.82 3.33 1.32 3.86 1.10 3.28 1.21
D (m) 0.33 0.18 0.63 0.28 0.68 0.18 0.56 0.27
d (m) 0.19 0.09 0.36 0.17 0.42 0.12 0.33 0.16
w/d 17.40 12.53 10.52 4.94 9.67 2.39 12.27 8.06
a (m2) 0.48 0.21 1.24 0.79 1.75 0.91 1.18 0.87
s (m m−1) 0.05 0.04 0.03 0.02 0.04 0.04 0.04 0.03
Q (m3/s) 2.28 1.77 4.85 3.31 9.43 6.86 5.58 5.25
SI 1.16 0.13 1.22 0.17 1.19 0.16 1.19 0.15
τ0 (N m−2) 13.89 16.16 16.44 10.62 22.37 16.39 17.61 14.35
ω (W m−2) 557.44 1057.97 537.61 398.35 999.89 1177.79 693.01 910.93

Fig. 3. (a – i): Box plots show the absolute differences of channel properties (in quartile format) among the three groups of sub-basins; p-value in the left corner of each diagram
indicates the significant level as per Kruskal-Wallis Test.
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been explained and significantly correlated with cross-section area
(0.76), mean depth (0.75), maximum depth (0.72), discharge (0.66),
width (0.51), and width - depth ratio (– 0.48), whereas weakly
correlated with shear stress, channel slope, unit stream power, and
sinuosity. However, with explaining only 40.10% second discriminant
function (f2) significantly correlated with channel slope (0.41), unit
stream power (0.27) and sinuosity (– 0.20). Wilks’ Lambda (λ) test
shows the level of discriminant between the group means of ten
variables (Table 5), where all variables are significantly (p < 0.05)
discriminant between each group except channel slope (λ=0.88, p
=0.131), sinuosity index (λ=0.97, p =0.625), shear stress (λ=0.94, p
=0.385), and unit stream power (λ=0.92, p =0.409).

Fig. 4 and inserted classification report show 70% of forested
streams are correctly classified (30% incorrectly classified as transi-
tional streams), 76.9% of transitional streams are also correctly
classified (7.7% and 15.4% incorrectly classified as forested and
agricultural streams respectively), and only 54.5% of agricultural
streams are classified correctly (with 45.5% streams are classified as
transitional streams). A presence of clear discriminant between
forested and agricultural streams has been observed with no significant
overlapping in Fig. 4; however significant part of the transitional
stream group has been overlapped over the zone of forested and
agricultural streams. In particular, agricultural stream characteristics
are more dominated in the group of transitional streams with > 16%
overlapping area.

3.4. Spatial interpolation technique for forested vs. agricultural
streams

Regression equations in Table 6 are showing that in forested
streams, channel width (r =0.62), mean depth (r =0.76), and cross-
section area (r =0.77) are positively increased with drainage area (Da)

Table 4
Test statistic for inter-group variability of channel properties using non-parametric techniques (Abbreviations are provided in Table 2).

Group Variable Non-Parametric Techniques w D d w/d a s Q SI τ0 ω

Forested vs. agricultural Mann-Whitney U 16.50 8.50 6.00 34.00 1.00 37.00 7.00 48.00 32.00 29.00
Sig. (2-tailed) 0.007 0.001 0.001 0.139 0.000 0.205 0.001 0.622 0.105 0.067

Forested vs. transitional Mann-Whitney U 41.00 22.00 20.00 40.00 15.00 33.00 32.00 51.00 49.00 47.00
Sig. (2-tailed) 0.135 0.008 0.005 0.121 0.002 0.047 0.041 0.385 0.321 0.264

Transitional vs. agricultural Mann-Whitney U 53.00 54.50 48.00 68.00 42.00 60.00 34.00 63.00 57.00 61.00
Sig. (2-tailed) 0.283 0.324 0.173 0.839 0.087 0.505 0.030 0.622 0.401 0.543

Among the groups Kruskal-Wallis Test (Chi-Square) 6.96 12.32 14.11 3.04 17.63 4.03 13.33 0.84 2.82 3.22
df 2 2 2 2 2 2 2 2 2 2
Sig. 0.031 0.002 0.001 0.218 0.000 0.133 0.001 0.657 0.244 0.200

Table 5
Tests of discriminant functions for classifying forested, transitional, and agricultural headwater streams (Abbreviations are provided in Table 2).

Eigenvalues

Function Eigenvalue % of Variance Cumulative % Canonical Correlation Wilks’ Lambda Chi-square df p

1 0.871 68.5 68.50 0.682 0.381 25.540 20 0.01
2 0.401 31.5 100.0 0.535 0.714 8.938 9 > 0.05

Structure matrix
Function a d D Q w w/d τ0 s ω SI
1 0.775 0.752 0.72 0.663 0.511 −0.481 0.244 −0.291 0.184 0.128
2 0.092 −0.12 −0.24 0.387 0.071 0.180 0.172 0.406 0.273 −0.203

Wilks’ Lambda Test
Variables w D d a w/d s SI Q τ0 ω
Wilks’ λ 0.814 0.676 0.670 0.824 0.655 0.877 0.693 0.970 0.94 0.944
p 0.041 0.002 0.002 0.049 0.001 0.131 0.003 0.625 0.385 0.409

Fig. 4. Plotting of canonical discriminant functions (f1 & f2) scores based on channel
properties of three stream groups. Black dashed lines highlight the individual zones and
level of their overlapping. Classification report has been inserted in right side.

Table 6
Functional relationships between channel parameters and catchment area of forested
streams.

Power Regression R2 r T - values ‘p′

Equations n df Calculated Observed

w = 3.287Da0.124 17 (n−2) =
15

0.383 0.62 3.03 2.13 0.001
d = 0.259Da0.230 0.583 0.76 4.58 0.021
c = 0.858Da0.350 0.594 0.77 4.36 0.007
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at 95% level of significance. T-test derived significance level (p < 0.05,
n =17, df =15) revels all three equations could be used to interpolate
the channel parameters in the modification catchment land cover
(Table 6). Table 7 indicates that channel widths in the agricultural
streams are considerably greater than would be predicted from forested
streams and the average enlargement ratio is 269%, although the range
of ratio is from 150–400%. The mean depths of channels in agricultural
streams are reduced than predicted values from forested streams,
where the average reduction ratio is 40% and range varies from 27–
57%. However, changes in the channel cross-sectional areas are
relatively minor. Average 78% increase in cross-sectional area has
been observed in six basins; whereas five basins are losing the cross-
sectional area at an average 156% reduction ratio than predicted in
forested basins (Table 7).

3.5. Differentiation of stream condition using Rosgen's channel
classification model

As per Rosgen's model about 82% forested streams (n =17) are
slightly entrenched (ER > 2.2), whereas agricultural streams (n =15)
are moderate (47%) to highly (37%) incised (ER < 2.2) with accelerate
channel erosion. Among the study reaches type of bed material varies
from clay to gravel, where about 60% forested stream's beds are filled
by coarse-sand to gravel with frequent presence of in-stream bedrock
outcrop. However, size of bed materials is drastically decreased in
agricultural streams where about 65% reaches are covered by sandy-
clay to pure clay. In Level I classification, among the study streams

11%, 25%, 22%, 22%, 3%, and 17% of reaches are coming under A, B,
C, E, F, and G types of streams respectively (Table 8). Level II
classification shows the major concentration of forested streams is in
C (C4, C5, C6) (48%) and E (E4, E5, E6) (30%) types and agricultural
streams are in type B (B5, B6) (~54%). Four agricultural streams (SB –
3, 18, 19, and 26) are also come under G4 and G5 category due to the
higher percentage of agricultural land cover as well as settlement area.
Although previous sections show forested streams are in sustainable
condition than agricultural, but the result derived from Rosgen
classification indicates a threaten condition for each group of streams.
Table 8 shows all study reaches come under very high to moderate
disturbance zone in terms of their streamflow magnitude, sediment
supply, and prone to bank instability. However, the column of recovery
potentially suggests for starting an ad hoc planning for their restoration
with good to excellent ability of channels to restore their own stability
once the cause of instability is corrected.

4. Discussion

4.1. Control of land covers character on channel morphology

Channel morphology of the study reaches has been changed in
response to the transformation of natural land cover (i.e. forest) to the
agricultural land use. Significant interdependency between channel
properties and land cover characteristics has been explained in PCA,
where forest cover inversely influences to check the erosional processes
within the KRB (Table 2). The channel morphology in forested,

Table 7
Estimated changes in agricultural channel properties (w, d, & a) in comparison to the forested streams characters using Spatial Interpolation Techniques.

S.B. Drainage area (km2) Width (m) Mean depth (m) Cross-sectional area (m2)
Predicted Observed Change % Predicted Observed Change % Predicted Observed Change %

22 8.27 1.55 5.20 −3.65 336.56 1.19 0.44 0.75 36.93 1.80 2.29 −0.49 127.30
8 4.95 1.44 4.50 −3.06 311.68 1.06 0.36 0.70 34.00 1.50 2.16 −0.66 143.83
18 15.06 1.67 2.50 −0.83 149.51 1.37 0.59 0.78 43.14 2.22 1.48 0.74 66.54
21 2.88 1.34 3.00 −1.66 223.19 0.93 0.26 0.67 27.81 1.24 0.78 0.46 62.78
16 2.00 1.28 2.90 −1.62 226.38 0.86 0.33 0.53 38.39 1.09 0.96 0.14 87.51
19 13.66 1.65 3.70 −2.05 224.13 1.34 0.50 0.84 37.39 2.14 1.85 0.29 86.35
24 7.02 1.51 3.80 −2.29 251.33 1.15 0.41 0.74 35.73 1.70 1.56 0.14 91.80
26 1.49 1.23 3.50 −2.27 284.05 0.80 0.35 0.45 43.57 0.99 1.23 −0.24 124.17
29 1.16 1.19 3.80 −2.61 318.76 0.76 0.43 0.33 56.70 0.90 1.63 −0.73 180.80
7 3.12 1.36 3.30 −1.94 242.92 0.95 0.28 0.67 29.41 1.28 0.92 0.35 72.32
27 9.58 1.58 6.30 −4.72 399.93 1.23 0.62 0.61 50.31 1.89 3.91 −2.01 206.43

Table 8
Sub-basin wise classified stream types and their potential management strategy (based on Rosgen Channel Classification Model).

Stream
type

Sample basin IDs Sensitivity to
disturbancea

Recovery
potentialb

Sediment
supplyc

Stream bank
erosion potential

Vegetation controlling
influenced

Forested Agricultural

A4 1 Extreme Very poor Very high Very high Negligible
A5 25 Extreme Very poor Very high Very high Negligible
A6 29 High Poor High High Negligible
B5 14 21 Moderate Excellent Moderate Moderate Moderate
B6 27, 7, 24, 8, 22, 15, 17 High Excellent Moderate Low Moderate
C4 31, 32 Very high Good High Very high Very high
C5 4, 34 Very high Fair Very high Very high Very high
C6 5, 11, 23, 30 Very high Good High High Very high
E4 13, 20 Very high Good Moderate High Very high
E5 6, 33 12 Very high Good Moderate High Very high
E6 2 16, 28 Very high Good Low Moderate Very high
F6 10 Very high Fair High Very high Moderate
G4* 3, 19 Extreme Very poor Very high Very high High
G5 18, 26 Extreme Very poor Very high Very high High

a Includes increases in streamflow magnitude and timing and/or sediments increase.
b Assumes natural recovery once caused of instability is corrected.
c Includes sωended and bedload from channel derived sources and/or from stream adjacent slope.
d Vegetation that influences width/depth ratio – stability
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transitional and agricultural streams are significantly differed from
each other, as indicated by the width (w), mean depth (d), maximum
depth (D), cross-section area (a), width – depth ratio (w/d), and
bankfull discharge (Q), sinuosity (SI) of the channel (Tables 3, 4).

Changes in the catchment land cover can significantly modify the
flow regime (discharge and sediment yield) and associated fluvial
system (Chin et al., 2016; Clark & Wilcock, 2000). Table 9 shows that
agricultural catchment (r =0.611) generates significantly (p < 0.01)
higher amount of discharge than forested catchment (r =– 0.624). In
particular, a two and four times more discharge has been observed in
transitional (4.85 m3/s) and agricultural (9.43 m3/s) streams respec-
tively followed by forested (2.28 m3/s) streams (Table 3). Forested
streams generate minimum discharge because the presence of Sal
forest in these catchments has increased the rainwater retention
capacity (~26%, Roy & Sahu, 2015) with higher infiltration rate
(26 cm h−1, NIH, 1996-97). Hewlett and Helvey (1970) and
Dadhwal, Aggarwal, and Mishra (2010) have observed ~11% and
~5% more storm flow volumes due to clearance of forest cover in a
southern Appalachian catchment and in Mahanadi River Basin respec-
tively. In northern Japan, Nagasaka and Nakamura (1999) also shows
agriculture-related deforestation has significantly altered the rainfall-
runoff system and surface water retention capacity has reduced about
17%.

Large amount of discharge (9.43 m3/s) in addition to higher shear
stress (τ0 – 22.37 N m−2) and unit stream power (ω – 1000 W m−2) of
agricultural streams have induced to defer channel w, D, d, a, w/d, and
SI from transitional (τ0 – 16.44 N m−2; ω – 537.61 W m−2) and
forested (τ0 – 13.89 N m−2; ω – 557.44 W m−2) streams (Fig. 5a & b).
Estimated channel cross-section areas (a) in forested streams are
ranging from 0.07 to 2.39 m2, which is nearly same to the previous
studies (i.e. 2.4 m2) on tropical forested basins ( < 10 km2) by
Odemerho (1984). The cross-section area in agricultural streams varies
from 0.27 to 3.90 m2, with mean value of 1.75 m2, which is signifi-
cantly (p < 0.001) higher than transitional (1.24 m2) and forested
streams (0.48 m2) (Table 3).

Width – depth ratio (w/d), an important indicator of river ecology
(Rosgen, 1994, 1996; VDFW, 2009), suggests forested streams are
ecologically rich with higher w/d (17.40) and stable bank side (Figs. 5b
and 6a). However, lower w/d ratio in agricultural streams (9.67)
indicates the presence of disconnected floodplain with the main
channel (Bravard, Amoros, & Pautou, 1986; Ward & Stanford,
1995; Blanton & Marcus, 2009) and promotes steep bank slope and
associated bank erosion (Hubble & Rutherfurd, 2010) (Fig. 5a). Smith
(1976), Clifton (1986), Shepherd et al. (2011) have also supported that

forested streams content better floodplain condition than non-forested
streams due to higher w/d. For the study basins’ restoration of channel
width (w) is more important than depth (d) because d significantly
correlated with w/d (r =– 0.605, p =0.01, n =36), whereas no clear
correlation (r =0.17) has been observed between w and w/d (Table 9).
Present study does not get any significant (p =0.657) control of land
cover on channel planform or sinuosity index, whereas Shepherd et al.
(2011) showed anthropogenic influences make channel straight and
shorter. Barasa, Kakembo, Waema, and Laban (2015) highlighted
channel sinuosity has increased with the drastic change in land use -
land cover. Jacobson and Pugh (1997) and Jacobson and Gran (1999)
have also mentioned disturbed reaches having increased sinuosity than
stable reaches.

In case of w, d, and a, spatial interpolation techniques (SIT) have
estimated that streams in the agricultural land are about 269% wider

Table 9
Multivariate correlation matrix among the land cover types and channel properties.

Da w D d w/d a s F W S O A Q SI

Da 1
w 0.540** 1
D 0.564** 0.337* 1
d 0.613** 0.398* 0.963** 1
w/d −0.211 0.169 −0.605** −0.601** 1
a 0.450** 0.622** 0.495** 0.551** −0.186 1
s −0.313 −0.467** −0.405* −0.379* 0.000 −0.407* 1
F −0.423* −0.395* −0.480** −0.509** 0.367* −0.528* 0.114 1
W 0.310 0.112 0.226 0.285 −0.265 0.191 −0.005 −0.673** 1
S 0.239 0.238 0.194 0.236 −0.143 0.130 −0.032 −0.542** 0.333* 1
O 0.023 −0.012 0.081 0.107 −0.160 −0.032 0.210 −0.478** 0.493** 0.091 1
A 0.379* 0.355* 0.476** 0.482** −0.352* 0.511* −0.152 −0.860** 0.557** 0.048 0.414* 1
Q 0.489** 0.652** 0.537** 0.610** −0.286 0.596** −0.015 −0.624** 0.262 0.255 0.165 0.611** 1
SI 0.423* 0.299 0.145 0.173 0.003 0.213 −0.174 −0.232 0.248 0.630** −0.186 −0.082 0.129 1

Da = Drainage Area; w= Channel Width; D = Channel Maximum Depth; d = Channel minimum depth; w/d = Width-Depth Ratio; a = Cross-Section Area; s = Slope; HG = Hydraulic
Gradient; F = Forest Cover; W = Area of Water Body; S = Settlement; O = Other area, e.g. barren land, waste land, etc, A = Agricultural Land; Q = Bankfull Discharge (based on manning
equation), SI = Sinuosity Index

** Correlation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed)

Fig. 5. (a) Typical agricultural stream reach with disconnected floodplain and facing
problem of severe bank failure; (b) ideal forested stream reach with enriched floodplain
ecosystem and stable bank slope.
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and about 40% shallower than forested streams (Table 7). The result
highlights significant alteration processes have been played in channel
widening and deepening over the study region for land cover changes.
Input of larger amount of fine sediments from agricultural land and
bank collapsed materials may reduce the normal down cutting rate and
make the channel shallower ( > 40%) than predicted (Barasa et al.,
2015; Walling & Fang, 2003). The dominant anthropogenic pressure
such as de-vegetation of the catchments and/or banks (Brooks &
Brierley, 2000) and instream sediment extraction (Erskine & Green,
2000) may also involve in mass failure of river banks (Hubble &
Rutherfurd, 2010). Labbe, Hadley, Schipper, Leuven, & Gardiner
(2011) reported that channel width directly depends on the cohesive-
ness of bank materials, which is also directly influenced by the
alteration of land cover on channel bank. A drastic fall in bed material
size in agricultural streams than forested also confirmed such explana-
tion (Figs. 6a, b, and c).

Non-parametric tests and CDA show a clear discriminant between
forested and agricultural streams. However, typical similarities have
been observed between forested – transitional streams and transitional
– agricultural streams (Fig. 4 and Table 4). Although, no characteristic
of agricultural streams has been classified in forested group (see
classification report in Fig. 4), but 30% of forested streams are
classified as transitional streams. Hence, transitional group contents
~16% of agricultural stream character and only 7% of forested stream.
However, about 45% of agricultural streams are classified as transi-
tional streams and there is no indication of forested stream. Thereby,
overall picture shows a significant transformation of land cover from
agricultural basin group to transitional and from transitional to
forested group due to gradual deforestation and expansion of agricul-
tural land over the KRB. In particular, restoration of transitional
streams can stabilize the anthropogenic influence on river deformation
as a barrier to transforming the land use practices from agricultural to
forested catchments.

4.2. Streams types and their functions

Forested streams with 48% of reaches in ‘C′ category are developed
good lateral connectivity between floodplain and channel (Rosgen,
1994), which helps to exchange energy and matter between these two
platforms (Thoms, 2003) (Figs. 5b and 6a). However, agricultural
streams have reduced the interplay between floodplain and channel
with high bank height due to classified as ‘B′ category (Fig. 5a). The
lateral disconnection in agricultural streams may cause significant
ecological damage, including loss of riparian forest, and losing richness
and diversity for both terrestrial and aquatic species (Bravard et al.,
1986; Ward & Stanford, 1995; Blanton & Marcus, 2009). In fluvio-
geomorphic aspect, 'C' category streams are containing meanders,
point bars, sequence of pool-riffle and are partly controlled by bedrock
(Rosgen, 1994), as observed in the forested headwater streams of KRB
(Fig. 6b). However, 30% of forested streams are in 'E' group, which are
standing in the edge of equilibrium stage and need an urgent restora-
tion plan (Rosgen, 1994). Typical observation of land cover type shows
all frosted streams in 'C' category are coming under native stacked
forest with maximum preventing capacity of rainwater, whereas others
streams in 'E' category are covered by partly native and/or partly with
introduced eucalyptus forest. Thereby, result defined that type of forest
cover is also a crucial factor in stream management. Agricultural
streams in the 'B' and 'G' types are characterized with flat sedimented
channel bed and deeply incised valley with severe bank erosion,
respectively (Figs. 6c and d). Mechanical transformation of river types
using geomorphic approach as initiated by Rosgen (1996) with four
priorities is the best option for river restoration in the study area. The
vulnerable stream types, i.e. 'G' and 'F' can be transformed into ‘C′ or
‘E′ types by re-establishing channel on previous floodplain using relic
channel or construction of new bankfull discharge channel and may
also by material filling in existing incised channel (Rosgen, 1996).

Fig. 6. (a) Existence of tadpoles in pool indicates healthy ecosystem of a forested stream; (b) presence of pool – riffle sequence and exposed bed rock (duricrust) in a forested stream; (c)
flat sedimented agricultural stream and no evidence of pool – riffle geomorphology; (d) deep incision in a ‘G′ type stream reach (leveling staff height is 3 m). In addition first three figures
help to compare the size of bed materials.

S. Roy, A.S. Sahu International Soil and Water Conservation Research  (xxxx) xxxx–xxxx

9



5. Conclusion

The study concludes that land cover types of a catchment play
crucial role to adjust headwater stream geomorphology. Forested and
agricultural streams contain significantly different channel character to
each others. Transformation of forest cover to agricultural land has
significantly increased the stream discharge in associate with make
wider and shallow channel. Differences in channel sinuosity and width
– depth ratio among the basin groups are not significant. Minor
observations show agricultural stream fragments floodplain from its
channel and minimized the in-stream micro – geomorphological
features such as pool – riffle sequence, point-bars, etc. CDA success-
fully differentiates the studied stream categories, where streams in the
transitional group deal combine characters of forested (~7%) and
agricultural (~15%) streams due to rapid transformation of land cover.
To stabilize the anthropogenic deformation of channel morphology,
transitional stream group is an important area to exaggerate the river
restoration plan.
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