JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 34, 567-577 (1971)

A Multi-Dimensional Age-Dependent Branching Process— Subcritical Case

K. AIYAPPAN NAIR AND CHARLES J. MODE

State University of New York at Buffalo Submitted by Richard Bellman

1. Introduction

We consider a population consisting of n different types of particles, each particle living and reproducing independently of others. A particle of type i lives for a random length of time ℓ_i distributed according to the law $P(\ell_i \leq t) = G_i(t)$, and at the time of its death is replaced by a random number of offspring $(j_1, j_2, ..., j_n)$ of various types. Let

$$h_i(s) = \sum_{J} p_i(J) s_1^{j_1} \cdots s_n^{j_n}, \qquad s = (s_1, s_2, ..., s_n),$$

$$J = (j_1, j_2, ..., j_n),$$

denote the generating function of the probabilities $p_i(I)$. Also, let

$$Z(t) = (Z_1(t), Z_2(t), ..., Z_n(t))$$

be the random vector giving the number of particles at time t. The nature of Z(t) depends mainly on the moment matrix $M = (m_{ij})$ where

$$m_{ij} = \frac{\partial h_i(s)}{\partial s_i} \mid s = (1, 1, ..., 1).$$

We shall always assume that M is irreducible. Let ρ be the Perron-Frobenius root of M. We say that the above described process is a subcritical process if $\rho < 1$. The case when M is a positive matrix with $\rho > 1$ has been extensively studied by Mode [1, 2]. Practically no results are available for $\rho \leqslant 1$ in the multi-dimensional case. Vinogradov [7] has obtained an asymptotic form of the probability of extinction in the one-dimensional case. It may also be mentioned that results are available for the case of Galton-Watson processes with discrete and continuous time when $\rho < 1$ [3, 12].

The purpose of this paper is to study the subcritical multi-dimensional age-dependent process and get results analogous to those in [3], using Haar's Tauberian theorem [4].

2. On a System of Integral Equations

Frequently in the analysis of the age-dependent branching process we come across a system of integral equations of the type

$$A_i(t) = f_i(t) + \int_0^t \sum_{j=1}^n a_{ij} A_j(t-u) dG_i(u), \qquad i = 1, 2, ..., n$$
 (2.1)

where $A = (a_{ij})$ is an irreducible matrix of non-negative elements, $G_i(t)$ is a distribution function, and $f_i(t)$ is a bounded function. Let us define the convolution operation

$$G_1 * G_2(t) = \int_0^t G_1(t-u) dG_2(u).$$

If $a_{ij} < \infty$ and $G_i(0+) = 0$ for all i and j, then among all functions bounded on finite intervals in $[0, \infty)$ (2.1) has a unique bounded solution which may be represented as

$$A_i(t) = f_i(t) + \sum_{j=1}^{n} f_j * F_{ij}(t)$$
 (2.2)

where

$$F_{ij}(t) = \sum_{r=1}^{\infty} \sum_{i_1, \dots, i_{r-1}} a_{ii_1} a_{i_1 i_2} \cdots a_{i_{r-1} i_r} G_i * G_{i_1} * \cdots * G_{i_{r-1}}(t)$$

with each i_k running from 1 to n (see [1]).

Using the techniques in [4] it is possible to derive an asymptotic form of $A_i(t)$. To this end, set

$$G_i^*(\lambda) = \int_0^\infty e^{-\lambda t} dG_i(t)$$

for all real λ for which the integral converges, and

$$H(\lambda)=(a_{ij}G_i^*(\lambda)).$$

Suppose a real root of the determinantal equation $|I - H(\lambda)| = 0$ exists. Then there is a real number α with the following properties. (i) The Perron-Frobenius root of the matrix $H(\alpha)$ is 1 and corresponding to this root there are positive left and right eigenvectors $\eta = (\eta_1, \eta_2, ..., \eta_n)$ and $\mu = (\mu_1, \mu_2, ..., \mu_n)'$ such that $\eta H(\alpha) = \eta$, $H(\alpha) \mu = \mu$, $\eta \mu = 1$, and $\max_i \mu_i = 1$.

(ii) α is the root of the determinantal equation $|I - H(\lambda)| = 0$ with largest real part and has multiplicity one.

A proof of (i) and (ii) for the case of positive matrices with $\rho > 1$ may be found in [1, 5]. The proof is similar for the case of irreducible matrices.

If $\rho > 1$ α exists and $\alpha > 0$, and if $\rho = 1$, $\alpha = 0$. If $\rho < 1$ α may or may not exist depending on $G_i(t)$, i = 1, 2, ..., n. It is not difficult to see that if $G_i^*(\lambda)$ exists and continuous in $(-a, \infty)$ for some a > 0 and $G_i^*(\lambda) \to \infty$ as $\lambda \to -a + (i = 1, 2, ..., n)$ then α exists for $\rho < 1$. The distribution functions with the following densities are examples of this situation.

(i)
$$g_i(x) = \frac{a^{b_i}}{\Gamma b_i} x^{b_i-1} e^{-ax}, \quad 0 \leqslant x < \infty$$

(ii)
$$g_i(x) = ce^{-x^2}$$
, $0 \le x < \infty$.

There are cases when $\rho < 1$ and α does not exist. Obviously this is true of distribution functions such that $\int_0^\infty e^{\epsilon t} dG_i(t) = \infty$ for every $\epsilon > 0$. Chistyakov [6] has studied this case for the one dimensional process. An easy extension of his results to the multi-dimensional case is possible when $G_i(t) = G(t)$ (i = 1, 2, ..., n). However, we will not attempt to do this here.

THEOREM 2.1. Let the following conditions hold

- (i) A is irreducible.
- (ii) α exists.
- (iii) $\int_0^\infty t^r e^{-\alpha t} dG_i(t) < \infty \text{ for an integer } r \geqslant 2.$
- (iv) Density $g_i(t)$ of $G_i(t)$ exists and $t^k e^{-\alpha t} g_i(t)$ (k = 0, 1, ..., r 2) are of bounded variation in $(0, \infty)$ (i = 1, 2, ..., n).
- (v) The functions $f_i(t)$ are of the form $f_i(t) = \sum_{j=1}^n a_j f_{ij}(t)$ where a_j 's are constants, $e^{-\alpha t} f_{ij}(t)$'s are bounded and non-negative functions for $t \ge 0$ and satisfy the conditions

$$\lim_{t\to\infty}t^{r-2}e^{-\alpha t}f_{ij}(t)=0 \qquad and \qquad \lim_{t\to\infty}t^{r-2}\int_t^\infty e^{-\alpha x}f_{ij}(x)\ dx=0.$$

Let $B(\lambda)$ be the adjoint of the matrix $I - H(\lambda)$,

$$\Delta(\lambda) = |I - H(\lambda)|, \qquad \Delta'(\lambda) = \frac{d\Delta(\lambda)}{d\lambda}, \qquad f_i^*(\lambda) = \int_0^\infty e^{-\lambda t} f_i(t) dt,$$

and

$$f^*(\lambda) = (f_1^*(\lambda), f_2^*(\lambda), ..., f_n^*(\lambda)).$$

Then

$$\lim_{t\to\infty}t^{r-2}\{e^{-\alpha t}A_i(t)-a_i\}=0$$

where a_i is the i-th element in the vector

$$a = \frac{1}{\Delta'(\alpha)} B(\alpha) f^*(\alpha).$$

Proof. The proof is essentially the same as that in [4] except for some obvious modifications needed for the multi-dimensional case. Hence we shall sketch the proof omitting the details.

Let us first assume that $\rho = 1$ so that $\alpha = 0$. Let $G^*(\lambda) = 1 - \Delta(\lambda)$. It can be shown that

$$G^*(\lambda) = \sum_s (-1)^{N(s)} G_s^*(\lambda) \Delta_s$$
,

where s is a non-empty subset of (1, 2, ..., n), N(s) is the number of elements in s,

$$G_s^*(\lambda) = G_{(i_1,\ldots,i_r)}^*(\lambda) = G_{i_1}^*(\lambda) \cdots G_{i_r}^*(\lambda),$$

 A_s is the square submatrix of A corresponding to the rows and columns in the set s and $\Delta_s = |A_s|$, the determinant of A_s .

Let g(t) be the function whose Laplace transform is $G^*(\lambda)$. It is easy to see that g(t) exists, since $G^*(\lambda)$ is the Laplace transform of a linear combination of convolutions of densities. Consider the system of equations

$$C_{ij}(t) = \delta_{ij} \int_0^t g(t-u) g(u) du + \int_0^t \sum_i a_{ij} C_{ij}(t-u) dG_i(u).$$
 (2.3)

Let

$$C_i(t) = (C_{1i}(t), C_{2i}(t), ..., C_{ni}(t))'$$

and

$$\delta_j = (\delta_{1j}, \delta_{2j}, ..., \delta_{nj})'.$$

Taking Laplace transforms in (2.3),

$$C_{j}^{*}(\lambda) = \frac{B(\lambda) \, \delta_{j} [G^{*}(\lambda)]^{2}}{\Delta(\lambda)} \quad \text{for } \lambda > 0.$$
 (2.4)

Applying Haar's Tauberian theorem to (2.4) we find that there exist constants c_{ij} such that

$$\lim_{t\to\infty}t^{r-2}\{C_j(t)-c_j\}=0, \qquad j=1,2,...,n \tag{2.5}$$

where

$$c_{i}=(c_{1j}, c_{2j},..., c_{nj})'.$$

Taking Laplace transforms in (2.1),

$$A^*(\lambda) = \frac{B(\lambda)f^*(\lambda)}{\Delta(\lambda)}$$
 (2.6)

where

$$A^*(\lambda) = (A_1^*(\lambda), A_2^*(\lambda), ..., A_n^*(\lambda))'.$$

From (2.4) and (2.6),

$$A^*(\lambda) = B(\lambda)f^*(\lambda) + B(\lambda)f^*(\lambda)G^*(\lambda) + C^*(\lambda)f^*(\lambda)$$
 (2.7)

where

$$C^*(\lambda) = (C_{ij}^*(\lambda)).$$

From (2.5) and (2.7) we find, as in [4], that there exists a vector $a = (a_1, a_2, ..., a_n)$ such that

$$\lim_{t\to\infty}t^{r-2}\{A(t)-a\}=0.$$

Using a result on page 187 Widder [10] the vector a can be obtained as

$$a = \lim_{\lambda \to 0^+} \lambda A^*(\lambda) = \frac{B(0) f^*(0)}{\Delta'(0)}.$$

If $\rho \neq 1$, set

$$D_i(t) = e^{-\alpha t} A_i(t),$$

 $k_i(t) = e^{-\alpha t} f_i(t),$
 $d_{ij} = a_{ij} G_i^*(\alpha),$

and

$$H_i(t) = \frac{1}{G_i^*(\alpha)} \int_0^t e^{-\alpha u} dG_i(u).$$

Multiplying (2.1) by $e^{-\alpha t}$, we see that

$$D_i(t) = k_i(t) + \int_0^t \sum_j d_{ij}D_j(t-u) dH_i(u).$$

But the Perron-Frobenius root of the matrix (d_{ij}) is one, and hence

$$\lim_{t\to\infty}t^{r-2}\{D_i(t)-d_i\}=0$$

where

$$d_i = \lim_{\lambda \to 0^+} \lambda D_i^*(\lambda) = \lim_{\lambda \to 0^+} \lambda A_i^*(\lambda + \alpha).$$

From this the theorem follows.

3. Limiting Distribution of Z(t)

Let $\epsilon_i = (\delta_{i1}, ..., \delta_{in})$ and $Z(0) = \epsilon_i$. It is well known that the generating functions $F_i(s, t)$ i = 1, 2, ..., n of Z(t) given $Z(0) = \epsilon_i$ satisfy the system of integral equations

$$F_i(s,t) = s_i[1 - G_i(t)] + \int_0^t h_i[F(s,t-u)] dG_i(u), \qquad i = 1, 2, ..., n$$
 (3.1)

where

$$F(s, t) = (F_1(s, t), F_2(s, t), ..., F_n(s, t)).$$

For a discussion of (3.1) the reader is referred to [8].

If $G_i(0+)=0$ and $m_{ij}<\infty$ for all i and j, then (3.1) has a unique solution F(s,t) such that $F_i(\underline{1},t)=1$ for all $t\geqslant 0$ (see [8]). The integral equations (3.1) may be used as a starting point in the study of age-dependent branching processes.

Let $B_i(t)$ and $D_i(t)$ be the total number of individuals of the *i*-th type in the population who have been born and have died upto and including time t. If $m_{ij} < \infty$ and $G_i(0+) = 0$ for all (i,j) then $B_i(t) < \infty$ a.s. for all $t \ge 0$ [see [11]]. Thus using the relation $Z_i(t) = B_i(t) - D_i(t)$, we find that the sample functions $Z_i(t)$ are continuous from the right so that the process is separable. Hence we can speak of the probability P_i of the event [Z(t) = 0 for some t > 0 given that $Z(0) = \epsilon_i$, i.e. the event of extinction of the population. It can be easily shown that $F_i(0,t) \uparrow P_i$ as $t \uparrow \infty$. The probabilities P_1 , P_2 ,..., P_n satisfy the system of equations $s_i = h_i(s_1, s_2, ..., s_n)$, i = 1, 2, ..., n, and are equal to the coordinates of the root of the system of equations lying closest to the origin in the square $0 \le x_i \le 1$ (i = 1, 2, ..., n) (see [8]).

We call a system of types $(i_1, i_2, ..., i_r)$ a final class if $h_{i_1}(s)$, $h_{i_2}(s)$,..., $h_{i_r}(s)$ are homogeneous linear functions in the variables s_{i_1} , s_{i_2} ,..., s_{i_r} . In order that $P_i = 1$ (i = 1, 2, ..., n) it is necessary and sufficient that $(1) \rho \leq 1$ and (2) the system of types (1, 2, ..., n) does not contain a single final class (see [8]). Hence it is of interest to study the limiting behavior of the conditional random vector Z(t) given that Z(t) > 0. The following theorem gives a precise statement of our results.

THEOREM 3.1. Let the following conditions hold

(i) The system of types (1, 2,..., n) does not contain a final class.

(ii)
$$\mu_{ijk} = \frac{\partial^2 h_i(s)}{\partial s_j \partial s_k}\Big|_{s=1} < \infty \text{ for all } (i, j, k).$$

- (iii) $M = (m_{ij})$ is irreducible with $\rho < 1$.
- (iv) α exists.
- (v) $\int_0^\infty t^3 e^{-\alpha t} dG_i(t) < \infty, i = 1, 2, ..., n.$
- (vi) Density $g_i(t)$ of $G_i(t)$ exists and $e^{-\alpha t}g_i(t)$ and $te^{-\alpha t}g_i(t)$ are of bounded variation in $(0, \infty)$ (i = 1, 2, ..., n).

(vii)
$$te^{-\alpha t}g_i(t) \rightarrow 0$$
 as $t \rightarrow \infty$, $i = 1, 2, ..., n$.

Then the conditional random vector Z(t) given that $Z(0) = \epsilon_i$ and Z(t) > 0 converges in distribution to a random vector whose distribution is independent of i.

Proof. Using Taylor expansion

$$h_i(s) = 1 + \sum_j m_{ij}(1 - s_j) + \sum_{jk} \bar{\mu}_{ijk}(1 - s_j) (1 - s_k)$$
 (3.2)

where

$$0\leqslant ar{\mu}_{ijk}\leqslant rac{\partial^2 h_i(s)}{\partial s_i\;\partial s_k}\Big|_{s=1}$$
.

Let $\Delta_i(s, t) = 1 - F_i(s, t)$. Then from (3.1) and (3.2) we get

$$\Delta_{i}(s, t) = (1 - s_{i}) (1 - G_{i}(t)) + \int_{0}^{t} \sum_{j} m_{ij} \Delta_{j}(s, t - u) dG_{i}(u) - \int_{0}^{t} \sum_{ik} \bar{\mu}_{ijk} \Delta_{j}(s, t - u) \Delta_{k}(s, t - u) dG_{i}(u)$$
(3.3)

For s=0,

$$\Delta_i(0, t) = 1 - G_i(t) + \int_0^t \sum_j m_{ij} \Delta_j(0, t - u) dG_i(u)$$

 $- \int_0^t \sum_{jk} \bar{\mu}_{ijk} \Delta_j(0, t - u) \Delta_k(0, t - u) dG_i(u).$

Therefore $\Delta_i(0, t) \leqslant A_i(t)$ where $A_i(t)$ (i = 1, 2, ..., n) are the solutions of

$$A_i(t) = [1 - G_i(t)] + \int_0^t \sum_i m_{ij} A_i(t - u) dG_i(u).$$

From Theorem 2.1 it follows that $A_i(t) = 0(e^{\alpha t})$. Hence

$$\Delta_i(s, t) \leqslant \Delta_i(0, t) \leqslant A_i(t) \leqslant Ae^{\alpha t}$$

for some finite number A and $0 \le s \le \underline{1}$. Now write (3.3) in the form

$$\Delta_i(s, t) = f_i(s, t) + \int_0^t \sum_i m_{ij} \Delta_i(s, t - u) dG_i(u)$$

where

$$f_i(s,t) = (1-s_i)(1-G_i(t)) - \int_0^t \sum_{i,k} \bar{\mu}_{ijk} \Delta_i(s,t-u) \Delta_k(s,t-u) dG_i(u).$$

To apply Theorem 2.1 we must verify that the conditions

$$\lim_{t\to\infty} t e^{-\alpha t} f_i(s,t) = 0 \tag{3.4}$$

and

$$\lim_{t\to\infty}t\int_t^\infty e^{-\alpha x}f_i(s,x)\,dx=0\tag{3.5}$$

are satisfied. Since

$$\int_0^\infty t^2 e^{-\alpha t} dG_i(t) < \infty,$$

we have

$$\lim_{t\to\infty}te^{-\alpha t}[1-G_i(t)]=0$$

and

$$\lim_{t\to\infty}t\int_{-t}^{\infty}e^{-\alpha x}[1-G_i(x)]\,dx=0$$

(see page 143 [9]). Also

$$\int_0^t \bar{\mu}_{ijk} \Delta_j(s, t-u) \Delta_k(s, t-u) dG_i(u) \leqslant A^2 \mu_{ijk} \int_0^t e^{2\alpha(t-u)} dG_i(u).$$

Hence

$$\begin{split} \lim_{t\to\infty} t e^{-\alpha t} \int_0^t \bar{\mu}_{ijk} \Delta_j(s,\,t-u) \, \Delta_k(s,\,t-u) \, dG_i(u) &\leqslant A^2 \mu_{ijk} \lim_{t\to\infty} \frac{t \int_0^t e^{-2\alpha u} \, dG_i(u)}{e^{-\alpha t}} \\ &= 0 \qquad \text{by L'Hospital's rule.} \end{split}$$

Thus $te^{-\alpha t}f_i(s, t) \rightarrow 0$ verifying (3.4). Now consider

$$\int_0^\infty te^{-\alpha t} \int_0^t \bar{\mu}_{ijk} \Delta_j(s, t - u) \Delta_k(s, t - u) dG_i(u) dt$$

$$\leq \frac{A^2 \mu_{ijk}}{\alpha^2} \int_0^\infty (1 - \alpha u) e^{-\alpha u} dG_i(u) < \infty$$

verifying (3.5).

Thus Theorem 2.1 applies and

$$\lim_{t\to\infty} t\{e^{-\alpha t}\Delta_i(s,t)-k_i(s)\}=0$$

for some function $k_i(s)$. Hence

$$e^{-\alpha t} \Delta_i(s, t) \to k_i(s)$$
 as $t \to \infty$ (3.6)

uniformly in $0 \le s \le 1$. Using the expansion

$$h_i(1-s)=1-\sum_i \overline{m}_{ij}s_j$$
, $0\leqslant \overline{m}_{ij}\leqslant m_{ij}$

we get from (3.1),

$$\Delta_i(s,t) = (1-s_i)\left[1-G_i(t)\right] + \int_0^t \sum_i \overline{m}_{ij} \Delta_j(s,t-u) dG_i(u).$$

Multiplying by $e^{-\alpha t}$ and using the fact $\overline{m}_{ij} \to m_{ij}$ as $\Delta_i(s, t) \to 0$ i.e. as $t \to \infty$ we get,

$$k_i(s) = \sum_i m_{ij} G_i^*(\alpha) k_j(s).$$

In matrix form

$$k(s) = H(\alpha) k(s)$$

where

$$k(s) = (k_1(s), k_2(s), ..., k_n(s))'.$$

By the definition of α the Perron-Frobenius root of $H(\alpha)$ is one. Hence k(s) must be a multiple of the vector $\mu = (\mu_1, \mu_2, ..., \mu_n)'$. Thus

$$k_i(s) = f(s) \,\mu_i \tag{3.7}$$

for some function f(s).

Let $F_i^*(s, t)$ be the generating function of the conditional random vector Z(t) given that $Z(0) = \epsilon_i$ and Z(k) > 0. Then

$$F_i^*(s,t) = 1 - \frac{\Delta_i(s,t)}{\Delta_i(0,t)} \rightarrow 1 - \frac{f(s)}{f(0)}$$
 as $t \rightarrow \infty$.

Uniformly in $0 \le s \le 1$ by (3.6) and (3.7). Hence the theorem.

Remark. The proof of the Theorem 3.1 would not be complete unless we show that f(0) > 0. This can be done by imposing a condition on μ_{ijk} 's. Consider the equations

$$A_{i}(t) = [1 - G_{i}(t)] + \int_{0}^{t} \sum_{i} m_{ij} A_{j}(t - u) dG_{i}(u)$$

and let

$$c = \max_{i} \sup_{t} A_{i} e^{-\alpha t}.$$

Then $\Delta_i(0, t) \leqslant ce^{\alpha t}$ so that

$$|f_i(0,t)| \ge [1-G_i(t)] - \int_0^t \sum_{i,k} \mu_{ijk} c^2 e^{2\alpha(t-u)} dG_i(u).$$

Taking Laplace transforms we get

$$f_ist(0,lpha)\geqslant rac{1-G_ist(lpha)}{lpha}+c^2\sum_{jk}\mu_{ijk}\,rac{G_ist(lpha)}{lpha}\,.$$

Therefore

$$\nu f^*(0,\alpha) \geqslant \frac{1}{\alpha} \sum_{i} \nu_i [1 - G_i(\alpha)] + \frac{c^2}{\alpha} \sum_{ijk} \mu_{ijk} \nu_i G_i^*(\alpha). \tag{3.8}$$

The expression for a in the Theorem 2.1 can be written as

$$a = b\mu\nu f^*(\alpha) \tag{3.9}$$

where

$$\frac{1}{b} = -\sum_{i,j} m_{ij} \mu_j \nu_i \frac{dG_i^*(\lambda)}{d\lambda} \Big|_{\lambda=\alpha}$$

by using a result in [1].

From (3.8) and (3.9) we find that a sufficient condition for f(0) of the Theorem 3.1 to be positive is that

$$c^2 \sum_{ijk} \nu_i \mu_{ijk} G_i^*(\alpha) < \sum_i \nu_i [1 - G_i^*(\alpha)].$$

ACKNOWLEDGMENT

The authors wish to thank Professor Harry Kesten for his helpful criticism of the preprint.

REFERENCES

- C. J. Mode, A multi-dimensional age-dependent branching process with applications to natural selection I, Math. Biosci. 3 (1968), 1-18.
- 2. C. J. Mode, A multi-dimensional age-dependent branching process with applications to natural selection II, *Math. Biosci.* 3 (1968), 231-247.
- 3. M. JIRINA, The asymptotic behavior of branching stochastic processes, *Math. Statist. Prob.* 2 (1962), 87-107.

- W. Feller, On the integral equation of renewal theory, Ann. Math. Statist. 12 (1941), 243-267.
- R. Bellman and K. L. Cooke, "Differential-Difference Equations," Academic Press, New York, 1963.
- V. P. CHISTYAKOV, A theorem of sum of independent positive random variables and its applications to branching random processes 9 (1964), 640-648.
- 7. O. P. VINOGRADOV, On an age-dependent branching process, *Theor. Prob. Appl.* 9 (1964), 131-136.
- B. A. SEVASTYANOV, Age-dependent branching process, Theor. Prob. Appl. 9 (1964), 521-537.
- 9. T. E. Harris, "The Theory of Branching Processes," Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.
- D. E. Widder, "The Laplace Transform," Princeton University Press, Princeton, N. J., 1946.
- C. J. Mode, A generalized multi-dimensional age-dependent branching process, Oak Ridge National Laboratory, 1968.
- 12. A. Joffe and F. Spitzer, On multitype branching processes with $\rho \leqslant 1$, J. Math. Anal. Appl. 19 (1967), 409-430.