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In this paper, we propose a granularity-based framework of deduction, induction, and
abduction using variable precision rough set models proposed by Ziarko and measure-
based semantics for modal logic proposed by Murai et al. The proposed framework is based
on a-level fuzzy measure models on the basis of background knowledge, as described in
the paper. In the proposed framework, deduction, induction, and abduction are character-
ized as reasoning processes based on typical situations about the facts and rules used in
these processes. Using variable precision rough set models, we consider b-lower approxi-
mation of truth sets of nonmodal sentences as typical situations of the given facts and
rules, instead of the truth sets of the sentences as correct representations of the facts
and rules. Moreover, we represent deduction, induction, and abduction as relationships
between typical situations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Reasoning processes in our daily life consist of various styles of reasoning under uncertainty, such as logical reasoning
with some nonmonotonicity, probabilistic reasoning, and reasoning with ambiguity and vagueness; for example, implying
conclusions logically from information we currently possess, finding rules from observations, and speculate reasons behind
observed (or reported) facts. In general, logical aspects of these types of reasoning processes are divided into the following
three categories:

� Deduction: A reasoning process for concluding specific facts from general rules.
� Induction: A reasoning process for providing general rules from specific facts.
� Abduction: A reasoning process for providing hypotheses that explain the given facts.

Moreover, when we consider these types of reasoning processes, we consider not all possible scenarios or situations that
match the propositions used in them, but some typical scenarios or situations. For example, suppose we consider the follow-
ing deduction: from the propositions ‘‘the sun rises in the east” and ‘‘if the sun rises in the east, then the sun sets in the west,”
we conclude that ‘‘the sun sets in the west.” In this deduction process, we do not consider all days when the sun rose in the
east, and we may consider only a small number of examples of days when the sun rose in the east as typical situations. More-
over, because the sun set in the west on any typical day when the sun rose in the east, we conclude that the sun sets in the
west. In other words, typical situations in which the sun rises in the east are also typical situations in which the sun sets in
. All rights reserved.

x: +81 143 46 5499.
Kudo), murahiko@main.ist.hokudai.ac.jp (T. Murai), akama@jcom.home.ne.jp (S. Akama).

https://core.ac.uk/display/82633441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kudo@csse.muroran-it.ac.jp
mailto:murahiko@main.ist.hokudai.ac.jp
mailto:akama@jcom.home.ne.jp
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar


1216 Y. Kudo et al. / International Journal of Approximate Reasoning 50 (2009) 1215–1226
the west. This example indicates that considering the relationship between typical situations captures aspects of deduction,
induction, and abduction in our daily life.

Consequently, in this paper, we consider the semantic characterization of deduction, induction, and abduction by the pos-
sible world semantics of modal logic. In possible world semantics, each nonmodal sentence that represents a fact is charac-
terized by its truth set, i.e., the set of all possible worlds in which the nonmodal sentence is true in the given model. We
consider the truth set of a nonmodal sentence as the correct representation of the given fact. However, as we have discussed,
we need to treat typical situations related to facts, and treating only the truth sets of nonmodal sentences that represent
facts is not suitable, because these truth sets correspond to all situations that match the facts. Thus, we need to represent
typical situations based on some theory.

To represent typical situations about the facts, we consider introducing rough set theory to the possible world semantics
of modal logic. Rough set theory [11,12] provides a theoretical basis of set-theoretic approximation and reasoning based on
data. The variable precision rough set (VPRS) models proposed by Ziarko [14] are an extension of rough set theory, which
enables us to treat probabilistic or inconsistent information in the framework of rough sets. In terms of the relationship be-
tween rough set theory and modal logic, it is well known that lower (upper) approximation in rough sets and necessity (pos-
sibility) as interpreted by Kripke models of modal logic are closely related. From the viewpoint of reasoning based on rough
set theory, Murai et al. have proposed a framework of granular reasoning [9,10], which represents reasoning processes by
controlling the granularity of equivalence classes. Moreover, we have discussed the relationship between granularity and
background knowledge in reasoning processes [6]. From the viewpoint of rough sets, we consider characterizing typical sit-
uations of the given facts by the lower approximations of the truth sets of nonmodal sentences that represent the given facts.
Moreover, we also need to consider misunderstandings about facts.

Similar to the case of the relationship between Pawlak’s rough sets and Kripke models, we can consider the relationship
between VPRS models and the measure-based semantics of modal logic proposed by Murai et al. [7,8]. Measure-based
semantics provides an interpretation of modal sentences using fuzzy measures assigned to possible worlds. On the other
hand, the definition of b-lower approximations in VPRS models is based on conditional probabilities, i.e., a special case of
fuzzy measures. This relationship indicates that we can treat the concept of typical situations characterized by b-lower
approximations as a modality of modal logic interpreted by measure-based semantics.

Moreover, as we have discussed, consideration of the relationship between typical situations represents logical aspects of
deduction, induction, and abduction. Thus, considering the relationship between typical situations and all possible situa-
tions, we propose characterizing deduction, induction, and abduction as the following processes based on typical situations:

� Deduction: A reasoning process for providing a conclusion from a general rule and a condition that holds in the given typ-
ical situation.

� Induction: A reasoning process for concluding a general rule from typical situations.
� Abduction: A reasoning process for providing a hypothesis that explains a fact in the given typical situation.

Combining the above discussions, we propose a unified framework of deduction, induction, and abduction using granu-
larity based on VPRS models and measure-based semantics for modal logic. Note that this paper is a revised and extended
version of a conference paper [5].

The paper is structured as follows. In Section 2, we briefly review rough sets and VPRS. In Section 3, Kripke models and
measure-based models are introduced as the basis of the formulation presented in the paper. In Section 4, we introduce a-
level fuzzy measure models based on background knowledge to illustrate characteristics of typical situations by a modal
operator of propositional modal logic. In Section 5, we characterize three types of reasoning processes known as deduction,
induction, and abduction in the framework of a-level fuzzy measure models on the basis of background knowledge as rea-
soning processes based on typical situations. Finally, we present our conclusions in Section 6.
2. Rough set theory

2.1. Rough sets

In this subsection, we briefly review the foundations of Pawlak’s rough set theory and VPRS models. This subsection is
based on [13].

Let U be a nonempty, finite set of objects called the universe of discourse and R be an equivalence relation on U called an
indiscernibility relation. For any element x 2 U, the equivalence class of x with respect to R is defined as
½x�R ¼
deffy 2 U j xRyg: ð1Þ
The equivalence class ½x�R is the set of objects that cannot be discerned from x with respect to R. The quotient set
U=R ¼deff½x�R jx 2 Ug provides a partition of U. According to Pawlak [12], any set X # U represents a concept, and a set of con-
cepts is called knowledge about U. Thus, we consider that R provides knowledge about U as the quotient set U=R.

The ordered pair ðU;RÞ is called an approximation space, and it provides the basis of approximation in rough set theory.
For any set of objects X # U, the lower approximation RðXÞ and the upper approximation RðXÞ of X by R are defined as
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RðXÞ ¼deffx 2 U j ½x�R # Xg; ð2Þ

RðXÞ ¼deffx 2 U j ½x�R \ X–;g: ð3Þ
RðXÞ of X is the set of objects that are certainly included in X. On the other hand, RðXÞ of X is the set of objects that may be
included in X.

If RðXÞ ¼ X ¼ RðXÞ, we consider that X is R-definable; else, if RðXÞ � X � RðXÞ, we consider that X is R-rough. The concept X
being R-definable means that we can denote X correctly using background knowledge based on R. On the other hand, when X
is R-rough, we cannot denote the concept correctly based on background knowledge.
2.2. Variable precision rough set models

The VPRS models proposed by Ziarko [14] are an extension of Pawlak’s rough set theory, which provides a theoretical ba-
sis to treat probabilistic or inconsistent information in the framework of rough sets.

VPRS is based on the majority inclusion relation. Let X;Y # U be any subsets of U. The majority inclusion relation is de-
fined by the following measure cðX;YÞ of the relative degree of misclassification of X with respect to Y,
cðX; YÞ ¼def 1� jX \ Yj
jXj ; if X–;;

0; otherwise;

8<
: ð4Þ
where jXj represents the cardinality of the set X. It is easy to confirm that X # Y holds, if and only if cðX;YÞ ¼ 0.
Formally, the majority inclusion relation #

b
with a fixed precision b 2 ½0;0:5Þ is defined using the relative degree of mis-

classification as follows:
X #
b

Y ()
def

cðX;YÞ 6 b; ð5Þ
where the precision b provides the limit of permissible misclassification.
Let X # U be any set of objects, R be an indiscernibility relation on U, and the degree b 2 ½0;0:5Þ be a precision. The b-lower

approximation RbðXÞ and the b-upper approximation RbðXÞ of X are defined as follows:
RbðXÞ ¼def x 2 U
���� ½x�R #

b
X

� �
¼ x 2 U

���� cð½x�R;XÞ 6 b

� �
; ð6Þ

RbðXÞ ¼def x 2 U
���� cð½x�R;XÞ < 1� b

� �
: ð7Þ
As mentioned previously, the precision b represents the threshold degree of misclassification of elements in the equiva-
lence class ½x�R to the set X. Thus, in VPRS, misclassification of elements is allowed if the ratio of misclassification is less
than b. Note that the b-lower and -upper approximations with b ¼ 0 correspond to Pawlak’s lower and upper approxi-
ations.

Table 1 represents some properties of the b-lower and -upper approximations. The symbols ‘‘�” and ‘‘�” indicate
whether a property is satisfied (‘‘�”) or may not be satisfied (‘‘�”) in the case of b ¼ 0 and 0 < b < 0:5, respectively. For
example, by the definition of the b-lower approximation in (6), it is easy to confirm that the property T. RbðXÞ# X is not guar-
anteed to be satisfied in the case of 0 < b < 0:5. Note that symbols assigned to properties such that T correspond to axiom
schemas in modal logic (for details, see [1]). In the next subsection, we briefly review modal logic and the relationship be-
tween rough set theory and modal logic.
roperties of b-lower and upper approximations.

ies b ¼ 0 0 < b < 0:5

RbðXÞ ¼ RbðXcÞc � �
RbðX \ YÞ# RbðXÞ \ RbðYÞ � �
RbðXÞ \ RbðYÞ# RbðX \ YÞ � �
RbðUÞ ¼ U � �
RbðXc [ YÞ# ðRbðXÞc [ RbðYÞÞ � �
RbðXÞ# RbðXÞ � �
Rbð;Þ ¼ ; � �
RbðXÞ# X � �
X # RbðRbðXÞÞ � �
RbðXÞ# RbðRbðXÞÞ � �
RbðXÞ# RbðRbðXÞÞ � �
X # Y ) RbðXÞ# RbðYÞ � �
R # R0 ) RbðXÞ 	 R0bðXÞ � �
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3. Possible world semantics for modal logic

3.1. Kripke models

Propositional modal logic (hereafter called simply modal logic) extends classical propositional logic by two unary oper-
ators � and � (called modal operators), and for any proposition p, it provides the following statements: �p (p is necessary)
and �p (p is possible).

Let LMLðPÞ be a set of sentences constructed from a given at most countably infinite set of atomic sentences
P ¼ fp1; . . . ; pnð; . . .Þg; constant sentences > (truth) and ? (falsity); logical connectives ^ (conjunction), _ (disjunction), !
(conditionality),$ (biconditionality), and : (negation); and modal operators � (necessity) and � (possibility) by the follow-
ing construction rules:
p 2 P) p 2LMLðPÞ;>;?2LMLðPÞ;p 2LMLðPÞ ) :p;�p;�p 2LMLðPÞ;
p; q 2LMLðPÞ ) p ^ q;p _ q;p! q;p$ q 2LMLðPÞ:
We say that a sentence is modal if it contains at least one modal operator; else, we say it is nonmodal.
In this paper, we consider possible world semantics to interpret sentences used in modal logic. A Kripke model, one of the

most popular frameworks of possible world semantics, is the following triple:
M ¼ ðU;R;vÞ; ð8Þ
where U is a set of possible worlds, R is a binary relation on U called an accessibility relation, and v : P� U ! f0;1g is a val-
uation function that assigns a truth value to each atomic sentence p 2 P at each world w 2 U. An atomic sentence p is defined
as true at a possible world x by the given Kripke model M if and only if vðp; xÞ ¼ 1. We say that a Kripke model is finite if its
set of possible worlds is a finite set.

M; x 
 p indicates that the sentence p is true at the possible world x 2 U by the Kripke model M. Interpretation of non-
modal sentences is similar to the case of classical propositional logic, as follows:
M; x 
 p ðp 2LMLðPÞÞ () vðp; xÞ ¼ 1;
M; x 
 :p()M; x2 p;

M; x 
 p ^ q()M; x 
 p and M; x 
 q;

M; x 
 p _ q()M; x 
 p or M; x 
 q;

M; x 
 p! q()M; x2 p or M; x 
 q;

M; x 
 p$ q()M; x 
 p! q and M; x 
 q! p:
In possible world semantics using Kripke models, on the other hand, we use accessibility relations to interpret modal sen-
tences. �p is true at x if and only if p is true at every possible world y accessible from x. Conversely, �p is true at x if and only
if there is at least one possible world y accessible from x, and p is true at y. Formally, interpretation of modal sentences is
defined as follows:
M; x 
 �p ()
def 8y 2 UðxRy)M; y 
 pÞ; ð9Þ

M; x 
 �p ()
def
9y 2 UðxRy and M; y 
 pÞ: ð10Þ
For any sentence p 2LMLðPÞ, the truth set is the set of possible worlds in which p is true by the Kripke model M, and the
truth set is defined as follows:
kpkM ¼deffx 2 U jM; x 
 pg: ð11Þ
We say that a sentence p is true in a Kripke model M, if and only if p is true at every possible world in M. We denote M 
 p if
p is true in M.

When the accessibility relation R in the given Kripke model M is an equivalence relation, for any possible world x 2 U, the
set of possible worlds that are accessible from x by R is identical to the equivalence class ½x�R. Thus, in this case, we can re-
write the definition of modal sentence interpretation as
M; x 
 �p() ½x�R # kpkM; ð12Þ
M; x 
 �p() ½x�R \ kpk

M–;: ð13Þ
Therefore, when R is an equivalence relation, the following correspondence relationship holds between Pawlak’s lower
approximation and necessity, and that between Pawlak’s upper approximation and possibility:
RðkpkMÞ ¼ k�pkM; ð14Þ
RðkpkMÞ ¼ k�pkM: ð15Þ
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The modal system S5 is well known to be sound and complete with respect to the class of all Kripke models with equivalence
relations as accessibility relations (for details, see [1]). The modal system S5 consists of all inference rules and axiom schemas
of propositional logic and the following inference rules and axiom schemas:
Df�: �p$ :�:p; RN:
p
�p

;

K: �ðp! qÞ ! ð�p! �qÞ; T: �p! p;

5: �p! ��p:
All other axiom schemas listed in Table 1; that is, axiom schemas M, C, N, P, D, B, and 4 are theorems of S5. Therefore, from
the viewpoint of modal logic, Pawlak’s rough set theory is characterized by the modal system S5.

3.2. Measure-based semantics

Instead of using accessibility relations to interpret modal sentences, measure-based semantics of modal logic uses fuzzy
measures [7,8]. A function l : 2U ! ½0;1� is called a fuzzy measure on U if the function l satisfies the following three conditions:

(1) lðUÞ ¼ 1,
(2) lð;Þ ¼ 0,
(3) 8X;Y # U; X # Y ) lðXÞ 6 lðYÞ,

where 2U represents the power set of U.
Formally, a fuzzy measure model Ml is the following triple,
Ml ¼ ðU; flxgx2U ; vÞ; ð16Þ
where U is a set of possible worlds, and v is a valuation. flxgx2U is a class of fuzzy measures lx assigned to all possible worlds
x 2 U.

In measure-based semantics of modal logic, each degree a 2 ð0;1� of fuzzy measures corresponds to a modal operator �a

[7,8]. Thus, fuzzy measure models can provide semantics of multimodal logic with modal operators �a ða 2 ð0;1�Þ. In this
paper, however, we fix a degree a and consider a-level fuzzy measure models that provide semantics of modal logic with
the two modal operators � and �.

Similar to the case of Kripke models, Ml; x 
 p indicates that the sentence p is true at the possible world x 2 U by the a-
level fuzzy measure model Ml. Interpretation of nonmodal sentences is identical to that in Kripke models. On the other
hand, to define the truth value of modal sentences at each world x 2 U in the a-level fuzzy measure model Ml, we use
the fuzzy measure lx assigned to the world x instead of accessibility relations. Interpretation of modal sentences �p at a
world x is defined as follows:
Ml; x 
 �p ()
def

lx kpk
Ml

� �
P a; ð17Þ
where lx is the fuzzy measure assigned to x. By this definition, interpretation of modal sentences �p is obtained by dual
fuzzy measures as follows:
Ml; x 
 �p() l�x kpk
Ml

� �
> 1� a; ð18Þ
where the dual fuzzy measure l�x of the assigned fuzzy measure lx is defined as l�xðXÞ ¼
def 1� lxðX

cÞ for any X # U.
Note that the modal system EMNP is sound and complete with respect to the class of all a-level fuzzy measure models

[7,8], where the system EMNP consists of all inference rules and axiom schemas of propositional logic and the following
inference rules and axiom schemas:
Df�: �p$ :�:p; RE:
p$ q
�p$ �q

;

M: �ðp ^ qÞ ! ð�p ^�qÞ; N: �>; P: :� ? :
4. a-Level fuzzy measure models based on background knowledge

In this section, we introduce a-level fuzzy measure models based on background knowledge to characterize typical sit-
uations as a modality of modal logic using granularity based on VPRS and measure-based semantics for modal logic.

4.1. Background knowledge by Kripke models based on approximation spaces

As a basis of reasoning using granularity based on VPRS and measure-based semantics, suppose that we have a Kripke
model M ¼ ðU;R; vÞ consisting of the given approximation space ðU;RÞ and a valuation v. In the Kripke model M, any
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nonmodal sentence p that represents a fact is characterized by its truth set kpkM. When we consider the fact represented by
the nonmodal sentence p, we may not consider all possible worlds in the truth set kpkM. In such cases, we often consider only
typical situations about the fact p.

To capture such typical situations, we examine the lower approximation of the truth set kpkM by the indiscernibility rela-
tion R, and consider each possible world in the lower approximation of the truth set kpkM as a typical situation about p based
on background knowledge about U.

Moreover, it may be useful to consider situations that are not typical about the facts as exceptions to typical situations. In
this paper, we represent this characteristic using b-lower approximations of the truth sets of sentences that represent facts.
Thus, using background knowledge from the Kripke model M, we can consider the following two sets of possible worlds
about a fact p:

� kpkM: correct representation of fact p
� RbðkpkMÞ: the set of typical situations about p (situations that are not typical may also be included)

4.2. a-Level fuzzy measure models based on background knowledge

Using the given Kripke model as background knowledge, we define an a-level fuzzy measure model to treat typical sit-
uations about facts as b-lower approximations in the framework of modal logic.

Definition 1. Let M ¼ ðU;R;vÞ be a Kripke model that consists of an approximation space ðU;RÞ and a valuation function
v : P� U ! f0;1g, and a 2 ð0:5;1� be a fixed degree. An a-level fuzzy measure model MR

a based on background knowledge is
the following triple:
MR
a ¼

def U; lR
x

� �
x2U ; v

� �
; ð19Þ
where U and v are the same as in M. The fuzzy measure lR
x : 2U ! ½0;1� assigned to each x 2 U is a probability measure-based

on the equivalence class ½x�R with respect to R, defined by
lR
x ðXÞ ¼

def j½x�R \ Xj
j½x�Rj

; 8X # U: ð20Þ
Similar to the case of Kripke-style models, we denote that a sentence p is true at a world x 2 U by an a-level fuzzy mea-
sure model MR

a by MR
a; x 
 p. Truth valuation of modal sentences is defined as
MR
a; x 
 �p() lR

x kpk
MR

a
� �

P a; ð21Þ

MR
a; x 
 �p() lR

x kpk
MR

a
� �

> 1� a: ð22Þ
We also denote the truth set of a sentence p in the a-level fuzzy measure model MR
a by kpkM

R
a , which is defined by
kpkM
R
a ¼def x 2 U jMR

a; x 
 p
� �

: ð23Þ
The constructed a-level fuzzy measure model MR
a from the given Kripke model M has the following good properties.

Theorem 1. Let M be a finite Kripke model such that its accessibility relation R is an equivalence relation and MR
a be the a-level

fuzzy measure model based on the background knowledge M defined by (19). For any nonmodal sentence p 2LMLðPÞ and any
sentence q 2LMLðPÞ, the following equations are satisfied:
kpkM
R
a ¼ kpkM; ð24Þ

k�qkM
R
a ¼ R1�a kqkM

R
a

� �
; ð25Þ

k�qkM
R
a ¼ R1�a kqkM

R
a

� �
: ð26Þ
Proof. Eq. (24) is clear from the definition of the relationship 
.

For (25), it is enough to show that for any sentence q 2LMLðPÞ;MR
a; x 
 �q holds if and only if x 2 R1�aðkqkMÞ. Suppose

MR
a; x 
 �q holds. By Definition 1, we have lR

x kqk
MR

a
� �

P a. By the definition of the relative degree of misclassification from

(4) and the definition of the fuzzy measure lR
x from (20), the property lR

x kqk
M

� �
P a holds if and only if

c ½x�R; kqk
M

� �
6 1� a holds, and therefore, we have x 2 R1�aðkqkMÞ. Eq. (26) is also similarly proved. h

In the next section, we intend to use a-level fuzzy measure models MR
a as the basis of a unified framework for deduction,

induction, and abduction based on the concept of typical situations of facts and rules used in these reasoning processes. Thus,
as we discussed in Section 4.1, we represent facts and rules in reasoning processes as nonmodal sentences and typical
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situations of facts and rules as lower approximations of truth sets of nonmodal sentences. From (24) and (25) in Theorem 1,
the a-level fuzzy measure model MR

a based on background knowledge M exhibits the characteristics of correct representa-
tions of facts by the truth sets of nonmodal sentences and typical situations of the facts by the ð1� aÞ-lower approximations
of truth sets of nonmodal sentences. Thus, we can denote a modal sentence �p as ‘‘typically p,” and represent the relation-
ship between typical situations by modal sentences. This indicates that the models MR

a are a sufficient basis for a unified
framework for deduction, induction, and abduction.

Moreover, we have the following soundness properties of systems of modal logic with respect to the class of all a-level
fuzzy measure models based on background knowledge.

Theorem 2. For any a-level fuzzy measure model MR
a defined by (19) based on any finite Kripke model M such that its

accessibility relation R is an equivalence relation, the following soundness properties are satisfied in the case of a ¼ 1 and
a 2 ð0:5;1Þ, respectively:

� If a ¼ 1, then all theorems of system S5 are true in MR
a.

� If a 2 ð0:5;1Þ, then all theorems of system EMND45 are true in MR
a,

where system EMND45 consists of the inference rules and axiom schemas of the system EMNP and the following axiom schemas:
D: �p! �p; 4: �p! ��p; 5: �p! ��p:
Proof. It is clear from the correspondence relationship between axiom schemas and properties of b-lower approximations
shown in Table 1. h

Theorem 2 indicates that the properties of a-level fuzzy measure models based on background knowledge depend on the
degree of a. If we fix a ¼ 1, we do not allow any exception in typical situations; else, we allow some exceptions depending on
a. This is because, if a ¼ 1, any a-level fuzzy measure models MR

a based on background knowledge satisfy the axiom schema
T. �p! p; else, MR

a does not satisfy T. Thus, if a 2 ð0:5;1Þ, a nonmodal proposition p and a possible world x 2 U may exist
such that x 2 k�pkM

R
a but x R kpkM

R
a ; i. e., x is considered a typical situation of p even though p is not true at x in MR

a.

5. A unified formulation of deduction, induction, and abduction using granularity

In this section, we characterize the reasoning processes of deduction, induction, and abduction in a-level fuzzy measure
models on the basis of background knowledge as reasoning processes based on typical situations. In the framework of a-level
fuzzy measure models based on background knowledge, these three types of reasoning processes are described as follows:

� Deduction: A reasoning process for providing a conclusion from a general rule and a condition that holds in the given typ-
ical situation.

� Induction: A reasoning process for concluding a general rule from typical situations.
� Abduction: A reasoning process for providing a hypothesis that explains a fact in the given typical situation.
5.1. Deduction based on typical situations

Deduction is a reasoning process with the following form:
where the left side illustrates the formulation of deduction, and the right side illustrates the meaning of the sentence appear-
ing in each deductive step. It is well known that deduction is identical to the inference rule modus ponens used in almost all
two-valued logic. Note also that deduction is a logically valid inference, where ‘‘logically valid” means that if both the
antecedent p and the rule p! q are true, the consequent q is guaranteed to be true. Hereafter, we assume that all sentences
p, q, etc. that represent facts and rules such as p! q are nonmodal sentences.

Let M ¼ ðU;R;vÞ be a Kripke model that consists of an approximation space ðU;RÞ and a valuation function v that is given
as background knowledge. In the framework of possible world semantics, we can illustrate deduction as follows:
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Here, we consider deduction based on typical situations. Let MR
a be an a-level fuzzy measure model based on background

knowledge with a fixed degree a 2 ð0:5;1�. True rules are represented by inclusion relationships between truth sets as follows:
MR
a 
 p! q() kpkM

R
a # kqkM

R
a : ð27Þ
As we have shown in Table 1, the monotonicity of b-lower approximation is satisfied for all b 2 ½0;0:5Þ; thus, we have the
relationship,
MR
a 
 �p! �q() k�pkM

R
a # k�qkM

R
a : ð28Þ
If we consider the truth set of �p as the set of typical situations of p, then from (28), every element x 2 k�pkM
R
a is also an

element in the truth set of �q, and therefore, we can conclude that all situations typical of p are also typical of q.
Consequently, using the a-level fuzzy measure model MR

a, we can characterize deduction based on typical situations by
the following valid reasoning:
Note that the reasoning process of deduction based on typical situations is not affected by a difference in the degree a.
This is because property (28) is true for any fixed degree a 2 ð0:5;1�, and therefore, if a possible world x is a typical situation
of a fact p and a modal sentence �p! �q is valid in the a-level fuzzy measure model MR

a, then x is also a typical situation of
the fact q.

As an example of deduction, suppose sentences p and q have the following meanings:

� p: The sun rises in the east.
� q: The sun sets in the west.

Thus, deduction is illustrated as follows:
5.2. Induction based on typical situations

Induction is a reasoning process with the following form:
It is well known that induction is not logically valid. However, we often use induction to provide general rules from spe-
cific facts.

Induction has the following characteristic: From the fact that all observed objects satisfying a property p also satisfy a
property q, we conclude that if objects satisfy p, they also satisfy q. Suppose that the ð1� aÞ-lower approximation of the truth
set kpkM

R
a of the sentence p illustrates the set of observed objects satisfying p. From the characteristics of induction, we con-

sider that induction based on typical situations needs to have the form
This form of reasoning is not valid; however, we can consider this reasoning as valid by assuming the property
MR
a 
 �p$ p: ð29Þ
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This assumption means that we consider the set k�pkM
R
a of observed objects satisfying p is identical to the set kpkM

R
a of all

objects satisfying p; i.e., we generalize from the typical situations of p to all situations of p. This assumption is essential in
formulating induction based on typical situations. Combining these processes of reasoning, we characterize induction based
on typical situations as follows:
By repeating observations, we obtain more detailed background knowledge, and assumption (29) may become more
probable. As shown in Table 1, in VPRS models, even though the partition becomes finer (that is, the current equivalence
relation R changes to another equivalence relation R0 such that R0# R), the b-lower approximation may not become large.
However, the following situation may result from the more detailed equivalence relation R0:
For any q; MR
a 
 �p! q but MR0

a 2�p! q: ð30Þ
This situation illustrates that by obtaining more detailed background knowledge, we find exceptions in the observed objects
such that they do not satisfy q even while satisfying p. Therefore, in the framework of the a-level fuzzy measure model based
on background knowledge, induction has nonmonotonicity.

This consideration indicates that, unlike deduction based on typical situations, the degree of a 2 ð0:5;1� may affect the
result of induction based on typical situations; assumption (29) with a ¼ 1 may be more reliable than the assumption with
a 2 ð0:5;1Þ. This is because, as we have discussed at the end of Section 4.2, if a ¼ 1, the modal sentence�p! p is valid in any
a-level fuzzy measure model MR

a based on background knowledge. On the other hand, if a 2 ð0:5;1Þ, this modal sentence
may be not true in some observed object x 2 k�pkM

R
a , and such an object x becomes a counterexample of the assumption.

As an example of induction and nonmonotonic reasoning, suppose sentences p and q have the following meanings:

� p: It is a bird.
� q: It can fly.

Thus, induction and nonmonotonic reasoning are illustrated as follows:
5.3. Abduction based on typical situations

Abduction is a reasoning process with the following form:
From a fact q and a rule p! q, abduction infers a hypothesis p that produces the fact q. Therefore, abduction is also called
hypothesis reasoning. Note that the form of abduction corresponds to affirming the consequent; thus, abduction is not log-
ically valid if the hypothesis p is false and the fact q is true. However, we often use this form of reasoning to generate new
ideas.

In general, many rules may exist that produce the fact q, and in such cases, we need to select one rule from many
pi ! q ðpi 2 fp1; . . . ; pnð; . . .ÞgÞ that imply q. Thus, using fuzzy measures assigned to typical situations of the fact q, we intro-
duce a selection mechanism to decide which rule to use in abduction.

Similar to the case of deduction, we consider the truth set k�qkM
R
a of �q as the set of typical situations about q. For

each rule pi ! q that implies the fact q, we consider the following minimal degree of the antecedent pi in typical situations
about q.



1224 Y. Kudo et al. / International Journal of Approximate Reasoning 50 (2009) 1215–1226
Definition 2. Let p! q; q 2LMLðPÞ be nonmodal sentences. The degree aðpjqÞ of p in typical situations about q is defined as
follows:
aðpjqÞ ¼def min lR
x kpk

MR
a

� �
x 2 k�qkM

R
a

n o
; if k�qkM

R
a –;;

0; otherwise:

(
ð31Þ
To demonstrate the calculation of the degree aðpjqÞ, we present an example. Let M ¼ ðU;R;vÞ be a Kripke model that con-
sists of the set of possible worlds U ¼ fw1; . . . ;w10g, an equivalence relation R, and a valuation function v. The equivalence
relation R provides the following three equivalence classes:
½w1�R ¼ fw1;w2;w3g; ½w4�R ¼ fw4;w5;w6;w7g; ½w8�R ¼ fw8;w9;w10g:
Moreover, the truth sets of three nonmodal sentences p1; p2, and q in M are:
kp1k
M ¼ fw1;w2;w3;w4;w5;w6g; kp2k

M ¼ fw2;w3;w4;w5;w6;w7g;
kqkM ¼ fw1;w2;w3;w4;w5;w6;w7;w8g:
Note that both p1 and p2 conclude q.
Suppose we fix a ¼ 0:7, and consider the a-level fuzzy measure model MR

a based on background knowledge M. Here, for
the two rules p1 ! q and p2 ! q, we calculate the degrees aðp1jqÞ and aðp2jqÞ, respectively. The set of typical situations of q in
MR

a is the set
k�qkM
R
a ¼ ½w1�R [ ½w4�R ¼ fw1;w2;w3;w4;w5;w6;w7g:
For aðp1jqÞ, we need to calculate the degrees of the truth set kp1k
M by the fuzzy measures lR

x defined by (20) as follows:
lR
wi kp1k

M
� �

¼
½w1�R \ kp1k

M
�� ��

½w1�R
�� �� ¼ fw1;w2;w3gj j

fw1;w2;w3gj j ¼ 1; wi 2 ½w1�R;

lR
wj kp1k

M
� �

¼
½w4�R \ kp1k

M
�� ��

½w4�R
�� �� ¼ fw4;w5;w6gj j

fw4;w5;w6;w7gj j ¼
3
4
; wj 2 ½w4�R:
Thus, we have the degree aðp1jqÞ as follows:
aðp1jqÞ ¼min 1;
3
4

� �
¼ 3

4
:

Similarly, we also calculate the degree aðp2jqÞ ¼ 2
3.

For any nonmodal sentence p! q, the degree aðpjqÞ satisfies the following good property.

Proposition 1. Let p! q 2LMLðPÞ be a nonmodal sentence. For any a-level fuzzy measure model based on background
knowledge MR

a with the fixed degree a 2 ð0:5;1�, if the condition k�qkM
R
a –; holds, the following property is satisfied:
MR
a 
 �q! �p() aðpjqÞP a: ð32Þ
Proof. ð(Þ Suppose that aðpjqÞP a holds. Because we have k�qkM
R
a –; by the assumption of the proposition, there is a pos-

sible world y 2 k�qkM
R
a such that aðpjqÞ ¼ lR

y kpk
MR

a
� �

and lR
y kpk

MR
a

� �
6 lR

x kpk
MR

a
� �

for all typical situations x 2 k�qkM
R
a .

Because aðpjqÞP a holds, lR
x kpk

MR
a

� �
P a for all x 2 k�qkM

R
a . Therefore, we have k�qkM

R
a # k�pkM

R
a , which leads to

MR
a 
 �q! �p.

ð)Þ Suppose that MR
a 
 �q! �p holds. This property implies that k�qkM

R
a # k�pkM

R
a . Moreover, because we have

k�qkM
R
a –; by assumption, at least one typical situation of q exists. Thus, for all typical situations x 2 k�qkM

R
a of

q;lR
x kpk

MR
a

� �
P a holds. Therefore, by the definition of the degree aðpjqÞ, we conclude that aðpjqÞP a holds. h

Proposition 1 indicates that we can use the degree aðpjqÞ as a criterion to select a rule p! q that implies the fact q. For
example, from many rules pi ! q ðpi 2 fp1; . . . ; pnð; . . .ÞgÞ that imply q, we can select a rule pj ! q with the highest degree
aðpjjqÞ such that aðpjjqÞP a. In this case, we consider the selected rule pj ! q as the most universal rule to explain the fact
q in the sense that all typical situations of q fit the typical situations of pj. Thus, in the above example, we select the rule
p1 ! q because we have aðp1jqÞP a ¼ 0:7 but aðp2jqÞ < a. On the other hand, we can consider the case that no rule satisfies
(31) as a situation in which we cannot explain the fact q by the current background knowledge.

Therefore, by selecting the rule p! q with the highest degree aðpjqÞ such that aðpjqÞP a, we can characterize abduction
that infers p from the fact q based on typical situations by the following form of valid reasoning:
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By this formulation of abduction based on typical situations, it is clear that the difference of the degree a 2 ð0:5;1� affects
the result of abduction.

As an example of abduction (or hypothesis reasoning), we consider reasoning based on fortune-telling. Suppose sentences
p1; p2, and q used in the above example have the following meanings:

� p1: I wear some red items.
� p2: My blood type is AB.
� q: I am lucky.

Then, using the a-level fuzzy measure model MR
a based on background knowledge M in the above example, reasoning

based on fortune-telling is characterized by abduction as follows:
6. Conclusion

In this paper, we have introduced an a-level fuzzy measure model based on background knowledge and proposed a uni-
fied formulation of deduction, induction, and abduction based on this model. Using the proposed model, we have character-
ized typical situations of the given facts and rules by ð1� aÞ-lower approximation of truth sets of nonmodal sentences that
represent the given facts and rules. We have also proven that the system EMND45 is sound with respect to the class of all a-
level fuzzy measure models based on background knowledge. Moreover, we have characterized deduction, induction, and
abduction as reasoning processes based on typical situations. In the proposed framework, deduction and abduction are illus-
trated as valid reasoning processes based on typical situations of facts. On the other hand, induction is illustrated as a reason-
ing process of generalization based on observations. Furthermore, in the a-level fuzzy measure model based on background
knowledge, we have pointed out that induction has nonmonotonicity based on revision of the indiscernibility relation in the
given Kripke model as background knowledge and gave an example in which a rule inferred by induction based on typical
situations is rejected by refinement of the indiscernibility relation.

Several issues remain to be investigated. One of the most important, we think, is the treatment of iteration of deduction,
induction, and abduction in the proposed framework. All reasoning processes we have treated in this paper are one-step rea-
soning in that the reasoning processes are complete after using either deduction, induction, or abduction only once. There-
fore, we need to extend the proposed framework to treat multiple-step reasoning, and we think that this extension will be
closely connected to belief revision [2,3] and belief update [4] in the proposed framework. Moreover, choice of the degree
a 2 ð0:5;1� affects the results of reasoning directly in the sense of whether and to what degree we allow the existence of
exceptions to typical situations. However, we assumed that a is given in this paper, and we have not discussed how to choice
a. Considering and introducing some criteria for choosing a are also important for the proposed framework.
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