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1. INTRODUCTION 

We consider a population consisting of n different types of particles, each 
particle living and reproducing independently of others. A particle of type i 
lives for a random length of time 1, distributed according to the law 
l’(G < t) = G,(t), and at the time of its death is replaced by a random 
number of offspring (jr , jz ,..., jn) of various types. Let 

denote the generating function of the probabilities p,(J). Also, let 

W) = (-G(t), .GM--9 -qO) 

be the random vector giving the number of particles at time t. The nature of 
Z(t) depends mainly on the moment matrix M = (Q) where 

ahi(s) rnij = as. 1 s = (1, I,..., 1). 
1 

We shall always assume that M is irreducible. Let p be the Perron-Frobenius 
root of M. We say that the above described process is a subcritical process if 
p < 1. The case when M is a positive matrix with p > 1 has been extensively 
studied by Mode [1,2]. Practically no results are available for p < 1 in the 
multi-dimensional case. Vinogradov [7j has obtained an asymptotic form of 
the probability of extinction in the one-dimensional case. It may also be 
mentioned that results are available for the case of Galton-Watson processes 
with discrete and continuous time when p < 1 [3, 121. 

The purpose of this paper is to study the subcritical multi-dimensional 
age-dependent process and get results analogous to those in [3], using Haar’s 
Tauberian theorem [4]. 
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2. ON A SYSTEM OF INTEGRAL EQUATIONS 

Frequently in the analysis of the age-dependent branching process we come 
across a system of integral equations of the type 

Ai(t) = fi(G + 1; El a,jAj(t - u) G(u), i = 1, 2,..., 12 (2.1) 3 
where A = (a,J is an irreducible matrix of non-negative elements, G,(t) 
is a distribution function, andfi(t) is a bounded function. Let us define the 
convolution operation 

Gl t G,(t) = /” G,(t - u) dG,(u). 
0 

If uij < co and Gi(O +) = 0 for all i and j, then among all functions bounded 
on finite intervals in [0, 00) (2.1) h as a unique bounded solution which may be 
represented as 

f&(t) = f&j + i”: fi * Fi&) 
j==l 

P-2) 

where 

with each ik running from 1 to n (see [l]). 
Using the techniques in [4] it is possible to derive an asymptotic form of 

Ad(t). To this end, set 

G,*(h) = ir e-At dGi(t) 

for all real X for which the integral converges, and 

H(h) = (a,jGi*(h)). 

Suppose a real root of the determinantal equation 1 I - H(h)\ = 0 exists. 
Then there is a real number CL with the following properties. (i) The Perron- 
Frobenius root of the matrix H(a) is 1 and corresponding to this root there are 
positive left and right eigenvectors? = (Q ,Q ,..., qn) and p = (pr, pz ,..., p,J’ 
such that 7H(or) = 7, H(cy) p = p, 7p = 1, and maxi tag = 1. 

(ii) 01 is the root of the determinantal equation ) I - H(h)\ = 0 with 
largest real part and has multiplicity one. 
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A proof of (i) and (ii) for the case of positive matrices with p :> 1 may be 
found in [I, 51. The proof is similar for the case of irreducible matrices. 

Ifp>lolexistsandol>O,andifp=1,ol=O.Ifp<1ormayormaynot 
exist depending on G,(t), i = 1, 2 ,..., n. It is not difficult to see that if Gi*(h) 
exists and continuous in (- a, co) for some a > 0 and Gi*(h) ---f co as 
A -+ - a + (i = 1, 2,..., n) then (y. exists for p < 1. The distribution func- 
tions with the following densities are examples of this situation. 

abi 
6) km = s xbi-le+, o<x<co 

(ii) gi(x) = ce+*, o<x<m. 

There are cases when p < 1 and cy does not exist. Obviously this is true of 
distribution functions such that sr bt dG,(t) = co for every E > 0. Chistya- 
kov [6] has studied this case for the one dimensional process. An easy exten- 
sion of his results to the multi-dimensional case is possible when G,(t) = G(t) 
(i = 1, 2,..., n). However, we will not attempt to do this here. 

THEOREM 2.1. Let the following conditions hold 

(i) A is irreducible. 

(ii) (Y exists. 

(iii) sz tre-at dGi(t) < CO for an integer r > 2. 

(iv) Density gi(t) of G,(t) exists and tkeratgi(t) (R = 0, l,..., r - 2) are of 
bounded war&ion in (0, co) (i = 1, 2 ,..., n). 

(v) The functions fi(t) are of the form fi(t) = xy=, aj fij(t) where aj’s are 
constants, eeEtfij(t)‘s are bounded and non-negative functions for t > 0 and 
satisfy the conditions 

m 
Fill Pze-*tfiii(t) = 0 and lim P2 

t-tm s 
ePEfiii(x) dx = 0. 

t 

Let B(h) be the adjoint of the matrix I - H(h), 

44 = I I - W)l , 
A’(/\) z.zz y, h*(h) = 10me-Ayj(t) dt, 

and 

Then 

f*(h) = (f,*(4,f2*(4Yvf%*(4)* 

li+i tr-2{e-OltAj(t) - ai} = 0 
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where ai is the i-th element in the vector 

a = & fWf*b). 

Proof. The proof is essentially the same as that in [4] except for some 
obvious modifications needed for the multi-dimensional case. Hence we shall 
sketch the proof omitting the details. 

Let us first assume that p = 1 so that 01 = 0. Let G*(X) = 1 - d(X). It 
can be shown that 

G*(X) = c (- l)N’“’ G,*(h) d, , 

where s is a non-empty subset of (1,2,..., n), N(s) is the number of elements 
in s, 

Gs*(4 = G&,...,,,)(4 = G,*,(A) -a- Gi*l(h), 

A, is the square submatrix of A corresponding to the rows and columns in the 
set s and P, = 1 A, / , the determinant of A, . 

Let g(t) be the function whose Laplace transform is G*(h). It is easy to see 
that g(t) exists, since G*(h) is the Laplace transform of a linear combination 
of convolutions of densities. Consider the system of equations 

Cij(t) = aij /Ig(t - u) g(u) du + ,: c aijCij(t - u) dG,(u). (2.3) 
3 

Let 

and 

G(t) = (G(t), G,(t),*-, GiW 

aj = (6,j , 6,j ,..., &j)‘. 

Taking Laplace transforms in (2.3), 

C,*(h) = WQ %[G*GW 3 44 
for h > 0. (2.4) 

Applying Haar’s Tauberian theorem to (2.4) we find that there exist constants 
cij such that 

where 

p2 t’-2(C&) - Cj} = 0, j = 1, 2,..., n (2.5) 

cj = (Clj , c&y ,..., cn*)‘- 
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Taking Laplace transforms in (2. l), 

A*(h) = Wf”(4 
44 

(2.6) 

where 

A*(X) = (A,*(h), A,*(h),..., A,*(h))‘. 

From (2.4) and (2.6) 

A*(A) = W)f*O) + +)f*@) G*(h) + C*(h)f*(A) 
where 

c*(x) = (C;(h)). 

(2.7) 

From (2.5) and (2.7) we find, as in [4], that there exists a vector 
a = (a,, a2 ,..., a,) such that 

$2 t’-2(A(t) - a> = 0. 

Using a result on page 187 Widder [lo] the vector a can be obtained as 

a = bF+ AA”(A) = wo)f*(o) 
A’(0) * 

Ifp#l, set 

and 

Di(t) = e-at/Ii(t), 

&(t) = e-“tfi(t), 

dij = atjGi*(a), 

Multiplying (2.1) by e-at, we see that 

Q(t) = hi(t) + 1; c d&(t - u) dH, (u). 
3 

But the Perron-Frobenius root of the matrix (dsi) is one, and hence 

where 

From this the theorem follows. 
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3. LIMITING DISTRIBUTION OF Z(t) 

Let ci = (ai, ,..., &J and Z(0) = ci . It is well known that the generating 
functions Fi(s, t) i = 1, 2 ,..., n of Z(t) given Z(0) = ci satisfy the system of 
integral equations 

Fi(s, t) = si[l - G,(t)] + ,I h,[F(s, t - u)] dG&), i = 1, 2,..., n (3.1) 

For a discussion of (3.1) the reader is referred to [S]. 
If Gi(O +) = 0 and mij < co for all i andj, then (3.1) has a unique solution 

F(s, t) such that F&, t) = 1 for all t > 0 (see [S]). The integral equations 
(3.1) may be used as a starting point in the study of age-dependent branching 
processes. 

Let &(t) and Di(t) be the total number of individuals of the i-th type in the 
population who have been born and have died upto and including time t. 
If rnii < 00 and Gi(O +) = 0 f or all (;,j) then l&(t) < 00 a.s. for all t > 0 
[see [ll]]. Thus using the relation Zi(t) = B,(t) - Di(t), we find that the 
sample functions Zi(t) are continuous from the right so that the process is 
separable. Hence we can speak of the probability Pi of the event [Z(t) = 0 
for some t > 0 given that Z(0) = Q], i.e. the event of extinction of the 
population. It can be easily shown that Fi(O, t) t Pi as t t 00. The probabilities 
PI , pz >--*, P, satisfy the system of equations si = h,(si , sa ,..., s,), 
i = 1, 2,..., n, and are equal to the coordinates of the root of the system of 
equations lying closest to the origin in the square 0 < xi < 1 (i = 1, 2,..., n) 

(see iTI)- 
We call a system of types (ii, i, ,..., i,) a final class if h,,(s), hi,(s),..., &r(S) 

are homogeneous linear functions in the variables sir , si, ,..., si . In order that 
Pi = 1 (; = 1, 2,..., n) it is necessary and sufficient that (1) p 2 1 and (2) the 
system of types (1, 2,..., n) does not contain a single final class (see [SJ). Hence 
it is of interest to study the limiting behavior of the conditional random vector 
Z(t) given that Z(t) > 0. The following theorem gives a precise statement of 
our results. 

THEOREM 3.1. Let the following conditions hold 

(i) The system of types (1, 2,..., n) does not contain a final class. 

(ii) pijlc = ~~lSS1 < co for all (i, j, k). 
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(iii) M = (m,J is irreducible with p < 1. 

(iv> a exists. 

(v) sz Fe-at dG,(t) < co, i = 1, 2 ,..., n. 

(vi) Density gi(t) of Gt(t) exists and e-Ntgi(t) and te-“tgi(t) are of bounded 
vuriution in (0, c0) (i = 1, 2 ,..., n). 

(vii) te-atgi(t) -+ 0 as t -+ 03, i = 1,2 ,..., n. 

Then the conditional random vector Z(t) given that Z(0) = l i and Z(t) > 0 
converges in distribution to a random vector whose distribution is independent of i. 

Proof. Using Taylor expansion 

hi(s) = 1 + 1 mii( 1 - ~9) + c i&(1 - Q) (1 - %) 
i jk 

(3.2) 

where 

azh,(s) 
’ < i%jk d m . 

3 k .+I 

Let di(s, t) = 1 -. Fi(s, t). Then from (3.1) and (3.2) we get 

di(S, t) = (1 - pi) (1 - G,(t)) + /I T m&i(s, t - U) dGi(U) 

t 
- 

Ic 

(3.3) 
o jk $‘ijkdj(S, t - u) dk(s, t - U> dGi(U) 

For s = 0, 

d,(O, t) = 1 - G,(t) + s” c m,J$(O, t - U) dGi(u) 
0 j 

_ 
0 jk Fijkh(09 t - u> d,(o, t - u) &yu). 

Therefore di(O, t) < Ai where AJt) (i = 1, 2,..., n) are the solutions of 

Ai = [l - Gi(t)] + J: 7 mJj(t - ZJ) dGi(u). 

From Theorem 2.1 it follows that Ai = O(eat). Hence 

di(s, t) < d,(O, 2) < A,(t) < Aeat 

for some finite number A and 0 < s < 1. Now write (3.3) in the form 

di(s, t> = f<(s, t) + 117 m&s, t - u) dGi(u) 
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where 

fi(sy t) = (1 - si) (1 - G,(t)) - 11 &iIk(jJj(~, t - U) d,(~, t - U) dGi(U). 
3. . 

To apply Theorem 2.1 we must verify that the conditions 

and 

(3.4) 

s 
Ox pir t e-@f(s, x) dx = 0 (3.5) 
t 

are satisfied. Since 

I 

cc 

Pe-et dGi(t) < a~, 
0 

we have 

hi te-at[l - G,(t)] = 0 

and 

s 

m 
lim t 
t+m 

e-m”[l - G,(x)] dx = 0 
t 

(see page 143 [9]). Also 

j~j.YiijJj(s, t - u) d,(s, t - u) dGi(u) < A2pija 11 e201(t-@) dG,(u). 

Hence 

v+% te-nt 11 &J~(s, t - U) A,($, t - U) dG,(u) < A2pijk lim 
t te-2au dGi(U) 

J’ 
O t-m e-at 

= 0 by L’Hospital’s rule. 

Thus te-“*f(s, t) -+ 0 verifying (3.4). Now consider 

1 ,&Jj(s, t - u) d,(s, t - u) dG,(u) dt 

< A2pii,c * ‘To s (1 - IXU) e-mU dGi(u) < 00 

verifying (3.5). 
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Thus Theorem 2.1 applies and 

v+T t{f?-“ltdi(Sj t) - k,(S)} = 0 

for some function hi(s). Hence 

e-atdi(s, t) --t ki(s) as t-ccl 

uniformly in 0 < s < 1. Using the expansion 

h,(l - S) = 1 - C .@i.ijSj 3 0 < %ij < tnij 
9. 

we get from (3.1), 

A,(s, t) = (1 - si) [I - G,(t)] + 114 %+J~(s, t - U) dGi(u)a 

(3.6) 

Multiplying by e-at and using the fact @iii -+ ttlij as di(s, t) --t 0 i.e. as t -+ 00 
we get, 

In matrix form 

where 

k(s) = H(a) k(s) 

k(s) = (k,(s), h(s),..., k,,(s))‘. 

By the definition of (Y the Perron-Frobenius root of H(o) is one. Hence k(s) 
must be a multiple of the vector p = (pr , p2 ,..., p,,)‘. Thus 

for some function f(s). 
h(s) = f(s) pi (3.7) 

Let F+*(s, t) be the generating function of the conditional random vector 
Z(t) given that Z(0) = l i and Z(k) > 0. Then 

Ads, t) f(s) 
Fi*(S, 1) = 1 - Ai(o, t) -+ 1 - f(o) as t+co. 

Uniformly in 0 < s < 1 by (3.6) and (3.7). Hence the theorem. 

Remark. The proof of the Theorem 3.1 would not be complete unless we 
show that f (0) > 0. This can be done by imposing a condition on piilc’s. 
Consider the equations 
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and let 

c = max sup AiePt. 
i t 

Then d$(O, 1) < ceEt so that 

fi(O, t) 2 [I - G,(t)] - 1: ~~ijkceez~ct-U) dGi(u). 
3, 

Taking Laplace transforms we get 

Therefore 

j,*p, a) 3 l - G,*(4 + CZ c /+ q . 
a ik 

vf *(O, 4 2 ; ‘$4 - Gib)] + f C pijrc&*b). (3.8) 
wk 

The expression for a in the Theorem 2.1 can be written as 

a = bpf*(a) 
where 

(3.9) 

1 
- = - F; miipivi q /hzu 
b 

by using a result in [ 11. 
From (3.8) and (3.9) we find that a sufficient condition for f(0) of the 

Theorem 3.1 to be positive is that 
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