A Multi-Dimensional Age-Dependent Branching ProcessSubcritical Case

K. Aiyappan Nair and Charles J. Mode
State University of New York at Buffalo
Submitted by Richard Bellman

1. Introduction

We consider a population consisting of n different types of particles, each particle living and reproducing independently of others. A particle of type i lives for a random length of time ℓ_{i} distributed according to the law $P\left(\ell_{i} \leqslant t\right)=G_{i}(t)$, and at the time of its death is replaced by a random number of offspring ($j_{1}, j_{2}, \ldots, j_{n}$) of various types. Let

$$
\begin{aligned}
h_{i}(s)=\sum_{J} p_{i}(J) s_{1}^{j_{1}} \ldots s_{n}^{j_{n}}, & s=\left(s_{1}, s_{2}, \ldots, s_{n}\right), \\
J & =\left(j_{1}, j_{2}, \ldots, j_{n}\right),
\end{aligned}
$$

denote the generating function of the probabilities $p_{i}(J)$. Also, let

$$
Z(t)=\left(Z_{1}(t), Z_{2}(t), \ldots, Z_{n}(t)\right)
$$

be the random vector giving the number of particles at time t. The nature of $Z(t)$ depends mainly on the moment matrix $M=\left(m_{i j}\right)$ where

$$
\left.m_{i j}=\frac{\partial h_{i}(s)}{\partial s_{j}} \right\rvert\, s=(1,1, \ldots, 1) .
$$

We shall always assume that M is irreducible. Let ρ be the Perron-Frobenius root of M. Wc say that the above described process is a subcritical process if $\rho<1$. The case when M is a positive matrix with $\rho>1$ has been extensively studied by Mode [1, 2]. Practically no results are available for $\rho \leqslant 1$ in the multi-dimensional case. Vinogradov [7] has obtained an asymptotic form of the probability of extinction in the one-dimensional case. It may also be mentioned that results are available for the case of Galton-Watson processes with discrete and continuous time when $\rho<1[3,12]$.
The purpose of this paper is to study the subcritical multi-dimensional age-dependent process and get results analogous to those in [3], using Haar's Tauberian theorem [4].

2. On a System of Integral Equations

Frequently in the analysis of the age-dependent branching process we come across a system of integral equations of the type

$$
\begin{equation*}
A_{i}(t)=f_{i}(t)+\int_{0}^{t} \sum_{j=1}^{n} a_{i j} A_{j}(t-u) d G_{i}(u), \quad i=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is an irreducible matrix of non-negative elements, $G_{i}(t)$ is a distribution function, and $f_{i}(t)$ is a bounded function. Let us define the convolution operation

$$
G_{1} * G_{2}(t)=\int_{0}^{t} G_{1}(t-u) d G_{2}(u) .
$$

If $a_{i j}<\infty$ and $G_{i}(0+)=0$ for all i and j, then among all functions bounded on finite intervals in $[0, \infty)(2.1)$ has a unique bounded solution which may be represented as

$$
\begin{equation*}
A_{i}(t)=f_{i}(t)+\sum_{j=1}^{n} f_{j} * F_{i j}(t) \tag{2.2}
\end{equation*}
$$

where

$$
F_{i j}(t)=\sum_{r-1}^{\infty} \sum_{i_{1}, \cdots, i_{r-1}} a_{i i_{1}} a_{i_{1} i_{2}} \cdots a_{i_{r-1}} G_{i} * G_{i_{1}} * \cdots * G_{i_{r-1}}(t)
$$

with each i_{k} running from 1 to n (see [1]).
Using the techniques in [4] it is possible to derive an asymptotic form of $A_{i}(t)$. To this end, set

$$
G_{i}^{*}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} d G_{i}(t)
$$

for all real λ for which the integral converges, and

$$
H(\lambda)=\left(a_{i j} G_{i}{ }^{*}(\lambda)\right)
$$

Suppose a real root of the determinantal equation $|I-H(\lambda)|=0$ exists. Then there is a real number α with the following properties. (i) The PerronFrobenius root of the matrix $H(\alpha)$ is 1 and corresponding to this root there are positive left and right eigenvectors $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\prime}$ such that $\eta H(\alpha)=\eta, H(\alpha) \mu=\mu, \eta \mu=1$, and $\max _{i} \mu_{i}=1$.
(ii) α is the root of the determinantal equation $|I-H(\lambda)|=0$ with largest real part and has multiplicity one.

A proof of (i) and (ii) for the case of positive matrices with $\rho>1$ may be found in [1,5]. The proof is similar for the case of irreducible matrices.

If $\rho>1 \alpha$ exists and $\alpha>0$, and if $\rho=1, \alpha=0$. If $\rho<1 \alpha$ may or may not exist depending on $G_{i}(t), i=1,2, \ldots, n$. It is not difficult to see that if $G_{i}{ }^{*}(\lambda)$ exists and continuous in $(-a, \infty)$ for some $a>0$ and $G_{i}^{*}(\lambda) \rightarrow \infty$ as $\lambda \rightarrow-a+(i=1,2, \ldots, n)$ then α exists for $\rho<1$. The distribution functions with the following densities are examples of this situation.
(i) $g_{i}(x)=\frac{a^{b_{i}}}{\Gamma b_{i}} x^{b_{i}-1} e^{-a x}, \quad 0 \leqslant x<\infty$
(ii) $g_{i}(x)=c e^{-x^{2}}, \quad 0 \leqslant x<\infty$.

There are cases when $\rho<1$ and α does not exist. Obviously this is true of distribution functions such that $\int_{0}^{\infty} e^{\epsilon t} d G_{i}(t)=\infty$ for every $\epsilon>0$. Chistyakov [6] has studied this case for the one dimensional process. An easy extension of his results to the multi-dimensional case is possible when $G_{i}(t)=G(t)$ ($i=1,2, \ldots, n$). However, we will not attempt to do this here.

Theorem 2.1. Let the following conditions hold
(i) A is irreducible.
(ii) α exists.
(iii) $\int_{0}^{\infty} t^{4} e^{-\alpha t} d G_{i}(t)<\infty$ for an integer $r \geqslant 2$.
(iv) Density $g_{i}(t)$ of $G_{i}(t)$ exists and $t^{k} e^{-\alpha t} g_{i}(t)(k=0,1, \ldots, r-2)$ are of bounded variation in $(0, \infty)(i=1,2, \ldots, n)$.
(v) The functions $f_{i}(t)$ are of the form $f_{i}(t)=\sum_{j=1}^{n} a_{j} f_{i j}(t)$ where a_{j} 's are constants, $e^{-\alpha t} f_{i j}(t)$'s are bounded and non-negative functions for $t \geqslant 0$ and satisfy the conditions

$$
\lim _{t \rightarrow \infty} t^{r-2} e^{-\alpha t} f_{i j}(t)=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} t^{r-2} \int_{t}^{\infty} e^{-\alpha x} f_{i j}(x) d x=0
$$

Let $B(\lambda)$ be the adjoint of the matrix $I-H(\lambda)$,

$$
\Delta(\lambda)=|I-H(\lambda)|, \quad \Delta^{\prime}(\lambda)=\frac{d \Delta(\lambda)}{d \lambda}, \quad f_{j}^{*}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} f_{i}(t) d t
$$

and

$$
f^{*}(\lambda)=\left(f_{1}^{*}(\lambda), f_{2}^{*}(\lambda), \ldots, f_{n}^{*}(\lambda)\right)
$$

Then

$$
\lim _{t \rightarrow \infty} t^{r-2}\left\{e^{-\alpha t} A_{i}(t)-a_{i}\right\}=0
$$

where a_{i} is the i-th element in the vector

$$
a=\frac{1}{\Delta^{\prime}(\alpha)} B(\alpha) f^{*}(\alpha)
$$

Proof. The proof is essentially the same as that in [4] except for some obvious modifications needed for the multi-dimensional case. Hence we shall sketch the proof omitting the details.

Let us first assume that $\rho=1$ so that $\alpha=0$. Let $G^{*}(\lambda)=1-\Delta(\lambda)$. It can be shown that

$$
G^{*}(\lambda)=\sum_{s}(-1)^{N(s)} G_{s}^{*}(\lambda) \Delta_{s}
$$

where s is a non-empty subset of $(1,2, \ldots, n), N(s)$ is the number of elements in s,

$$
G_{s}^{*}(\lambda)=G_{\left(i_{1} \ldots \ldots i_{r}\right)}^{*}(\lambda)=G_{i_{1}}^{*}(\lambda) \cdots G_{i_{r}}^{*}(\lambda),
$$

A_{s} is the square submatrix of A corresponding to the rows and columns in the set s and $\Delta_{s}=\left|A_{s}\right|$, the determinant of A_{s}.

Let $g(t)$ be the function whose Laplace transform is $G^{*}(\lambda)$. It is easy to see that $g(t)$ exists, since $G^{*}(\lambda)$ is the Laplace transform of a linear combination of convolutions of densities. Consider the system of equations

$$
\begin{equation*}
C_{i j}(t)=\delta_{i j} \int_{0}^{t} g(t-u) g(u) d u+\int_{0}^{t} \sum_{j} a_{i j} C_{i j}(t-u) d G_{i}(u) \tag{2.3}
\end{equation*}
$$

Let

$$
C_{j}(t)=\left(C_{1 j}(t), C_{2 j}(t), \ldots, C_{n j}(t)\right)^{\prime}
$$

and

$$
\delta_{j}=\left(\delta_{1 j}, \delta_{2 j}, \ldots, \delta_{n j}\right)^{\prime}
$$

Taking Laplace transforms in (2.3),

$$
\begin{equation*}
C_{j}^{*}(\lambda)=\frac{B(\lambda) \delta_{j}\left[G^{*}(\lambda)\right]^{2}}{\Delta(\lambda)} \quad \text { for } \lambda>0 \tag{2.4}
\end{equation*}
$$

Applying Haar's Tauberian theorem to (2.4) we find that there exist constants $c_{i j}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t^{r-2}\left\{C_{j}(t)-c_{j}\right\}=0, \quad j=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

where

$$
c_{i}=\left(c_{1 j}, c_{2 j}, \ldots, c_{n j}\right)^{\prime}
$$

Taking Laplace transforms in (2.1),

$$
\begin{equation*}
A^{*}(\lambda)=\frac{B(\lambda) f^{*}(\lambda)}{\Delta(\lambda)} \tag{2.6}
\end{equation*}
$$

where

$$
A^{*}(\lambda)=\left(A_{1}^{*}(\lambda), A_{2}^{*}(\lambda), \ldots, A_{n}^{*}(\lambda)\right)^{\prime}
$$

From (2.4) and (2.6),

$$
\begin{equation*}
A^{*}(\lambda)=B(\lambda) f^{*}(\lambda)+B(\lambda) f^{*}(\lambda) G^{*}(\lambda)+C^{*}(\lambda) f^{*}(\lambda) \tag{2.7}
\end{equation*}
$$

where

$$
C^{*}(\lambda)=\left(C_{i j}^{*}(\lambda)\right)
$$

From (2.5) and (2.7) we find, as in [4], that there exists a vector $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that

$$
\lim _{t \rightarrow \infty} t^{r-2}\{A(t)-a\}=0
$$

Using a result on page 187 Widder [10] the vector a can be obtained as

$$
a=\lim _{\lambda \rightarrow 0^{+}} \lambda A^{*}(\lambda)=\frac{B(0) f^{*}(0)}{\Delta^{\prime}(0)}
$$

If $\rho \neq 1$, set

$$
\begin{aligned}
D_{i}(t) & =e^{-\alpha t} A_{i}(t), \\
k_{i}(t) & =e^{-\alpha t} f_{i}(t), \\
d_{i j} & =a_{i j} G_{i}^{*}(\alpha),
\end{aligned}
$$

and

$$
H_{i}(t)=\frac{1}{G_{i}^{*}(\alpha)} \int_{0}^{t} e^{-\alpha u} d G_{i}(u)
$$

Multiplying (2.1) by $e^{-\alpha t}$, we see that

$$
D_{i}(t)=k_{i}(t)+\int_{0}^{t} \sum_{j} d_{i j} D_{j}(t-u) d H_{i}(u) .
$$

But the Perron-Frobenius root of the matrix $\left(d_{i j}\right)$ is one, and hence

$$
\lim _{t \rightarrow \infty} t^{r-2}\left\{D_{i}(t)-d_{i}\right\}=0
$$

where

$$
d_{i}=\lim _{\lambda \rightarrow 0^{+}} \lambda D_{i}^{*}(\lambda)=\lim _{\lambda \rightarrow 0^{+}} \lambda A_{i}^{*}(\lambda+\alpha)
$$

From this the theorem follows.

3. Limiting Distribution of $Z(t)$

Let $\epsilon_{i}=\left(\delta_{i 1}, \ldots, \delta_{i n}\right)$ and $Z(0)=\epsilon_{i}$. It is well known that the generating functions $F_{i}(s, t) i=1,2, \ldots, n$ of $Z(t)$ given $Z(0)=\epsilon_{i}$ satisfy the system of integral equations

$$
\begin{equation*}
F_{i}(s, t)=s_{i}\left[1-G_{i}(t)\right]+\int_{0}^{t} h_{i}[F(s, t-u)] d G_{i}(u), \quad i=1,2, \ldots, n \tag{3.1}
\end{equation*}
$$

where

$$
F(s, t)=\left(F_{1}(s, t), F_{2}(s, t), \ldots, F_{n}(s, t)\right) .
$$

For a discussion of (3.1) the reader is referred to [8].
If $G_{i}(0+)=0$ and $m_{i j}<\infty$ for all i and j, then (3.1) has a unique solution $F(s, t)$ such that $F_{i}(\underline{1}, t)=1$ for all $t \geqslant 0$ (see [8]). The integral equations (3.1) may be used as a starting point in the study of age-dependent branching processes.

Let $B_{i}(t)$ and $D_{i}(t)$ be the total number of individuals of the i-th type in the population who have been born and have died upto and including time t. If $m_{i j}<\infty$ and $G_{i}(0+)=0$ for all (i, j) then $B_{i}(t)<\infty$ a.s. for all $t \geqslant 0$ [see [11]]. Thus using the relation $Z_{i}(t)=B_{i}(t)-D_{i}(t)$, we find that the sample functions $Z_{i}(t)$ are continuous from the right so that the process is separable. Hence we can speak of the probability P_{i} of the event $[Z(t)=0$ for some $t>0$ given that $Z(0)=\epsilon_{i}$], i.e. the event of extinction of the population. It can be easily shown that $F_{i}(0, t) \uparrow P_{i}$ as $t \uparrow \infty$. The probabilities $P_{1}, P_{2}, \ldots, P_{n}$ satisfy the system of equations $s_{i}=h_{i}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, $i=1,2, \ldots, n$, and are equal to the coordinates of the root of the system of equations lying closest to the origin in the square $0 \leqslant x_{i} \leqslant 1(i=1,2, \ldots, n)$ (see [8]).

We call a system of types $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ a final class if $h_{i_{1}}(s), h_{i_{2}}(s), \ldots, h_{i_{r}}(s)$ are homogeneous linear functions in the variables $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{r}}$. In order that $P_{i}=1(i=1,2, \ldots, n)$ it is necessary and sufficient that (1) $\rho \leqslant 1$ and (2) the system of types $(1,2, \ldots, n)$ does not contain a single final class (see [8]). Hence it is of interest to study the limiting behavior of the conditional random vector $Z(t)$ given that $Z(t)>0$. The following theorem gives a precise statement of our results.

Theorem 3.1. Let the following conditions hold

(i) The system of types $(1,2, \ldots, n)$ does not contain a final class.
(ii) $\mu_{i j k}=\left.\frac{\partial^{2} h_{i}(s)}{\partial s_{j} \partial s_{k}}\right|_{s=\underline{1}}<\infty$ for all (i, j, k).
(iii) $M=\left(m_{i j}\right)$ is irreducible with $\rho<1$.
(iv) α exists.
(v) $\int_{0}^{\infty} t^{3} e^{-\alpha t} d G_{i}(t)<\infty, i=1,2, \ldots, n$.
(vi) Density $g_{i}(t)$ of $G_{i}(t)$ exists and $e^{-\alpha t} g_{i}(t)$ and $t e^{-\alpha t g_{i}(t)}$ are of bounded variation in $(0, \infty)(i=1,2, \ldots, n)$.
(vii) $t e^{-\alpha t} g_{i}(t) \rightarrow 0$ as $t \rightarrow \infty, i=1,2, \ldots, n$.

Then the conditional random vector $Z(t)$ given that $Z(0)=\epsilon_{i}$ and $Z(t)>0$ converges in distribution to a random vector whose distribution is independent of i.
Proof. Using Taylor expansion

$$
\begin{equation*}
h_{i}(s)=1+\sum_{j} m_{i j}\left(1-s_{j}\right)+\sum_{j k} \bar{\mu}_{i j k}\left(1-s_{j}\right)\left(1-s_{k}\right) \tag{3.2}
\end{equation*}
$$

where

$$
0 \leqslant \bar{\mu}_{i j k} \leqslant\left.\frac{\partial^{2} h_{i}(s)}{\partial s_{j} \partial s_{k}}\right|_{s=1} .
$$

Let $\Delta_{i}(s, t)=1-F_{i}(s, t)$. Then from (3.1) and (3.2) we get

$$
\begin{align*}
\Delta_{i}(s, t)= & \left(1-s_{i}\right)\left(1-G_{i}(t)\right)+\int_{0}^{t} \sum_{j} m_{i j} \Delta_{j}(s, t-u) d G_{i}(u) \tag{3.3}\\
& -\int_{0}^{t} \sum_{j i k} \bar{\mu}_{i j k} \Delta_{j}(s, t-u) \Delta_{k}(s, t-u) d G_{i}(u)
\end{align*}
$$

For $s=0$,

$$
\begin{aligned}
\Delta_{i}(0, t)= & 1-G_{i}(t)+\int_{0}^{t} \sum_{j} m_{i j} \Delta_{j}(0, t-u) d G_{i}(u) \\
& -\int_{0}^{t} \sum_{j k} \bar{\mu}_{i j k} \Delta_{j}(0, t-u) \Delta_{k}(0, t-u) d G_{i}(u) .
\end{aligned}
$$

Therefore $\Delta_{i}(0, t) \leqslant A_{i}(t)$ where $A_{i}(t)(i=1,2, \ldots, n)$ are the solutions of

$$
A_{i}(t)=\left[1-G_{i}(t)\right]+\int_{0}^{t} \sum_{j} m_{i j} A_{j}(t-u) d G_{i}(u) .
$$

From Theorem 2.1 it follows that $A_{i}(t)=0\left(e^{\alpha t}\right)$. Hence

$$
\Delta_{i}(s, t) \leqslant \Delta_{i}(0, t) \leqslant A_{i}(t) \leqslant A e^{\alpha t}
$$

for some finite number A and $0 \leqslant s \leqslant 1$. Now write (3.3) in the form

$$
\Delta_{i}(s, t)=f_{i}(s, t)+\int_{0}^{t} \sum_{j} m_{i j} \Delta_{i}(s, t-u) d G_{i}(u)
$$

where

$$
f_{i}(s, t)=\left(1-s_{i}\right)\left(1-G_{i}(t)\right)-\int_{0}^{t} \sum_{j, k} \bar{\mu}_{i j k} \Delta_{j}(s, t-u) \Delta_{k}(s, t-u) d G_{i}(u) .
$$

To apply Theorem 2.1 we must verify that the conditions

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t e^{-\alpha t} f_{i}(s, t)=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t \int_{i}^{\infty} e^{-\alpha x} f_{i}(s, x) d x=0 \tag{3.5}
\end{equation*}
$$

are satisfied. Since

$$
\int_{0}^{\infty} t^{2} e^{-\alpha t} d G_{i}(t)<\infty
$$

we have

$$
\lim _{t \rightarrow \infty} t e^{-\alpha t}\left[1-G_{i}(t)\right]=0
$$

and

$$
\lim _{t \rightarrow \infty} t \int_{t}^{\infty} e^{-\alpha x}\left[1-G_{i}(x)\right] d x=0
$$

(see page 143 [9]). Also

$$
\int_{0}^{t} \bar{\mu}_{i j k} \Delta_{j}(s, t-u) \Delta_{k}(s, t-u) d G_{i}(u) \leqslant A^{2} \mu_{i j k} \int_{0}^{t} e^{2 \alpha(t-u)} d G_{i}(u)
$$

Hence

$$
\begin{aligned}
\lim _{t \rightarrow \infty} t e^{-\alpha t} \int_{0}^{t} \bar{\mu}_{i j k} \Delta_{j}(s, t-u) \Delta_{k}(s, t-u) d G_{i}(u) & \leqslant A^{2} \mu_{i j k} \lim _{t \rightarrow \infty} \frac{t \int_{0}^{t} e^{-2 \alpha u} d G_{i}(u)}{e^{-\alpha t}} \\
& =0 \quad \text { by L'Hospital's rule. }
\end{aligned}
$$

Thus $t e^{-\alpha t} f_{i}(s, t) \rightarrow 0$ verifying (3.4). Now consider

$$
\begin{gathered}
\int_{0}^{\infty} t e^{-\alpha t} \int_{0}^{t} \bar{\mu}_{i j k} \Delta_{j}(s, t-u) \Delta_{k}(s, t-u) d G_{i}(u) d t \\
\leqslant \frac{A^{2} \mu_{i j k}}{\alpha^{2}} \int_{0}^{\infty}(1-\alpha u) e^{-\alpha u} d G_{i}(u)<\infty
\end{gathered}
$$

verifying (3.5).

Thus Theorem 2.1 applies and

$$
\lim _{t \rightarrow \infty} t\left\{e^{-\alpha t} \Delta_{i}(s, t)-k_{i}(s)\right\}=0
$$

for some function $k_{i}(s)$. Hence

$$
\begin{equation*}
e^{-\alpha t} \Delta_{i}(s, t) \rightarrow k_{i}(s) \quad \text { as } \quad t \rightarrow \infty \tag{3.6}
\end{equation*}
$$

uniformly in $0 \leqslant s \leqslant 1$. Using the expansion

$$
h_{i}(\underline{1}-s)=1-\sum_{j} \bar{m}_{i j} s_{j}, \quad 0 \leqslant \bar{m}_{i j} \leqslant m_{i j}
$$

we get from (3.1),

$$
\Delta_{i}(s, t)=\left(1-s_{i}\right)\left[1-G_{i}(t)\right]+\int_{0}^{t} \sum_{j} \bar{m}_{i j} \Delta_{j}(s, t-u) d G_{i}(u)
$$

Multiplying by $e^{-\alpha t}$ and using the fact $\bar{m}_{i j} \rightarrow m_{i j}$ as $\Delta_{i}(s, t) \rightarrow 0$ i.e. as $t \rightarrow \infty$ we get,

$$
k_{i}(s)=\sum_{j} m_{i j} G_{i}^{*}(\alpha) k_{j}(s)
$$

In matrix form

$$
k(s)=H(\alpha) k(s)
$$

where

$$
k(s)=\left(k_{1}(s), k_{2}(s), \ldots, k_{n}(s)\right)^{\prime}
$$

By the definition of α the Perron-Frobenius root of $H(\alpha)$ is one. Hence $k(s)$ must be a multiple of the vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\prime}$. Thus

$$
\begin{equation*}
k_{i}(s)=f(s) \mu_{i} \tag{3.7}
\end{equation*}
$$

for some function $f(s)$.
Let $F_{i}^{*}(s, t)$ be the generating function of the conditional random vector $Z(t)$ given that $Z(0)=\epsilon_{i}$ and $Z(k)>0$. Then

$$
F_{i}^{*}(s, t)=1-\frac{\Delta_{i}(s, t)}{\Delta_{i}(0, t)} \rightarrow 1-\frac{f(s)}{f(0)} \quad \text { as } \quad t \rightarrow \infty
$$

Uniformly in $0 \leqslant s \leqslant 1$ by (3.6) and (3.7). Hence the theorem.
Remark. The proof of the Theorem 3.1 would not be complete unless we show that $f(0)>0$. This can be done by imposing a condition on $\mu_{i j k}$'s. Consider the equations

$$
A_{i}(t)=\left[1-G_{i}(t)\right]+\int_{0}^{t} \sum_{j} m_{i j} A_{5}(t-u) d G_{i}(u)
$$

and let

$$
c=\max _{i} \sup _{t} A_{i} e^{\alpha t} .
$$

Then $\Delta_{i}(0, t) \leqslant c e^{\alpha t}$ so that

$$
f_{i}(0, t) \geqslant\left[1-G_{i}(t)\right]-\int_{0}^{t} \sum_{j, k} \mu_{i j k} c^{2} e^{2 \alpha(t-u)} d G_{i}(u)
$$

Taking Laplace transforms we get

$$
f_{i}^{*}(0, \alpha) \geqslant \frac{1-G_{i}^{*}(\alpha)}{\alpha}+c^{2} \sum_{j k} \mu_{i j k} \frac{G_{i}^{*}(\alpha)}{\alpha}
$$

Therefore

$$
\begin{equation*}
\nu f^{*}(0, \alpha) \geqslant \frac{1}{\alpha} \sum_{i} \nu_{i}\left[1-G_{i}(\alpha)\right]+\frac{c^{2}}{\alpha} \sum_{i j k} \mu_{i j k} \nu_{i} G_{i}^{*}(\alpha) . \tag{3.8}
\end{equation*}
$$

The expression for a in the Theorem 2.1 can be written as

$$
\begin{equation*}
a=b \mu \nu f *(\alpha) \tag{3.9}
\end{equation*}
$$

where

$$
\frac{1}{b}=--\left.\sum_{i, j} m_{i j} \mu_{j} \nu_{i} \frac{d G_{i}^{*}(\lambda)}{d \lambda}\right|_{\lambda=\alpha}
$$

by using a result in [1].
From (3.8) and (3.9) we find that a sufficient condition for $f(0)$ of the Theorem 3.1 to be positive is that

$$
c^{2} \sum_{i j k} \nu_{i} \mu_{i j k} G_{i}^{*}(\alpha)<\sum_{i} \nu_{i}\left[1-G_{i}^{*}(\alpha)\right] .
$$

Acknowledgment

The authors wish to thank Professor Harry Kesten for his helpful criticism of the
preprint.

References

1. C. J. Mode, A multi-dimensional age-dependent branching process with applications to natural selection I, Math. Biosci. 3 (1968), 1-18.
2. C. J. Mode, A multi-dimensional age-dependent branching process with applications to natural selection II, Math. Biosci. 3 (1968), 231-247.
3. M. Jirina, The asymptotic behavior of branching stochastic processes, Math. Statist. Prob. 2 (1962), 87-107.
4. W. Feller, On the integral equation of renewal theory, Ann. Math. Statist. 12 (1941), 243-267.
5. R. Bellman and K. L. Cooke, "Differential-Difference Equations," Academic Press, New York, 1963.
6. V. P. Chistyakov, A theorem of sum of independent positive random variables and its applications to branching random processes 9 (1964), 640-648.
7. O. P. Vinogradov, On an age-dependent branching process, Theor. Prob. Appl. 9 (1964), 131-136.
8. B. A. Sevastyanov, Age-dependent branching process, Theor. Prob. Appl. 9 (1964), 521-537.
9. T. E. Harris, "The Theory of Branching Processes," Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.
10. D. E. Widder, "The Laplace Transform," Princeton University Press, Princeton, N. J., 1946.
11. C. J. Mode, A generalized multi-dimensional age-dependent branching process, Oak Ridge National Laboratory, 1968.
12. A. Joffe and F. Spitzer, On multitype branching processes with $\rho \leqslant 1, J$. Math. Anal. Appl. 19 (1967), 409-430.
