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1. INTRODUCTION

We consider a population consisting of # different types of particles, each
particle living and reproducing independently of others. A particle of type ¢
lives for a random length of time #; distributed according to the law
P(£; < t) = G(r), and at the time of its death is replaced by a random
number of offspring (f; , g ..., j») Of various types. Let

h) =TS sn 5= (555 e )
’ J= G
denote the generating function of the probabilities p,(J). Also, let
2(t) = (Zu(2), Zo(t),--» Zal®)

be the random vector giving the number of particles at time ¢. The nature of
Z(t) depends mainly on the moment matrix M = (m,;) where
5 == —a%;—ffl ls=(1,1,..,1).

We shall always assume that M is irreducible. Let p be the Perron-Frobenius
root of M. We say that the above described process is a subcritical process if
p < 1. The case when M is a positive matrix with p > 1 has been extensively
studied by Mode [1, 2]. Practically no results are available forp < 1 in the
multi-dimensional case. Vinogradov [7] has obtained an asymptotic form of
the probability of extinction in the one-dimensional case. It may also be
mentioned that results are available for the case of Galton-Watson processes
with discrete and continuous time when p < 1 [3, 12].

The purpose of this paper is to study the subcritical multi-dimensional

age-dependent process and get results analogous to those in [3], using Haar’s
Tauberian theorem [4].
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2. ON A SysTEM OF INTEGRAL EQUATIONS

Frequently in the analysis of the age-dependent branching process we come
across a system of integral equations of the type

At = £t + | tﬁ azAft — w) dGu), i=12.,n (21

where 4 = (a;;) is an irreducible matrix of non-negative elements, G(t)
is a distribution function, and fi(t) is a bounded function. Let us define the
convolution operation

G, * Gyft) = f "Gt — u) dGyfu).

If a;; < o0 and G0 +) = O for all 7 and j, then among all functions bounded
on finite intervals in [0, 00) (2.1) has a unique bounded solution which may be
represented as

A = £{D) + z £+ Fult) 22)

where

a0
Fy(t) = Z z @;1\8; 3, " @, Gy x Gy x o x Gy (2)

=1 Gyyenyipy

with each i, running from 1 to n (see [1]).
Using the techniques in [4] it is possible to derive an asymptotic form of
A(t). To this end, set

Gr = [ edG()

0

for all real A for which the integral converges, and
H(Q) = (a:5G;*(A)-

Suppose a real root of the determinantal equation | I — H(d)| = 0 exists.
Then there is a real number « with the following properties. (i) The Perron-
Frobenius root of the matrix H(«) is 1 and corresponding to this root there are
positive left and right eigenvectors n = (1, , Mg ,.+., 1) and g = (i, fhg 5ees i)’
such that nH(x) = 7, H(e) p = p, np = 1, and max; p; = 1.

(i) « is the root of the determinantal equation |I — H(A)| =0 with
largest real part and has multiplicity one.



MULTIDIMENSIONAL AGE-DEPENDENT BRANCHING PROCESS 569

A proof of (i) and (ii) for the case of positive matrices with p > 1 may be
found in [1, 5]. The proof is similar for the case of irreducible matrices.

Ifp > laexistsand « >0, and if p = 1, « = 0. If p < 1 a may or may not
exist depending on G(¢), 1 = 1, 2,..., n. It is not difficult to see that if G,*(A)
exists and continuous in (— a, o) for some @ >0 and G,;*(A)—> oo as
A—> —a 4 (i=1,2,.,n) then « exists for p < 1. The distribution func-
tions with the following densities are examples of this situation.

s
() gdx) = F5 "™,  0<x <o
(i) gix) =ce™, 0<x< o0

There are cases when p < 1 and & does not exist. Obviously this is true of
distribution functions such that f;o et dG (1) = oo for every e > 0. Chistya-
kov [6] has studied this case for the one dimensional process. An easy exten-
sion of his results to the multi-dimensional case is possible when G(t) = G(z)
(# = 1, 2,..., n). However, we will not attempt to do this here.

THEOREM 2.1. Let the following conditions hold
(i) A isirreducible.

(i) o exists.

(iif) [o tre=2tdGy(t) < oo for an integer r > 2.

(iv) Density g,(t) of G{(t) exists and t*e*'g(t) (k =0, 1,...,7 — 2) are of
bounded variation in (0, o) (i = 1, 2,..., n).

(v) The functions f(t) are of the form fi(t) = Z:.‘:l a; f.;(t) where a;’s are
constants, e *Y;(t)'s are bounded and non-negative functions for t >0 and
satisfy the conditions

lim 2y() =0 and  lim e f e~7f (%) dx = 0.
- Q0 . '~ 00 t

Let B(A) be the adjoint of the matrix I — H(}),

am=11—ae,  2@="92, pw=[ ey

and
FHA) = (A*Q 25 L¥A))-
Then

lim - A,(t) — a} = 0
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where a, is the i-th element in the vector

N v
a_A'(ot) B( )f()

Proof. The proof is essentially the same as that in [4] except for some
obvious modifications needed for the multi-dimensional case. Hence we shall
sketch the proof omitting the details.

Let us first assume that p = 1 so that o = 0. Let G*(d) =1 — 4(A). It
can be shown that

G*() =} (— V9 G*() 4,

where s is a non-empty subset of (1, 2,..., n), N(s) is the number of elements
in s,

G* ) = Gg,....i)(A) = GIQA) -+ GIQ),

A, is the square submatrix of 4 corresponding to the rows and columns in the
set s and 4, = | A, |, the determinant of 4, .

Let g(2) be the function whose Laplace transform is G*(A). It is easy to see
that g(t) exists, since G*(A) is the Laplace transform of a linear combination
of convolutions of densities. Consider the system of equations

Cult) =3 [ 8t —w) g du + [ T asCoft —9)dGw). )

Let
Ci(t) = (C15(2), Colt),.., Cos())’
and
8; = (845, 8gj yorey Bpg)+
Taking Laplace transforms in (2.3),

B@) 3,[G*)P®

20 forA > 0. (2.49)

Ci*(A) =

Applying Haar’s Tauberian theorem to (2.4) we find that there exist constants
¢;; such that

1,ir§} r2CHt) — ¢} =0, j=12,..,n (2.5)

where

C; = (Cl..'i sy €25 5eeey an)'.



MULTIDIMENSIONAL AGE-DEPENDENT BRANCHING PROCESS

Taking Laplace transforms in (2.1),
o= BOL
where
AXO) = (A5), A () A, %)’
From (2.4) and (2.6),
A*RA) = BQ)f*(2) 4+ B@A) f*(A) G*Q) + CHA) ()
where
C*A) = (CHM).

571

(2.6)

Q.7)

From (2.5) and (2.7) we find, as in [4], that there exists a vector

a = (a, a,,..., @;) such that

ltirg> -2 {A(t) — a} = 0.

Using a result on page 187 Widder [10] the vector a can be obtained as

o — tig 1) — POSO)

4'(0)
If p #£ 1, set
D) = =14 (1),
ki(t) = e~'f(t),
d;; = a;G*(a),
and

H 1 ‘e
{2) = T J‘ .6 dG(u).
Multiplying (2.1) by e~*¢, we see that
14
Dy(t) = k() + | 3Dt — ) dH, (u).
7

But the Perron-Frobenius root of the matrix (d;;) is one, and hence
l,i_fg t-¥D(t) —d;} =0
where

From this the theorem follows.



572 NAIR AND MODE
3. LiMITING DisSTRIBUTION OF Z(f)

Let ¢; = (8;1 .-, 8;) and Z(0) = ¢; . It is well known that the generating
functions Fy(s, t) 1 = 1, 2,..., n of Z(¢) given Z(0) = e, satisfy the system of
integral equations

Fis, t) = sl — G{t)] + f : BiF(s,t — W] dGw), i=1,2.,n  (3.1)

where

F(s, t) = (Fy(s, 1), Fyfs, t),..., Fo(s, £)).

For a discussion of (3.1) the reader is referred to [8].

If G0 +) = 0 and m;; << oo for all 7 and j, then (3.1) has a unique solution
F(s, t) such that F(1,) =1 for all £ > 0 (see [8]). The integral equations
(3.1) may be used as a starting point in the study of age-dependent branching
processes.

Let B,(t) and D(¢) be the total number of individuals of the i-th type in the
population who have been born and have died upto and including time ¢.
If m;; << o0 and G{(0 +) = 0 for all (7, j) then Byt) < o0 as. forall >0
[see [11]]. Thus using the relation Z,(t) = By(t) — D), we find that the
sample functions Z(t) are continuous from the right so that the process is
separable. Hence we can speak of the probability P; of the event [Z(z) = 0
for some t > 0 given that Z(0) = ¢,], i.e. the event of extinction of the
population. It can be easily shown that F,(0, t) 1 P;as t 1 oo. The probabilities
P,,P,,.., P, satisfy the system of equations s; = k(s;, Sp,.s Sp),
i =1, 2,...,n, and are equal to the coordinates of the root of the system of
equations lying closest to the origin in the square 0 < x, <1 ( = L, 2,..., n)
(see [8]).

We call a system of types (i; , 7, ,..., &,) @ final class if &, (s), & (5),---, k; (s)
are homogeneous linear functions in the variables Sy > Sigreees Si - In order that
P, = 1(i =1, 2,..., n) it is necessary and sufficient that (1) p < 1 and (2) the
system of types (1, 2,..., #) does not contain a single final class (see [8]). Hence
it is of interest to study the limiting behavior of the conditional random vector
Z(t) given that Z(t) > 0. The following theorem gives a precise statement of
our results.

Tueorem 3.1. Let the following conditions hold
(i) The system of types (1, 2,..., n) does not contain a final class.

2h(s)
085 08y lsmy

(1) po = < oo for all (i, §, k).
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(i) M = (my) is irreducible with p < 1.

(iv) o exists.

() [o BetdGt) < oo, i=1,2,.,m

(vi) Density gt) of G(t) exists and e~>'g(t) and te=~'g(t) are of bounded
variation in (0, o) (i =1, 2,..., n).

(vii) te~*igt)—>0ast—c0,i=1,2,..,n
Then the conditional random vector Z(t) given that Z(0) = ¢, and Z(t) >0

converges in distribution to a random vector whose distribution is independent of .

Proof. Using Taylor expansion

Ris) =1+ my(1 —s5;) + ¥ ol — 853 (1 — 5) (3-2)
j i
where
o)
0< Haak = asf ask §=1 '

Let Ay(s, t) = 1 — Fs, t). Then from (3.1) and (3.2) we get

45, = (1 = 5) (L = Gt + [ ¥ mads, ¢ — 1) dGi(e)

- 'S (s, t — u) A4ls, t — u) dGy(u)

0 jk

(3.3)

Fors =0,
400,0)= 1 — Gt) + | Xm0, 1 — ) dGa)
0

t
= | T Radi0,t = ) 440, ¢ — ) dGifu).
ik
Therefore 4,(0,t) << At) where A(t) (¢ =1, 2,..., n) are the solutions of
t
Af) =11 — GO + [ ¥ myAft — w) dG (u).
0 j

From Theorem 2.1 it follows that A,(¢) = 0(¢**). Hence
Afs, 1) < 4,0, 1) < Aft) < Aet

for some finite number 4 and 0 < s << 1. Now write (3.3) in the form

a6 1) = £ 1) + [ T mudis,t — ) dG)
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where
560 = (1 =) (1 = Go) ~ [ T, fundost ~ ) ey £ — ) dG).

To apply Theorem 2.1 we must verify that the conditions
ltim teify(s, 1) =0 34

and

[=e]

limt ) e %ffs,x)dx =0 (3.5)
4

00

are satisfied. Since
| : et dG (1) < o,
we have
lgg teofl — G(t)] =0

and

o0

limez | e[l — Gyx)]dx =0
t

-

(see page 143 [9]). Also
i t
[ Bandfs, t — ) A5, t — ) dG ) < Augs | €0t dG(u).
1} (1]

Hence

t
t t [ e dG(u)
ltim te‘“t j ﬁ,-,-kAj(s, t — u) Ak(S, t— u) dG,(u) < Azl‘ijk ltlm =0
>0 P =2©

e—at
=0 by L’Hospital’s rule.
Thus te~*¥(s, t) — 0 verifying (3.4). Now consider
o i
[t | fundifs, t — ) dils, t — ) dGy(w) dt
0 0

142 47 ad
< Shoe j (1~ o) e dGyw) < 0

verifying (3.5).



MULTIDIMENSIONAL AGE-DEPENDENT BRANCHING PROCESS 575

Thus Theorem 2.1 applies and

lim et (s, #) — ks)} =0

for some function k,(s). Hence
et (s, 1) > k(s) a t—>o (3.6)
uniformly in 0 <{'s < ]. Using the expansion
h(l—s)=1—=Y mys;, O0<#y;<my,
j
we get from (3.1),

45, =1 — ) [1 — GOl + | Y Al s, t — ) G (u).
0'j

Multiplying by e—** and using the fact #i;; — m,; as 4,(s, #) > 0 i.e. as t — o0
we get,

kys) = Z my;G*(o) ky(s).

In matrix form
k(s) = H() k(s)
where

k(s) = (Ry(s), Ral$)s--» Bn(s))'-

By the definition of « the Perron-Frobenius root of H(«) is one. Hence A(s)
must be a multiple of the vector u = (it , 2 5.es )+ Thus

kis) = f(s) pi (3.7
for some function f(s).
Let F;*(s, ) be the generating function of the conditional random vector
Z(t) given that Z(0) = ¢, and Z(k) > 0. Then

F,-*(s,t)=1—£iﬁ—t-) 1 SO as  [— o0,

40,9 f0)

Uniformly in 0 <{'s << 1 by (3.6) and (3.7). Hence the theorem.

Remark. The proof of the Theorem 3.1 would not be complete unless we
show that f(0) > 0. This can be done by imposing a condition on p;’s.
Consider the equations

440 =11 — GO + [ T myd e — ) d6iw)
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and let

¢ = max sup 4,e™".
it

Then 4,0, t) < ce* so that

0,02 1 — G — [ 5 mpcteti- dG(a).

0 i,k

Taking Laplace transforms we get

Fr0,0) > L2000 &3 b gLy

Therefore
v *(0, o) = ‘z vi[l — G{o)] + Z piwiGi¥ () (3.8)

iik

The expression fot a in the Theorem 2.1 can be written as

a == buvf *(«) 3.9
where
1 dG;*(A
A Z Myjthsvy ___Z\Q \
3,0 =

by using a result in [1].
From (3.8) and (3.9) we find that a sufficient condition for f(0) of the
Theorem 3.1 to be positive is that

c z zl-"ukG (a) < sz[l - i*(a)]'

ijk
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