Hybrid Concurrency Control for Abstract Data Types

MAURICE P. HERLIHY*
Department of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

AND

WILLIAM E. WEIHL†
MIT Laboratory for Computer Science,
545 Technology Square, Cambridge, Massachusetts 02139

Received August 5, 1988; revised November 8, 1989

Databases and other transaction-processing systems use concurrency control and recovery algorithms to ensure that transactions are atomic (i.e., serializable and recoverable). We present a new algorithm based on locking that permits more concurrency than existing commutativity-based algorithms. The algorithm exploits type-specific properties of objects; necessary and sufficient constraints on lock conflicts are derived directly from a data type specification. In addition, the algorithm permits operations to be both partial and non-deterministic, and it permits the lock mode for an operation to be determined by its results as well as its name and arguments. We give a complete formal description of the algorithm, encompassing both concurrency control and recovery, and prove that the algorithm satisfies hybrid atomicity, a local atomicity property that combines aspects of static and dynamic atomic algorithms. We also show that the algorithm is optimal in the sense that no hybrid atomic locking scheme can permit more concurrency.

1. INTRODUCTION

Atomic transactions are a widely accepted mechanism for coping with failures and concurrency in database systems, both distributed and centralized. Many algorithms have been proposed for concurrency control and recovery [1]. Early work in this area considered only untyped objects: operations were either left uninterpreted, or were treated simply as reads or writes. More recent work has focused on typed objects, such as queues, directories, or counters, that provide a richer set of operations. Several algorithms have been proposed to enhance concurrency and recovery by exploiting data objects' type-specific properties [2, 17, 25, 30]. Most of

* Supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520.
† Supported in part by the National Science Foundation under Grants DCR-8510014 and CCR-8716884, and in part by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.
these algorithms are locking schemes in which conflicts are governed by some notion of commutativity: lock modes for commuting operations do not conflict.

This paper presents a new locking algorithm for concurrency control and recovery of typed data objects. As discussed below, our algorithm permits more concurrency than many type-specific locking schemes in the literature [2, 6, 17, 25, 30]: our algorithm places fewer constraints on lock conflicts, thus permitting a larger set of interleavings. Moreover, our algorithm is "upwardly compatible" with these other schemes in the sense that they can be used together in the same system without jeopardizing serializability or recovery.

In most of the type-specific algorithms in the literature, lock conflicts are governed by some notion of commutativity: if two operations commute, their locks need not conflict. Informally, this condition arises in conventional two-phase locking schemes as follows. If two transactions attempt to acquire conflicting locks, one must wait for the other to complete. The induced delay ensures that the latter is serialized before the former. Two-phase locking thus determines transaction serialization up to a partial order: transactions unrelated by the transitive closure of this lock conflict relation may be serialized in an arbitrary order. Moreover, such unrelated transactions may be serialized in different orders at different data objects, or at different sites in a distributed system. If the operations of concurrent transactions commute, then all such local orderings are equivalent and compatible with a global total serialization ordering.

The basic idea behind our algorithm is quite simple. Transactions are serializable in the order they commit. As part of each transaction's commitment protocol, it generates a timestamp from a logical clock, and distributes that timestamp to the objects it updated. Our algorithm augments the implicit partial order induced by lock conflicts with the explicit total order induced by transactions' commit timestamps. By making the serialization order explicit, we can replace the commutativity requirement with a weaker notion, which we call dependency. For example, our algorithms permit concurrent transactions to enqueue on a FIFO queue, even though the enqueue operations do not commute.

Our algorithm is quite general: it works for arbitrary data types, including types with partial and non-deterministic operations. Our treatment is systematic: necessary and sufficient conditions for locks to conflict are derived by analyzing the object's data type specification. We give a formal characterization of our notion of conflict, and we prove that our algorithm is correct. Because concurrency control and recovery interact in subtle ways, our descriptions and proofs encompass both concurrency and recovery.

Section 2 defines our model of computation, and Section 3 gives a formal definition of atomicity. Section 4 describes our criteria for lock conflict, and Section 5 describes our algorithm and proves it correct. Section 6 discusses some pragmatic issues. Finally, Section 7 closes with a discussion and summary.

1 These commit timestamps should not be confused with the timestamps used in multiversion algorithms such as Reed's [24], in which transactions are serialized in a statically predefined order.
HYBRID CONCURRENCY CONTROL

2. MODEL OF COMPUTATION

Our model of computation [30, 33] has two kinds of entities: transactions and objects. Each object provides operations that can be called by transactions to examine and modify the object’s state. These operations constitute the sole means by which transactions can access the state of the object. We typically use the symbols P, Q, and R for transactions, and X, Y, and Z for objects.

Our model of computation is event-based, focusing on the events at the interface between transactions and objects. There are four kinds of events of interest:

- Invocation events, denoted \((\text{inv}, X, P)\), occur when a transaction \(P\) invokes an operation of object \(X\). The “inv” field includes both the name of the operation and its arguments.

- Response events, denoted \((\text{res}, X, P)\), occur when an object returns a response \(\text{res}\) to an earlier invocation by transaction \(P\) of an operation of object \(X\).

- Commit events, denoted \((\text{commit}(t), X, P)\), occur when object \(X\) learns that transaction \(P\) has committed with timestamp \(t\). Timestamps are taken from a countable, totally ordered set.

- Abort events, denoted \((\text{abort}, X, P)\), occur when object \(X\) learns that transaction \(P\) has aborted.

We refer to commit and abort events collectively as completion events. We say that event \((e, X, P)\) involves \(X\) and \(P\).

We introduce some notation here. The symbol “•” denotes concatenation of sequences, and the symbol \(\emptyset\) denotes the empty sequence. If \(H\) is a sequence of events and \(X\) is a set of objects, we define \(H | X\) (“\(H\) restricted to \(X\)”) to be the subsequence of \(H\) consisting of the events involving objects in \(X\). If \(P\) is a set of transactions, we define \(H | P\) similarly. If \(X\) is an object and \(P\) is a transaction, we write \(H | X\) for \(H | \{X\}\), and \(H | P\) for \(H | \{P\}\). We define \(\text{committed}(H)\) to be the set of transactions for which commit events occur in \(H\), and \(\text{aborted}(H)\) to be the set of transactions for which abort events occur. We also define \(\text{completed}(H)\) to be \(\text{committed}(H) \cup \text{aborted}(H)\), the set of transactions that commit or abort in \(H\).

Not all sequences of events make sense as computations. For example, a transaction should not commit at some objects and abort at others, or commit with different timestamps at different objects. To capture these constraints, we introduce a set of well-formedness constraints. A well-formed sequence of events is called a history. We divide our well-formedness constraints into two parts: constraints on the execution of individual transactions, and constraints on the timestamps that can appear in commit events. Individual transactions are constrained as follows:

- Each transaction \(P\) must wait for the response to its last invocation before invoking the next operation, and an object can generate a response for \(P\) only if \(P\) has a pending invocation. More precisely, let \(\text{op-events}(H | P)\) be the subsequence of
H|P consisting of all invocation and response events; op-events(H|P) must consist of an alternating sequence of invocation and response events, beginning with an invocation event. In addition, an invocation event and the immediately succeeding response event must involve the same object.

- Each transaction P can commit or abort in H, but not both; i.e., committed(H|P) \cap aborted(H|P) = \emptyset.

- A transaction P cannot commit if it is waiting for the response to an invocation, and cannot invoke any operations after it commits. More precisely, if P \in committed(H|P), then H|P consists of op-events(H|P) followed by some number of commit events, and op-events (H|P) ends in a response event.

These restrictions on transactions are intended to model the typical use of transactions in existing systems. A transaction executes by invoking operations on objects, receiving responses when the operations finish. We disallow concurrency within a transaction, so that a transaction is permitted at most one pending invocation at any time.\(^2\) After receiving a response from all invocations, a transaction can commit at one or more objects. A transaction is not allowed to commit at some objects and abort at others; this requirement, called atomic commitment, can be implemented using well-known commitment protocols [9, 19, 26].

One must be careful not to read more into the above restrictions than is actually written. We have tried to impose as few restrictions as possible. Thus, for example, we allow a transaction to commit at an object without performing any operations at the object. Similarly, a transaction can also commit more than once at the same object. We also do not require a transaction to commit or abort everywhere eventually; such liveness requirements may be important for practical reasons (though perhaps difficult to implement in the presence of communication failures), but are not needed for describing or proving the correctness of our algorithm.

There are three additional constraints on the timestamps in commit events. The first two simply state that the timestamps chosen for transactions are unique, and that a transaction chooses only one timestamp.

- Any two commit events in H for the same transaction have the same timestamp.

- Any two commit events in H for different transactions have different timestamps.

The third constraint is needed for an algorithm to be able to generate responses to

\(^2\) Our belief is that concurrency is best introduced using nested transactions, as in Argus [20] and Camelot [27]. The results in this paper are easily generalized to the model of nested transactions in [7], which permits a transaction to have concurrent subtransactions. They could also be phrased in terms of the models in [23, 3], which allow a transaction to invoke concurrent operations.
invocations online. Hybrid atomic algorithms, such as the one in this paper, ensure that the committed transactions are serializable in the order of their timestamps. Since timestamps are chosen when transactions commit, however, an object does not know what timestamp will be chosen by a transaction when the object returns a response to an operation invoked by the transaction. Without some constraints on the timestamp generation method, objects could not generate responses to invocations online. Thus, we impose the following constraint: if a transaction Q executes at an object X after a transaction P has committed at X, then Q's timestamp must be later than that of P.

To state this constraint more precisely, we introduce the following definitions. If \(H \) is an event sequence involving one or several objects, define \(\text{precedes}(H) \) to be the following relation on transactions: \((P, Q) \in \text{precedes}(H)\) if and only if there exists an operation invoked by Q that returns a response after P commits in \(H \). (The relation \(\text{precedes}(H) \) captures potential "information flow" between transactions: if \((P, Q) \in \text{precedes}(H)\), then some operation executed by Q occurred in \(H \) after P committed; hence Q may have acquired a lock released by P, which would imply that Q must be serializable after P.) Now, let \(TS(H) \) be the partial order on transactions defined by \((P, Q) \in TS(H)\) if P and Q commit in \(H \) and the timestamp for P is less than the timestamp for Q. We require the timestamp generation method to satisfy the following constraint: the timestamp order on committed transactions must be consistent with the \(\text{precedes} \) order at each object. Formally, \(\text{precedes}(H |X) \subseteq TS(H) \) for all objects X. Informally, this constraint requires that if Q runs at X and sees that P has already committed, then Q must choose a timestamp greater than that of P. This constraint is satisfied by timestamp generation algorithms based on logical clocks [18], and by algorithms that piggyback timestamp information on the messages of a commit protocol.

We place few restrictions on aborted transactions; for example, a transaction can continue to invoke operations after it has aborted. We have two reasons for avoiding additional restrictions. First, we have no need for them in our analysis. Second, and more important, additional restrictions might be too strong to model systems with orphans [8, 22], and we would like our results to be as generally applicable as possible.

We note that the definitions (e.g., of \(\text{precedes} \)) in this section and the next apply to arbitrary histories, except where otherwise stated. In many cases, however, we apply them later in the paper to histories involving only a single object. The generality of the definitions is largely to retain consistency with other work based on the same definitions. Notice that if \(H \) is a history, so is \(H |X \); thus a definition involving an arbitrary history \(H \) can also be applied to \(H |X \).

3 The definitions of \(\text{precedes} \) and \(TS \) are introduced here as part of defining well-formedness, but are also used in later sections.
3. Atomicity

In this section we define atomicity and several related properties. The definitions are abstracted from [30, 33]. Unlike many earlier models that classify operations only as reads or writes, our model emphasizes abstraction, in particular data abstraction. Atomicity is defined in terms of objects' specifications, so that transactions are atomic if their execution appears to be serializable and recoverable to transactions, given only the specifications of the objects. For example, a system may be atomic at one level of abstraction and non-atomic at lower levels.

3.1. Specifications

Each object has a serial specification, which defines its behavior in the absence of concurrency and failures. An object's serial specification is a set of operation sequences. An operation is a pair consisting of an invocation and a matching response. In addition, an operation identifies the object on which it is executed. We often speak informally of an "operation" on an object, as in "the enq operation on a queue object." An operation in our formal model is intended to represent a single execution of an "operation" as used in the informal sense. For example, the following might be an operation (in the formal sense) on a queue object X:

\[X : [\text{Enq}(3), \text{Ok}] \]

This operation represents an execution of the Enq operation of X with argument "3" and response "Ok." For brevity, we often say that an operation sequence is legal if it belongs to the serial specification currently of interest.

We also assume that an object's serial specification is prefix-closed, which means that if g is a prefix of h and h is legal, then g is also legal.

Each object also has a behavioral specification, which characterizes its behavior in the presence of concurrency and failures. An object's behavioral specification is just a set of histories that contain events involving that object only. An implementation of an object is correct if it permits only histories in the object's behavioral specification. If the implementation of each object in a system is correct, then if H is a history of the system, H | X is in the behavioral specification of X for each X. (Similar constraints are imposed by other event-based models, such as the input/output automaton model of Lynch and Tuttle [21].)

3.2. Global Atomicity

Informally, a history of a system is atomic if the committed transactions in the history can be executed in some serial order and have the same effect. In order to exploit type-specific properties, we need to define serializability and atomicity in terms of the serial specifications of objects.
Since serial specifications are sets of operation sequences, not sets of histories, we need to establish a correspondence between histories and operation sequences. We say that a history is *serial* if events for different transactions are not interleaved. If H is a serial history, and P_1, \ldots, P_n are the transactions in H in the order in which they appear, then we can write H as $H | P_1 \cdot \ldots \cdot H | P_n$. We say that a history H is *failure-free* if aborted(H) = \emptyset. Now, if H is a serial failure-free history, we define $\text{OpSeq}(H)$ (the operation sequence corresponding to H) as follows. For a transaction P_i, $\text{OpSeq}(H | P_i)$ is the operation sequence obtained from $H | P_i$ by pairing each invocation event with its corresponding response event, and discarding commit events and pending invocation events. For the full history H, $\text{OpSeq}(H)$ is defined to be $\text{OpSeq}(H | P_1) \cdot \ldots \cdot \text{OpSeq}(H | P_n)$.

For example, if H is the serial failure-free history

\[
\langle \text{Enq}(3), X, Q \rangle \\
\langle \text{Ok}, X, Q \rangle \\
\langle \text{Commit}(t1), X, Q \rangle \\
\langle \text{Deq}(), X, P \rangle \\
\langle 3, X, P \rangle \\
\langle \text{commit}(t2), X, P \rangle
\]

then $\text{OpSeq}(H)$ is the operation sequence

$X : [\text{Enq}(3), \text{Ok}]$
$X : [\text{Deq}(), 3]$

We say that a serial failure-free history H is *acceptable at X* if $\text{OpSeq}(H | X)$ is an element of the serial specification of X; in other words, if the sequence of operations in H involving X is permitted by the serial specification of X. A serial failure-free history is *acceptable* if it is acceptable at every object X.

Two histories H and K are *equivalent* if every transaction performs the same sequence of steps in each, i.e., if $H | P = K | P$ for every transaction P. If H is a history and T is a total order on transactions, we define $\text{Serial}(H, T)$ to be the serial history equivalent to H in which transactions appear in the order T. Thus, if P_1, \ldots, P_n are the transactions in H in the order T, then $\text{Serial}(H, T) = H | P_1 \cdot \ldots \cdot H | P_n$.

Let T be a total ordering of transactions. A failure-free history H is *serializable in the order T* if $\text{Serial}(H, T)$ is acceptable. In other words, H is serializable in the order T if, according to the serial specifications of the objects, it is permissible for the transactions in H, when run in the order T, to execute the same steps as in H. We say that a failure-free history H is *serializable* if there exists a total order T on transactions such that H is serializable in the order T.

Now, define $\text{permanent}(H)$ to be $H | \text{committed}(H)$. We then say that H is *atomic* if $\text{permanent}(H)$ is serializable. Thus, we formalize recoverability by throwing away
events for non-committed transactions, and requiring that the committed transactions be serializable.

For example, the following history involving a first-in-first-out (FIFO) queue X is atomic:

\[
\langle \text{Enq}(1), X, P \rangle \\
\langle \text{Ok}, X, P \rangle \\
\langle \text{Enq}(2), X, Q \rangle \\
\langle \text{Ok}, X, Q \rangle \\
\langle \text{Enq}(3), X, P \rangle \\
\langle \text{Ok}, X, P \rangle \\
\langle \text{commit}(2), X, P \rangle \\
\langle \text{commit}(1), X, Q \rangle \\
\langle \text{Deq}, X, R \rangle \\
\langle 2, X, R \rangle \\
\langle \text{Deq}, X, R \rangle \\
\langle 1, X, R \rangle \\
\langle \text{Commit}(5), X, R \rangle
\]

The history contains only committed transactions, and is serializable in the order Q followed by P followed by R.

Note that whether a history is serializable or atomic does not depend on the relative order of operations for different transactions in the history. In most other work on concurrency control (e.g., [23, 3]), this order of operations is all that matters in determining whether a history is serializable. The difference here is that this other work typically represents operations using only invocations (where the operations are assumed to be "executed" atomically in the order in which the invocations appear in the history), so the order of the invocations is needed to determine the responses of each operation. (And a different model is needed for multi-version algorithms, as in [16].) By including more information in the history, we avoid having to make assumptions about the state used to execute each operation.

3.3. Local Atomicity

The definition of atomicity given above is global: it applies to a history of an entire system. To build systems in a modular, extensible fashion, it is important to define local properties of objects that guarantee a desired global property such as atomicity. A local atomicity property is a property \(P \) of specifications of objects such that the following is true: if the specification of every object in a system satisfies \(P \), then every history in the system's behavior is atomic. The design of a local atomicity property must ensure that the objects agree on at least one serialization order for the committed transactions. This problem can be difficult because each object has only local information; no object has complete information about the global computation of the system. As illustrated in [30, 33], if different objects use
HYBRID CONCURRENCY CONTROL

"correct" but incompatible concurrency control methods, non-serializable executions can result. A local atomicity property describes how objects agree on a serialization order for committed transactions.

In this section we define a particular local atomicity property, which we call hybrid atomicity. This local atomicity property uses the timestamps chosen when transactions commit to constrain each object's local serialization order. The idea is that each object ensures that the committed transactions are serializable in timestamp order. More formally, we say that a history \(H \) is hybrid atomic if permanent(\(H \)) is serializable in the order TS(\(H \)). (Note that TS(\(H \)) defines a total order on committed(\(H \)).) An object is hybrid atomic if every history in its behavioral specification is hybrid atomic. Hybrid atomicity is a local atomicity property [30, 31]:

Theorem 1. If every object in a system is hybrid atomic, then every history in the system's behavior is atomic.

As an aside, we remark that hybrid atomicity is an optimal local atomicity property: no strictly weaker local property suffices to ensure global atomicity [30, 33].

3.4. Online Hybrid Atomicity

Our algorithm is pessimistic: it permits an active transaction to commit whenever it is not executing an operation. The notion of online hybrid atomicity captures this property.

If \(H \) is a history and \(C \) is a set of transactions, we say that \(C \) is a commit set for \(H \) if committed(\(H \)) \(\subseteq \) \(C \) and \(C \cap \) aborted(\(H \)) = \(\emptyset \). In other words, \(C \) is a set of transactions that have already committed or might commit. Now, if \(H \) is a history, define Known(\(H \)) = Precedes(\(H \)) \cup TS(\(H \)). Known(\(H \)\(|X\)) captures what \(X \) "knows" about the timestamp order on all transactions, both committed and active. Each object must then be prepared for active transactions to choose timestamps in any order consistent with the object's local knowledge. Thus, we say that a history \(H \) is online hybrid atomic at \(X \) if, for every commit set \(C \) for \(H \), and for every total order \(T \) consistent with Known(\(H \)\(|X\)), H\(|C\) \(|X\) is serializable in the order \(T \). H is online hybrid atomic if, for all objects \(X \), H is online hybrid atomic at \(X \).

The following lemma is immediate:

Lemma 2. If \(H \) is online hybrid atomic, \(H \) is also hybrid atomic.

The algorithm proposed in this paper guarantees online hybrid atomicity.

The queue history shown earlier is hybrid atomic; in fact, each of its prefixes is online hybrid atomic. In a prefix in which either P or Q does not commit, Known(\(H \)) is empty, but the history is serializable in either order (P followed by Q or Q followed by P). Once P and Q commit, Known(\(H \)) contains the pair (Q, P). Once R executes an operation, Known(\(H \)) also contains the pairs (P, R)
and \((Q, R)\), and thus defines a total order \(Q\cdot P\cdot R\) on the three transactions; for a prefix containing one of \(R\)'s operations to be online hybrid atomic, it needs to be serializable in the order \(Q\cdot P\cdot R\), which, as argued earlier, it is.

4. Conflicts and Concurrency

This section describes our criteria for lock conflict. We begin with an informal overview of the locking algorithm itself, and then we present a formal definition of our notion of dependency. We conclude with a series of examples illustrating how dependency applies to a variety of common data types.

4.1. Overview

Our algorithm uses an approach similar to typical locking algorithms: an operation determines whether it can proceed based on whether other active transactions have executed conflicting operations. However, our notion of "conflicts" is less restrictive than in previous work; in addition, unlike most previous work we describe precisely how commits and aborts of transactions are handled.

The algorithm maintains three components for each object.

- Each transaction has an intentions list consisting of the sequence of operations to be applied to the object if the transaction commits. (As defined earlier, each operation consists of an invocation and a response value, where the invocation contains both the operation name and the values of arguments.)

- The object's committed state reflects the effects of transactions known by the object to be committed. For now, it is convenient to treat the committed state as if it were simply the intentions lists for the committed transactions, arranged in timestamp order. In Section 6, we describe a more compact and efficient representation.

- A set of locks associates each operation with the set of active transactions that have executed that operation. Locks are related by a symmetric conflict relation whose properties are discussed in the next section. We allow the lock conflict relation to take arguments and responses of operations into account, although it is not forced to do so.

When a transaction invokes an operation, it first constructs a view by appending its own intentions list to the committed state. It then chooses a response consistent with the view. Before appending the new operation to its intentions list, however, the transaction requests a lock for the operation. If another active transaction holds a conflicting lock, the lock request is refused, the response is discarded, and the invocation is later retried. (The invocation may return a different response when it is retried.) If the lock is granted, the operation is appended to the transaction's intentions list and the response is returned. (If the lock conflict relation being used does not take responses into account, the lock can be requested before choosing the
response.) When a transaction commits, its intentions list is merged into the committed state in timestamp order. When a transaction commits or aborts, its locks are released and its intentions list is discarded.

Like most algorithms based on two-phase locking, the algorithms described here are subject to deadlock; the usual remedies (e.g., timeout or detection) can be used to resolve deadlocks when they occur or to avoid them.

As an example, consider the history involving a FIFO queue shown earlier. As shown below in Section 4.3, enqueue operations on a FIFO queue need not conflict. Thus, our algorithm allows concurrent enqueues, and in particular allows the history shown earlier. The order in which concurrently enqueued items should be dequeued is determined by the commit timestamps chosen by the concurrent transactions. Note that enqueues do not commute, so commutativity-based algorithms would not allow the same history.

4.2. Dependency Relations

The basic constraint governing lock conflicts is the notion of dependency: operations p and q cannot execute concurrently if one depends on the other. Let R be a binary relation between operations, and let h be an operation sequence. Let SSpec be the serial specification of some object X.

Definition 3. A binary relation R on operations is a dependency relation for SSpec if for all operation sequences h and k, and all operations p, such that

1. h • k and h • p are legal, and
2. for all q in k, (q, p) \(\not\in R \)

h • p • k is legal.

In other words, if k is legal after h, p is legal after h, and no operation in k "depends on" p, then it should be legal to do k after p.

A dependency relation R is minimal if there is no R’ \(\subset R \) that is also a dependency relation. We show below that an object may have several distinct minimal dependency relations. We prove in Section 5 that our algorithm is correct if and only if the lock conflict relation is a symmetric dependency relation.

The following lemmas describe some important properties of dependency relations.

Lemma 4. Let R be a dependency relation for SSpec, h an operation sequence, and k₁ and k₂ operation sequences such that h • k₁ and h • k₂ are both legal. If no operation in k₁ depends on an operation in k₂ (i.e., for all q₁ in k₁ and q₂ in k₂, (q₁, q₂) \(\not\in R \)), then h • k₂ • k₁ is legal.

Proof. By induction on the length of k₂. The result is immediate if k₂ is empty. For the induction step, assume that k₂ = k₂' • p, and that the theorem holds for all sequences shorter than k₂. The sequence h • k₂' is legal as a prefix of h • k₂, h • k₂' • p is legal by hypothesis, and h • k₂' • k₁ is legal by the induction hypothesis.
Since no operation in k_1 depends on p, $h \cdot k'_2 \cdot p \cdot k_1 = h \cdot k_2 \cdot k_1$ is legal by Definition 3.

Definition 5. A subsequence g of h is R-closed if whenever g contains an operation q of h it also contains every earlier operation p such that $qR p$.

Definition 6. A subsequence g of h is an R-view of h for q if g is R-closed, and if it includes every p in h such that $qR p$.

The next lemma is the key to proving the correctness of our algorithm. It says that to determine whether an operation is legal after a sequence of operations, it suffices to test whether it is legal after a subsequence that constitutes an R-view for the operation.

Lemma 7. Let R be a dependency relation for $SSpec$, and g and h sequences in $SSpec$ such that g is an R-view of h for an operation q. If $g \cdot q$ is in $SSpec$, so is $h \cdot q$.

Proof. We show by induction on the number of operations in h but not in g that $h \cdot q$ is legal. If $h = g$, the result is immediate. Assume g is missing at least one operation of h, and assume the result for views missing fewer operations. Let $h = h_1 \cdot p \cdot h_2$, where p is the first operation in h but not in g. Let $g = h_1 \cdot g_2$, and $g' = h_1 \cdot g_2 \cdot g_2$.

The sequence $h_1 \cdot p$ is legal as a prefix of h, and $h_1 \cdot g_2 \cdot q = g \cdot q$ is legal by hypothesis. Since g is an R-view of h for q, no operation in $g_2 \cdot q$ depends on p; thus $h_1 \cdot p \cdot g_2 \cdot q = g' \cdot q$ is legal by Definition 3.

It is easy to see that g' is an R-view of h for q. Thus, $g' \cdot q$ is legal. Since g' is missing fewer operations of h than g, it follows from the induction hypothesis that $h \cdot q$ is legal.

4.3. Examples

The definition of a dependency relation given in the previous section is not constructive: it merely gives a test for whether a given relation is a dependency relation. In this section we describe one way of deriving dependency relations more systematically from the serial specifications for objects, and give some examples of dependency relations for particular types of objects.

One way to define a dependency relation for an object is to say that an operation depends on any earlier operations that might invalidate it. More precisely:

Definition 8. Operation p invalidates operation q if there exist operation sequences h_1 and h_2 such that $h_1 \cdot p \cdot h_2$ and $h \cdot h_2 \cdot q$ are legal, but $h_1 \cdot p \cdot q$ is not.

Definition 9. Define the relation $invalidated$-by to contain all pairs (q, p) such that p invalidates q.

The following theorem shows that this definition yields a dependency relation:
THEOREM 10. Invalidated-by is a dependency relation.

Proof. If not, then there exist sequences h and k and an operation p such that $h \cdot p$ and $h \cdot k$ are legal, no operation in k is invalidated by p, but $h \cdot p \cdot k$ is illegal. Let $h \cdot p \cdot k' \cdot q$ be the shortest illegal prefix of $h \cdot p \cdot k$. The sequence $h \cdot k' \cdot q$ is legal as a prefix of $h \cdot k$, $h \cdot p \cdot k'$ is legal by construction, but $h \cdot p \cdot k' \cdot q$ is illegal; hence q is invalidated by p, a contradiction.

While invalidated-by is a dependency relation, it need not be a minimal dependency relation.

The remainder of this section describes dependency relations for certain simple objects, illustrating how the notion encompasses partial operations, non-deterministic operations, and operations’ responses. We caution the reader not to confuse dependency relations and conflict relations. Dependency relations need not be symmetric; the conflict relations used in our algorithm, however, must be symmetric. A conflict relation will typically be constructed by taking the symmetric closure of a dependency relation.

A File provides Read and Write operations:

Read = Operation() Returns(Value)
Write = Operation(Value)

where Read returns the most recently written value. The unique minimal dependency relation for File objects is shown in Table I, where an entry indicates that the row operation depends on the column operation when the indicated condition holds. This relation is the invalidated-by relation for a File object. In this example, a read operation depends on a write operation when their argument values are distinct. Note that write operations do not depend on one another. Thus, our algorithm can allow concurrent writes; when this happens, later transactions will read the value written by the transaction with the later commit timestamp. Our algorithm thus encompasses and generalizes the Thomas Write Rule [29]. (We note that a similar generalization of the Thomas Write Rule, using different terminology and without return values, appears in a paper by Hadzilacos and Papadimitriou [10].)

A FIFO Queue object has two operations, Enq and Deq, where Enq places an item at the end of a queue, and Deq removes and returns the item from the front

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Minimal Dependency Relation for File</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Read(), v</td>
</tr>
<tr>
<td>Read(), v'</td>
<td>v ≠ v'</td>
</tr>
<tr>
<td>Write(v'), Ok</td>
<td></td>
</tr>
</tbody>
</table>
FIFO Queues have two distinct minimal dependency relations, shown in Tables II and III. The corresponding conflict relations (obtained by taking the symmetric closures of the dependency relations) impose incomparable constraints on concurrency. In Table II, which is the invalidated-by relation for FIFO Queues, a Deq operation involving a given item depends on both Enq operations involving different items and Deq operations involving the same item, implying that Deq cannot execute concurrently with other Enq or Deq operations, but Enq operations can execute concurrently. In Table III, Enq operations involving different items depend on one another, and Deq operations involving the same items depend on one another, but Deq operations do not depend on Enq operations, and vice-versa. (It may seem counter-intuitive that Deq operations do not need to depend on Enq operations; however, it should become clear when we present our algorithm why this is so.) With the dependency relation in Table III, an enqueuing transaction can execute concurrently with a dequeuing transaction as long as the latter can dequeue items enqueued by committed transactions.

Constraints on concurrency can often be relaxed by introducing non-determinism into sequential specifications. A Semiquue provides Ins and Rem operations:

\[
\begin{align*}
\text{Ins} &= \text{Operation(Item)} \\
\text{Rem} &= \text{Operation() Returns(Item)}
\end{align*}
\]

Ins inserts an item in the Semiquue, and Rem non-deterministically removes and returns an item from the Semiquue. Like Deq, Rem returns only when there is an item to remove. (There may be an additional probabilistic guarantee, not captured by our functional specifications, that the item removed is likely to be the oldest
A Semiquue object has the unique minimal dependency relation shown in Table IV. This dependency relation prevents Rem operations that return the same items from executing concurrently, but allows Ins operations to execute concurrently with Rem operations, and with one another.

An Account provides Credit, Post, and Debit operations:

\[
\begin{align*}
\text{Credit} &= \text{Operation(Dollar)} \\
\text{Post} &= \text{Operation(Percent)} \\
\text{Debit} &= \text{Operation(Dollar)} \text{ Signals(Overdraft)}
\end{align*}
\]

Credit increments the account balance by a specified amount. Post posts interest; for example, [Post(5), Ok] multiplies the account balance by 1.05. Debit attempts to decrement the balance. If the amount to be debited exceeds the balance, the operation returns with an exception, leaving the balance unchanged. Account has a unique minimal dependency relation shown in Table V. As in several of the previous examples, this relation is the invalidated-by relation for Account objects. An interesting aspect of this relation is that it enhances concurrency by taking operations' responses into account. For example, Credit locks need not conflict with locks for successful debits, although they must conflict with locks for attempted overdrafts, because increasing the account balance cannot invalidate a successful debit, but it can invalidate an Overdraft exception. If both kinds of debit operations were treated alike, debits and credits would have to be mutually

TABLE IV

<table>
<thead>
<tr>
<th>Minimal Dependency Relation for Semiquue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ins(v), Ok</td>
</tr>
<tr>
<td>Ins(v'), Ok</td>
</tr>
<tr>
<td>Rem(), v'</td>
</tr>
</tbody>
</table>

TABLE V

<table>
<thead>
<tr>
<th>Minimal Dependency Relation for Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit(n), Ok</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Credit(m), Ok</td>
</tr>
<tr>
<td>true</td>
</tr>
</tbody>
</table>
exclusive. a significant cost if attempted overdrafts were infrequent. An example implementation of Account appears in the appendix.

5. A HYBRID LOCKING ALGORITHM

This section presents a formal description of our locking algorithm, together with its proof of correctness. The description here is designed to emphasize the general strategy followed by the algorithm, and to highlight the differences with other locking algorithms. In Section 6, we discuss some issues that arise when designing an efficient implementation of this algorithm for a particular data type. In the appendix, we present an example implementation of an Account object, illustrating how properties of the data type can be used to design efficient implementations.

Given the serial specification $SSpec$ of an object X, the algorithm described below ensures that all histories generated by the implementation of X are hybrid atomic. For ease of exposition, we do not refer specifically to X unless necessary; thus, when we refer to an “operation” we mean an operation of X, and similarly for events.

5.1. The Algorithm

A state machine is an automaton given by a set of states, a set of transitions, an initial state, and a partial transition function that maps (state, transition) pairs to states. If the transition function is defined on a given pair (s, t), we say that t is defined in s. The transition function can be extended in the obvious way to finite sequences of transitions. We say that a sequence of transitions is accepted by a machine M if it is defined in the initial state of M. We define the language of a machine M (denoted $L(M)$) to be the set of finite sequences of transitions that are accepted by M.

The algorithm is described by a state machine $LOCK$ whose language consists of a set of event sequences. The machine uses a particular conflict relation, $Conflict$, to test whether one operation conflicts with another. We assume that $Conflict$ is symmetric. To describe the algorithm, however, we do not need to make any other assumptions about the conflict relation used by the algorithm. In the next section we show that conflict relations derived from dependency relations are both necessary and sufficient to ensure correctness of the implementation, in the sense that every history in $L(LOCK)$ is hybrid atomic.

A state of $LOCK$ consists of four components: $s.pending$, $s.intentions$, $s.committed$, and $s.aborted$. $s.pending$ is a partial function from transactions to invocation events. $s.intentions$ is a total function from transactions to sequences of operations. $s.committed$ is a partial function from transactions to timestamps. $s.aborted$ is a set of transactions.

$s.pending$ records pending invocations for transactions. Since each transaction is initially quiescent, $s.pending$ is undefined for all transactions in the initial state of $LOCK$. $s.intentions$ records the sequence of operations executed by each transac-
tion. In the initial state of LOCK, s.intentions maps each transaction to the empty sequence. There are no "locks" recorded explicitly in this formal model of the algorithm; instead, the set of locks held by a transaction is implicit in the transaction's intentions list. s.committed allows us to tell which transactions have committed, and for each committed transaction records its timestamp. s.committed is initially undefined for all transactions. s.aborted records the set of transactions that have aborted, and is initially empty.

If s is a state of LOCK, define s.completed to be s.aborted \cup \{P \mid s.committed(P) \neq \perp\}; s.completed thus consists of all transactions that have either committed or aborted. If Q \notin s.completed, define View(Q, s) to be the operation sequence obtained by concatenating the intentions lists for all committed transactions in timestamp order, and then appending the intentions list for Q.\footnote{In general, View(Q, s) is not a sequence, since the set of committed transactions could be infinite. In every reachable state, however, only finitely many transactions have committed, so View(Q, s) is well defined.}

The transitions of LOCK are the events involving X; their preconditions and postconditions are described below. For brevity, we assume that all input histories are well formed. (Well-formedness could be checked explicitly by adding more state components and preconditions.) In the descriptions, the expression m[a \rightarrow b], where m is a (possibly partial) function from domains A to B, a \in A, and b \in B, denotes the function identical to m except at a, which it maps to b.

In describing transitions, we write preconditions and postconditions for events, using the convention that s' denotes the state before the indicated event, and s denotes the state after the event. In addition, a state component that is not mentioned in the postcondition for an event is assumed to be unchanged by the occurrence of that event.

Invocation, commit, and abort events are inputs controlled by the transactions; thus, their preconditions are True.\footnote{Technically, the algorithm described here preserves well-formedness: as long as the transactions do not provide an input that violates well-formedness, the algorithm will not generate a response event that violates well-formedness. We could add preconditions to invocation, commit, and abort events to ensure that L(LOCK) contains only well-formed sequences, but this would complicate the description of the algorithm unnecessarily.} The transition for each event is quite simple: the event is simply recorded in the state of LOCK.

\[\langle i, X, Q \rangle\]
Postcondition:
\[s\text{-pending} = s'\text{-pending}[Q \rightarrow i]\]

\[\langle \text{commit}(t), X, Q \rangle\]
Postcondition:
\[s\text{-committed} = s'\text{-committed}[Q \rightarrow t]\]

\[\langle \text{abort}, X, Q \rangle\]
Postcondition:
\[s\text{-aborted} = s'\text{-aborted} \cup \{Q\}\]
Response events are somewhat more complicated:

\[\langle r, X, Q \rangle \]

Precondition:
- \(s'.pending(Q) \neq \bot \)
- \(Q \notin s'.completed \)
- Let \(q = \langle s'.pending(Q), r \rangle \)
- View\((Q, s') \cdot q \in SSpec \)
- for all transactions \(P \notin s'.completed \cup \{Q\} \)
- and for all operations \(p \) in \(s'.intentions(P) \),
 \(\langle p, q \rangle \notin Conflict \)

Postcondition:
- \(s.pending = s'.pending[Q \rightarrow \bot] \)
- \(s.intentions = s'.intentions[Q \rightarrow s'.intentions(Q) \cdot q] \)

To return a response to a transaction, there are several requirements. First, the transaction must have a pending invocation. Second, the transaction must not have already completed. Third, the operation (consisting of the \(\langle \text{invocation}, \text{response} \rangle \) pair) must be legal in the transaction's "view." Finally, the operation must not conflict with any other operation already executed by another active transaction. If all these requirements are met, the response event can occur, causing the pending invocation to be removed from the state and the intentions list for the transaction to be updated to record the new operation.

Notice that \(s.intentions \) is retained for all transactions, including committed transactions. Thus, the "committed state" is simply the intentions lists for the committed transactions, arranged in timestamp order. This approach is clearly not practical. Nevertheless, it permits us to describe the algorithm in a simple and general manner. All other recovery methods seem to be special cases of this use of intentions lists, in the sense that they record no more information about the past in the state. In addition, some other recovery methods seem to require restricting concurrency more than is needed for intentions lists. In later sections, we show that there are simple optimizations that can be used in real implementations that make it possible to discard intentions lists for committed transactions.

The following scenario illustrates the operation of the algorithm. Assume that Conflict is a dependency relation. Suppose a transaction \(P \) executes an operation sequence \(g \) and commits. By the preconditions on response events, \(g \) is legal, so the history up to this point is hybrid atomic. Now suppose transactions \(Q \) and \(R \) execute the operation sequences \(h \) and \(k \), respectively. For this to happen, \(g \cdot h \) and \(g \cdot k \) must both be legal; in addition, no operation in \(h \) can conflict with an operation in \(k \). (These conditions are ensured by the preconditions on response events.) Now suppose that \(Q \) commits. By the constraints on timestamp generation, \(Q \)'s timestamp must be larger than \(P \)'s. Since \(g \cdot h \) is legal, the history is still hybrid atomic. Now suppose that \(R \) commits. We know that \(g \cdot h \) and \(g \cdot k \) are both legal; we must show either that \(g \cdot h \cdot k \) is legal or that \(g \cdot k \cdot h \) is legal, depending on
whether R’s timestamp is later or earlier than that of Q. Since no operation in \(k \) depends on an operation in \(h \) or vice-versa, the desired result follows from Lemma 4. In the next section, we present a rigorous proof of the correctness of the algorithm based on this intuition.

Note that the definition of a dependency relation requires that if \(p \) is legal after \(h, k \) is legal after \(h \), and no operation in \(k \) depends on \(p \), then \(h \cdot p \cdot k \) must be legal. One might think that the definition could use a single operation \(q \) instead of the operation sequence \(k \). In fact, this is not sufficient. In terms of the proof, Lemma 4 would no longer hold. In terms of the algorithm, consider the scenario in the previous paragraph. Suppose that R’s timestamp is later than that of Q. If the definition of a dependency relation used a single operation \(q \) in place of the operation sequence \(k \), we would not be able to show that \(g \cdot h \cdot q \) is legal. If \(q \) is the first operation in \(k \), we could show that \(g \cdot h \cdot q \) is legal, but we could not extend this to the rest of \(k \).

5.2. Correctness Proof

We prove the following theorem:

Theorem 11. If Conflict is a dependency relation, then every history in \(L(LOCK) \) is hybrid atomic.

We show that if Conflict is a dependency relation, then every history in \(L(LOCK) \) is online hybrid atomic at \(X \). Given Lemma 2, this suffices to prove Theorem 11.

We start with a simple lemma relating the state of LOCK after a history to the events in the history; the proof involves a simple induction on the length of histories in \(L(LOCK) \), and is omitted.

Lemma 12. Let \(H \) be a history in \(L(LOCK) \), let \(s \) be the state of LOCK after \(H \), and let \(Q \) be a transaction. The following properties hold:

- \(\text{OpSeq}(H \upharpoonright Q) = s.\text{intentions}(Q) \).
- \(\text{OpSeq}(H \upharpoonright Q) \) ends in the invocation event \(\langle i, X, Q \rangle \iff s.\text{pending}(Q) = i \)
- \(\langle \text{commit}(t), X, Q \rangle \) appears in \(H \iff s.\text{committed}(Q) = t \)
- \(\text{aborted}(H) = s.\text{aborted} \)

The next lemma shows that active transactions do not conflict.

Lemma 13. Let \(H \) be a history in \(L(LOCK) \), and let \(s \) be the state of LOCK after \(H \). If \(P \neq Q \), \(P \notin \text{Completed}(H) \), and \(Q \notin \text{Completed}(H) \), then no operation in \(s.\text{intentions}(P) \) conflicts with an operation in \(s.\text{intentions}(Q) \).

Proof. An easy induction on the length of \(H \).

The next lemma shows a basic property of two-phase locking. It says that if two transactions are concurrent (neither commits before the other executes an operation), then there are no lock conflicts between them.
Lemma 14. Let H be a history in $L(LOCK)$. If P and Q are transactions such that $P \neq Q$, $P \notin \text{Aborted}(H)$, $Q \notin \text{Aborted}(H)$, $(P, Q) \notin \text{Precedes}(H)$, and $(Q, P) \notin \text{Precedes}(H)$, then no operation in $\text{OpSeq}(H \mid P)$ conflicts with an operation in $\text{OpSeq}(H \mid Q)$.

Proof. We make use of the previous lemma. Let G be the largest prefix of H that does not contain a commit event for P or Q, and let s be the state of LOCK after G. Neither P nor Q is in $\text{Completed}(G)$. Therefore, by Lemma 13, no operation in $\text{s.intentions}(P)$ conflicts with an operation in $\text{s.intentions}(Q)$. By Lemma 12, $\text{OpSeq}(G \mid P) = \text{s.intentions}(P)$ and $\text{OpSeq}(G \mid Q) = \text{s.intentions}(Q)$, and consequently no operation in $\text{OpSeq}(G \mid P)$ conflicts with an operation in $\text{OpSeq}(G \mid Q)$.

We now claim that $\text{OpSeq}(G \mid P) = \text{OpSeq}(H \mid P)$ and $\text{OpSeq}(G \mid Q) = \text{OpSeq}(H \mid Q)$. Since no operation in $\text{OpSeq}(G \mid P)$ conflicts with an operation in $\text{OpSeq}(G \mid Q)$, this suffices to prove the lemma. We show the claim by contradiction. We consider P; the proof for Q is symmetric. Suppose $\text{OpSeq}(G \mid P) \neq \text{OpSeq}(H \mid P)$. Then $\text{OpSeq}(H \mid P)$ is longer than $\text{OpSeq}(G \mid P)$; let (i, r) be the first operation that occurs in $\text{OpSeq}(H \mid P)$ that does not occur in $\text{OpSeq}(G \mid P)$. It follows that the event (r, X, P) occurs in H and not in G. Furthermore, (r, X, P) must occur in H after a commit event for either P or Q, since G is the largest prefix of H that does not contain a commit event for either P or Q. The event (r, X, P) cannot occur after a commit event for P, since H is well formed; therefore, it occurs after a commit event for Q. This implies, however, that $(Q, P) \in \text{Precedes}(H)$, which contradicts one of the hypotheses of the lemma.

The next lemma is needed to show that $\text{View}(Q, s)$ contains enough information to compute the response of an operation.

Lemma 15. Let H be a history in $L(LOCK)$, and let s_H be the state of LOCK after H. Let C be a commit set for H, and let P be an active transaction in C, i.e., $P \in C - \text{Committed}(H)$. Finally, let T be a total order on transactions consistent with $\text{Known}(H)$ such that $(Q, P) \in T$ for every $Q \in \text{Committed}(H)$. Then $\text{View}(P, s_H)$ is a Conflict-closed subsequence of $\text{OpSeq}(\text{Serial}(H \mid C, T))$.

Proof. We first argue that $\text{View}(P, s_H)$ is a subsequence of $\text{OpSeq}(\text{Serial}(H \mid C, T))$; we then show that it is Conflict-closed.

$\text{View}(P, s_H)$ is constructed by appending $s_H\cdot \text{intentions}(Q)$, for each Q in $\text{Committed}(H)$, indexed in the order given by $s_H\cdot \text{committed}(Q)$, and then appending $s_H\cdot \text{intentions}(P)$. By Lemma 12, $s_H\cdot \text{intentions}(R) = \text{OpSeq}(H \mid R)$ for every transaction R, and the order given by $s_H\cdot \text{committed}(Q)$ is the same as $\text{TS}(H)$. Thus, $\text{View}(P, s_H) = \text{OpSeq}(H \mid Q_1) \cdot \cdots \cdot \text{OpSeq}(H \mid Q_n) \cdot \text{OpSeq}(H \mid P)$, where Q_1, \ldots, Q_n are the transactions in $\text{Committed}(H)$ in the order specified by $\text{TS}(H)$. Since T is consistent with $\text{TS}(H)$ and $(Q, P) \in T$ for every $Q \in \text{Committed}(H)$,
the operations in View(P, s_H) appear in the same order in OpSeq(Serial(H | C, T)). Thus, View(P, s_H) is a subsequence of OpSeq(Serial(H | C, T)).

Now we show that View(P, s_H) is a Conflict-closed subsequence of OpSeq(Serial(H | C, T)). We proceed by induction on the length of H. The basis case, when H = A, is immediate.

For the induction step, suppose H ≠ A, and assume that the theorem holds for all histories in L(LOCK) that are shorter than H. Then H = K • e for some history K in L(LOCK) and some event e. Let s_K be the state of LOCK after K. By induction, the lemma holds for K and s_K.

First, note that Precedes(K) ⊆ Precedes(H), TS(K) ⊆ TS(H), Committed(K) ⊆ Committed(H), and Aborted(K) ⊆ Aborted(H). Thus, C and T satisfy the conditions of the lemma for K. By induction, View(P, s_K) is a Conflict-closed subsequence of OpSeq(Serial(K | C, T)). There are three cases to consider, depending on the type of e.

1. Suppose e is an invocation or abort event for some transaction R. Then s_H.intentions = s_K.intentions, and s_H.committed = s_K.committed. Thus, View(P, s_H) = View(P, s_K). If e is an abort event, R $ C. Otherwise, note that OpSeq throws away pending invocation events. In either case, OpSeq(Serial(H | C, T)) = OpSeq(Serial(K | C, T)). The result follows from the induction hypothesis.

2. Suppose e is a commit event for some transaction R. Since OpSeq throws away commit and abort events, OpSeq(Serial(H | C, T)) = OpSeq(Serial(K | C, T)). In addition, View(P, s_H) is obtained from View(P, s_K) by inserting OpSeq(H | R) in the position determined by the timestamp for R. To show that View(P, s_H) is a Conflict-closed subsequence of OpSeq(Serial(H | C, T)), we must show that for every operation in View(P, s_H), every earlier conflicting operation from OpSeq(Serial(H | C, T)) is also in View(P, s_H). By the induction hypothesis, this is true for operations that are in both View(P, s_H) and View(P, s_K). The operations that are in View(P, s_H) but not in View(P, s_K) are the operations in s_H.intentions(R). Suppose an operation r in OpSeq(Serial(H | C, T)) precedes some operation q in s_H.intentions(R) and conflicts with it, and let S be the transaction that executed r. Then by Lemma 14 and the constraints on T, <S, R> ∈ Precedes(H). By the definition of Precedes(H), S $ Committed(H), and thus r appears in View(P, s_H).

3. Finally, suppose that e is a response event <r, X, R>. If P = R the result follows from the induction hypothesis and the precondition for e, since the operation added to s_H.intentions(P) by e cannot conflict with operations executed by active transactions, and all other operations in OpSeq(Serial(H | C, T)) are in View(P, s_H).

If P and R are distinct, then View(P, s_H) = View(P, s_K). If R $ C, then OpSeq(Serial(H | C, T)) = OpSeq(Serial(K | C, T)), and the result follows by induction. Otherwise, OpSeq(Serial(H | C, T)) differs from OpSeq(Serial(K | C, T)) in that it contains an extra operation for R. Since H is well formed, R $ Committed(H). By
Lemma 14, an operation executed by R conflicts with an operation executed by another transaction S only if \(\langle S, R \rangle \in \text{Precedes}(H) \). Therefore, every operation in OpSeq(Serial(H|C, T)) that conflicts with an operation \(q \) executed by R appears before \(q \). The result follows by induction.

Now we are ready to prove the main result.

Theorem 16. Suppose \(H \) is a history in L(LOCK), and suppose Conflict is a dependency relation. Then \(H \) is online hybrid atomic at \(X \).

Proof. The proof proceeds by induction on the length of \(H \). The basis case, when \(H = A \), is immediate.

For the induction step, suppose \(H \neq A \), and assume the result for all histories in L(LOCK) shorter than \(H \). Then \(H = K \cdot e \) for some history \(K \) in L(LOCK) and some event \(e \). Since \(K \) is shorter than \(H \), the theorem holds for \(K \).

Note that all events in \(H \) (and \(K \)) involve only \(X \); thus, \(H = H|X \).

Let \(s_K \) be the state of LOCK after \(K \).

Now, let \(C \) be a commit set for \(H \), and let \(T \) be a total order on transactions consistent with Known(H). To show that \(H \) is online hybrid atomic at \(X \), it suffices to show that \(H|C \) is serializable in the order \(T \), i.e., that OpSeq(Serial(H|C, T)) is legal.

First, note that Precedes(K) \(\subseteq \) Precedes(H), TS(K) \(\subseteq \) TS(H), Committed(K) \(\subseteq \) Committed(H), and Aborted(K) \(\subseteq \) Aborted(H). Thus, \(C \) and \(T \) satisfy the conditions of the definition of online hybrid atomicity for \(K \). There are now two cases, depending on the type of \(e \).

1. Suppose \(e \) is a commit, abort, or invocation event. Note that OpSeq throws away pending invocation events, commit events, and abort events. Thus, OpSeq(Serial(H|C, T)) = OpSeq(Serial(K|C, T)). Since the theorem holds for \(K \), it also holds for \(H \).

2. Suppose that \(e \) is a response event \(\langle r, X, P \rangle \). This is the difficult case. Note that if \(P \notin C \) then \(H|C = K|C \), and the result follows from the induction hypothesis. So assume that \(P \in C \).

Let Active = C \(-\) Committed(H). The sequence OpSeq(Serial(H|C, T)) can be written as \(h_1 \cdot \text{OpSeq}(H|P) \cdot h_2 \), where \(h_1 = \text{OpSeq}(\text{serial}(H|C_1)) \) and \(h_2 = \text{OpSeq}(\text{serial}(H|C_2)) \), and \(C_1 \) and \(C_2 \) are chosen such that Committed(H) \(\subseteq C_1 \), \(C_2 \subseteq \text{Active} \), and \(P \notin C_1 \cup C_2 \). The sequences \(h_1 \) and \(h_2 \) respectively contain the operations of transactions ordered before and after \(P \) by \(T \). \(C_1 \) contains Committed(H) because \(T \) is consistent with Precedes(H), and since \(e = \langle r, X, P \rangle \), it follows from the definition of Precedes(H) that \((Q, P) \in \text{Precedes}(H) \) for all \(Q \in \text{Committed}(H) \). Note that \(h_1 = \text{OpSeq}(\text{Serial}(K|C_1, T)) \), since \(P \notin C_1 \).

Since \(P \) is executing a response event, and \(H \) is well formed, no commit event for \(P \) appears in \(H \). Also, \(C_2 \) is chosen such that \(C_2 \subseteq \text{Active} \); thus, if \(Q \in C_2 \), no commit event can appear in \(H \) for \(Q \). It is an immediate consequence of the definitions
that P and Q are unrelated by \textit{Precedes}(H). Thus, by Lemma 14, no operation in \text{OpSeq}(H | P) conflicts with an operation in \text{OpSeq}(H | Q) for any Q ∈ C₂. By the definition of h₂, no operation in \text{OpSeq}(H | P) conflicts with an operation in h₂.

We show that \(h_1 \cdot h_2 \) and \(h_1 \cdot \text{OpSeq}(H | P) \) are both legal. Since no operation in \text{OpSeq}(H | P) conflicts with an operation in h₂, it then follows from Lemma 4 that \(h_1 \cdot \text{OpSeq}(H | P) \cdot h_2 \) is also legal, giving the desired result.

To show that \(h_1 \cdot h_2 \) is legal, we note that it is simply \text{OpSeq}(\text{Serial}(H | C - \{P\}, T)), which is the same as \text{OpSeq}(\text{Serial}(K | C - \{P\}, T)). By the induction hypothesis, this sequence is legal.

To see that \(h_1 \cdot \text{OpSeq}(H | P) \) is legal, note that it is simply \text{OpSeq}(\text{Serial}(K | C - \{P\}, T)), which is the same as \text{OpSeq}(\text{Serial}(K | C - \{P\}, T)). By the induction hypothesis, this sequence is legal.

The theorem above shows that a sufficient condition for LOCK to be correct is that the conflict relation be a dependency relation. We now show that this is also a necessary condition.

Theorem 17. If the conflict relation used in LOCK is not a dependency relation for SSspec, then L(LOCK) contains a history that is not online hybrid atomic.

Proof. If the conflict relation is not a dependency relation, choose sequences h and k and an operation p such that \(h \cdot p \) and \(h \cdot k \) are legal, no operation in k conflicts with p, and \(h \cdot p \cdot k \) is not legal. Consider the following scenario. Transaction P executes the operations in h and commits, Q executes p, and R executes the operations in k. By hypothesis, p does not conflict with any operations executed by R. If Q commits with a lower timestamp than R, the accepted history is not serializable in timestamp order.

6. **Compaction**

Although the use of intentions lists facilitates our proofs, it has the disadvantage that object representations are neither compact nor efficient. For example, the size of a Queue representation has no relation to the number of items present in the
queue, and the item at the head of the queue must be found by a linear search. These problems can be alleviated by replacing intentions lists with more compact and efficient representations. For example, we can replace a sequence of operations with the state (or version) that results from applying those operations to the initial state. For a Queue or Semiqueue, a version might be represented by an array or a linked list, while for an Account an integer cell might be used.

In this section, we describe a general technique for discarding intentions lists for committed transactions, replacing them with the version that represents their net effect. Each object keeps track of an operation sequence that forms a prefix for every view that will henceforth be assembled by any transaction. Each view is assembled by appending some sequence of intentions lists to the common prefix. When a committed transaction is sufficiently old, it can be “forgotten” by appending its intentions list to the common prefix, discarding both its intentions list and its commit timestamp. This common prefix is represented compactly as a version.

It is important to realize that a transaction cannot necessarily be forgotten as soon as it commits, because intentions lists must be appended to the common prefix in commit timestamp order, but commit events for concurrent transactions need not occur in timestamp order. Instead, care must be taken to ensure that a transaction is forgotten only when no active transaction can commit with an earlier timestamp. To recognize when it is safe to forget a transaction, we introduce some auxiliary components to our state machine. \(s\text{.}clock\) keeps track of the latest observed commit timestamp; it has an initial value of \(-\infty\). \(s\text{.}bound\) is a partial function from transactions to commit timestamps, initially undefined for all transactions. If \(Q\) is an active transaction, \(s\text{.}bound(Q)\) is a lower bound on the possible commit timestamps that \(Q\) could choose when it commits.

We add the following postconditions to the transitions for LOCK:

\[
\langle i, X, Q \rangle
\]
Postcondition:
\[s\text{.}bound = s'\text{.}bound[Q \rightarrow s\text{.}clock]\]

\[
\langle r, X, Q \rangle
\]
Postcondition:
\[s\text{.}bound = s'\text{.}bound[Q \rightarrow s\text{.}clock]\]

\[
\langle \text{commit}(t), X, Q \rangle
\]
Postcondition:
\[s\text{.}clock = \max(s'\text{.}clock, t)\]
\[s\text{.}bound = s'\text{.}bound[Q \rightarrow \bot]\]

\[
\langle \text{abort}, X, Q \rangle
\]
Postcondition:
\[s\text{.}bound = s'\text{.}bound[Q \rightarrow \bot]\]

These additional components have no effect on \(L(\text{LOCK})\); they serve only for bookkeeping. The idea is that we maintain a local clock that equals the maximum
of the commit timestamps for transactions that have committed at the object. Since the commit timestamp order is required to be consistent with the precedes order at each object, the lower bound on the commit timestamp for an active transaction is increased to the current clock time whenever the transaction invokes an operation or has an operation return. If Q is active and \(\langle i, X, Q \rangle \) occurs, then by the constraints on commit timestamps the timestamp eventually chosen by Q must be greater than the commit timestamp for any transaction committed at X at the time that \(\langle i, X, Q \rangle \) occurs, and similarly for \(\langle r, X, Q \rangle \). Thus, the current clock time when \(\langle i, X, Q \rangle \) or \(\langle r, X, Q \rangle \) occurs does constitute a lower bound on the commit timestamp eventually chosen by Q.

Before describing details of how intentions lists are compacted, we present some properties of \(S.bound \) and \(S.clock \). We start with a simple lemma relating these auxiliary components of LOCK to the other components. The proof involves a simple induction on the length of histories in \(L(LOCK) \), and is omitted.

Lemma 18. Let Q be a transaction, H a history in \(L(LOCK) \), and s the state of LOCK after accepting H.

1. If \(S.bound(Q) \) is defined, there exists a transaction P such that \(S.committed(P) = S.bound(Q) \).
2. If \(S.committed(Q) \) is defined, \(S.committed(Q) \leq S.clock \).
3. If \(S.committed(Q) \) is undefined and \(S.intentions(Q) \neq A \), then \(S.bound(Q) \) is defined.

The following lemma describes how \(S.bound \) and \(S.committed \) give information about \(Known(H) \); in particular, it (together with the first part of Lemma 18) shows that \(S.bound(Q) \) is a lower bound on Q's eventual commit timestamp.

Lemma 19. Let P and R be transactions, H a history in \(L(LOCK) \), and s the state of LOCK after accepting H. If \(S.bound(R) \) and \(S.committed(P) \) are defined and \(S.committed(P) \leq S.bound(R) \), then \((P, R) \in Known(H) \).

Proof. By induction on the length of H. The result is immediate when H is empty. For the induction step, let \(H = G \cdot e \), where e is a single event, and let \(s' \) be the state after G, and s the state after H. Fix a pair of transactions P and R. If e is associated with any transaction other than P or R, the values of \(S.bound(R) \) and \(S.committed(P) \) are unaffected. The result holds vacuously if e is an abort, invocation, or response for P, because \(S.committed(P) \) is undefined. The result is also vacuous if e is an abort or commit for R, because \(S.bound(R) \) is undefined. If e is an invocation or response for R, then \(S.bound(R) = S.clock \geq S.committed(P) \), by Lemma 18. Moreover, \((P, R) \in Known(H) \), since R executed an invocation or response after P committed. Suppose e is \(\langle commit(t), X, P \rangle \). If \(t > S.bound(R) \), the result holds vacuously. Otherwise, by Lemma 18, there exists a transaction Q such that \(s'.committed(Q) = s'.bound(R) \). By the induction hypothesis, \((Q, R) \in Known(G) \), and since \(Known(G) \subseteq Known(H) \), \((Q, R) \in Known(H) \). Suppose
HERLIHY AND WEIHL

\[\text{s.committed}(P) = \text{s.committed}(Q); \text{ then } P = Q \text{ (by well-formedness), and by induction } (P, R) \in \text{Known}(H). \text{ (This can happen only if multiple commit events occur for } P). \text{ Otherwise, s.committed}(P) < \text{s.committed}(Q), \text{ so } (P, Q) \in \text{TS}(H), \text{ and thus by transitivity we have that } (P, R) \in \text{Known}(H). \]

Now we describe how intentions lists are compacted. Let \(s \) be a state of LOCK. Informally, the horizon time for \(s \) is a lower bound on the commit timestamp that can be chosen by an active transaction. The result of concatenating the intentions list of all transactions whose commit timestamps precede the horizon time is certain to be a prefix of every transaction's view, and thus can be compacted into a version. More formally:

Definition 20.

\[
\text{s.horizon} = \max(-\infty, \min(\min\{\text{s.bound}(P) | \text{s.bound}(P) \neq \bot\}, \\
\max\{\text{s.committed}(P) | \text{s.committed}(P) \neq \bot\}))
\]

In other words, the horizon time is either \(-\infty\) (if there are no active or committed transactions), or it is the earlier of the earliest bound for an active transaction and the latest commit timestamp for a committed transaction. If there are no active transactions, then the horizon timestamp is the largest commit timestamp. If there is an active transaction, however, all we know about its eventual commit timestamp is that it will be later than the recorded lower bound for the transaction, so we should not compact intentions lists for committed transactions whose timestamps are later than that lower bound.

Let \(Q_1, \ldots, Q_n \) be the sequence of transactions for which \(\text{s.committed} \) is defined, indexed in timestamp order, and let \(Q_1, \ldots, Q_k \) be the subsequence of transactions such that \(\text{s.committed}(Q_i) \leq \text{s.horizon} \). We define the following "auxiliary" components.

Definition 21. \(\text{s.permanent} = \text{s.intentions}(Q_1) \cdot \cdots \cdot \text{s.intentions}(Q_n) \).

Definition 22. \(\text{s.common} = \text{s.intentions}(Q_1) \cdot \cdots \cdot \text{s.intentions}(Q_k) \).

Clearly, \(\text{s.common} \) is a prefix of \(\text{s.permanent} \). To compute the response to an invocation for \(Q \), we need to compute \(\text{View}(s, Q) \). If \(Q \) is an active transaction, then \(\text{View}(s, Q) = \text{s.permanent} \cdot \text{s.intentions}(Q) \), of which \(\text{s.common} \) is a prefix. Thus, \(\text{s.common} \) can be compacted into a single version. To show that this is true, we show that \(\text{s.common} \) grows monotonically.

Lemma 23. Let \(H = G \cdot e \) be a history in \(L(\text{LOCK}) \), and let \(s_G \) and \(s_H \) be states of \(\text{LOCK} \) after \(G \) and \(H \). Then \(s_G \cdot \text{common} \) is a prefix of \(s_H \cdot \text{common} \).

Proof. If \(e \) is an invocation, response, or abort event for \(Q \), then \(s_H \cdot \text{committed} = s_G \cdot \text{committed} \), and \(s_H \cdot \text{bound}(Q) \) either equals \(s_G \cdot \text{bound}(Q) \), becomes larger than \(s_G \cdot \text{bound}(Q) \), or becomes \(\bot \). Regardless, \(s_H \cdot \text{horizon} \geq \)
HYBRID CONCURRENCY CONTROL

so. horizon. Since \(s_H.\text{committed} = s_G.\text{committed} \), \(s_G.\text{common} \) is a prefix of \(s_H.\text{common} \).

If \(e \) is a commit event for \(Q \), there are two cases. If \(e \) is the first commit event for \(Q \), so \(s_G.\text{common} \) is a prefix of \(s_H.\text{common} \). Otherwise, \(s_G.\text{common} = s_H.\text{common} \).

The following theorem follows easily from the above lemma.

Theorem 24. Let \(G \) and \(H \) be histories in \(L(\text{LOCK}) \) such that \(G \) is a prefix of \(H \), and let \(s_G \) and \(s_H \) be states of \(\text{LOCK} \) after \(G \) and \(H \). Then \(s_G.\text{common} \) is a prefix of \(s_H.\text{common} \).

Since \(s.\text{common} \) grows monotonically, we can represent it by keeping a version \(s.\text{version} \) and periodically computing a new version by applying (in commit timestamp order) the intentions lists for transactions \(P \) with \(s.\text{bound}(P) \leq s.\text{horizon} \) to \(s.\text{version} \).

It is not always necessary to keep explicit track of transactions' lower bounds. For example, if one operation conflicts with every other operation, as \(\text{Deq} \) does in Table II (ignoring the argument and response values), then all committed transactions can be forgotten whenever a dequeuing transaction commits or aborts. Transaction \(Q \) may acquire a \(\text{Deq} \) lock only if no other active transaction has executed any operations, implying that \(s.\text{bound}(P) = 1 \) for all \(P \) distinct from \(Q \), and hence \(s.\text{horizon} = s.\text{bound}(Q) \). The committed state of a queue can be represented as a single committed version together with a set of intentions consisting entirely of \(\text{Enq} \) operations. Thus, the size of the representation would be proportional to the number of elements in the queue.

The Queue conflict relation shown in Table III can also be specially optimized. Here, all operations that do not conflict commute, thus a transaction can be forgotten as soon as it commits at an object. The resulting scheme is equivalent to a commutativity-based locking scheme of Weihl [30, 32].

7. Discussion

As mentioned above, the precedes order captures potential "information flow" between transactions. Most mechanisms based on two-phase locking ensure that transactions are serializable in every total order consistent with precedes, a property known as dynamic atomicity [30, 33]. Conflict-based concurrency control mechanisms for dynamic atomicity include those proposed by Eswaran et al. [6], Korth [17], Bernstein et al. [2], and Weihl [30, 32]. These mechanisms are all based on a notion of commutativity. Informally, two operations commute if executing them in either order always yields the same responses and the same final object state. If two operations do not commute, their locks must conflict.

We now show that "failure to commute" is a dependency relation, although not necessarily a minimal dependency relation. It follows that our algorithm is less
restrictive than the commutativity-based algorithms cited above; our algorithm can achieve at least as much concurrency. Our examples show that lock conflict relations induced by dependency may be weaker than or incomparable to those induced by the commutativity-based algorithms.

We use the following notion of commutativity taken from [30], a notion that encompasses both partial and non-deterministic operations. (This notion of commutativity is called forward commutativity in [32].)

Definition 25. Two operation sequences h and h' are **equieffective** if they cannot be distinguished by any future computation: $h \cdot g$ is legal if and only if $h' \cdot g$ is legal for all operation sequences g.

Definition 26. Two operations p and q **commute** if for all operation sequences h, whenever $h \cdot p$ and $h \cdot q$ are both legal, then $h \cdot p \cdot q$ and $h \cdot q \cdot p$ are legal and equieffective.

Lemma 27. If $h \cdot p$ and $h \cdot k$ are legal operation sequences and p commutes with every operation in k, then $h \cdot p \cdot k$ and $h \cdot k \cdot p$ are legal and equieffective.

Proof. By induction on the number of operations in k. The result is trivial when k is empty. For the induction step, suppose $k = k' \cdot q$, where q is a single operation, and assume the result holds for k'. Then by induction, $h \cdot p \cdot k'$ is legal and equieffective to $h \cdot k' \cdot p$. By hypothesis, $h \cdot k' \cdot q (= h \cdot k)$ is legal. Since p and q commute, $h \cdot k' \cdot p \cdot q$ is legal and equieffective to $h \cdot k' \cdot q \cdot p$. The latter is just $h \cdot k \cdot p$. The former is equieffective to $h \cdot p \cdot k' \cdot q$, since $h \cdot k' \cdot p$ is equieffective to $h \cdot p \cdot k'$. But this is just $h \cdot p \cdot k$. 1

Theorem 28. "Failure to commute" is a dependency relation.

Proof. Let NC denote failure to commute. Let h and k be operation sequences and let p be an operation such that $h \cdot k$ and $h \cdot p$ are legal, and such that for all q in k, $(q, p) \notin NC$. It suffices to show that $h \cdot p \cdot k$ is legal. This is immediate from Lemma 27. 1

Lock conflict relations induced by dependency may be weaker than or incomparable to those induced by commutativity. For example, consider an Account object. Commutativity-based algorithms impose a lock conflict relation that includes (at least) the conflicts shown in Table VI. This conflict relation permits strictly less concurrency than the symmetric closure of the dependency relation shown in Table V. The additional restrictions arise because the commutativity-based algorithms require Post operations to conflict with Credit and Debit operations, while the dependency-based algorithms do not. In the Queue example, by contrast, the commutativity-based algorithms induce lock conflicts identical to
those induced by the minimal dependency relation shown in Table III. Here, however, the commutativity-based algorithms do not permit the incomparable conflict relation induced by the minimal dependency relation in Table II.

In addition to requiring fewer conflicts than commutativity-based algorithms, our work also generalizes most other work on type-specific two-phase locking by allowing the responses returned by an operation to be used in choosing the appropriate lock, and by permitting operations to be partial and non-deterministic. Some other algorithms (e.g., see [25]) achieve the effect of using information about responses by acquiring a restrictive lock when an operation starts running, and then "down-grading" the lock depending on how the operation actually executes. The resulting algorithm violates two-phase locking, and as a result ad hoc correctness arguments are usually given. Our algorithm shows how the responses of operations, as well as names and arguments, can be used systematically to determine the locks needed. (The commutativity-based algorithms in [30, 32] also permit response information to be used in choosing locks.)

In addition, other algorithms (except for those in [30, 32]) require operations to be total and deterministic. Partial operations are important for modeling producer-consumer relationships, in which one transaction is consuming data produced by another. Such situations, while perhaps uncommon in traditional database applications, are more common in general distributed or object-oriented systems. Similarly, non-deterministic operations are an important source of concurrency; compare, for example, the dependency relations for Queue and SemiQueue shown earlier. (Non-determinism can also increase availability; see [11] for an example.)

Another way in which our work differs from most other work on type-specific concurrency control is in the treatment of recovery. With the exception of [30, 32], the other work ignores recovery.

A more general form of hybrid atomicity is defined in [30, 33], permitting read-only transactions to be treated specially, as in the multi-version algorithms in [4, 5, 31]. Timestamps for read-only transactions are chosen when they start, while timestamps for other transactions are chosen when they commit. This algorithm is the origin of the term "hybrid atomicity," since the algorithms combine aspects of dynamic atomic algorithms (such as common two-phase algorithms) and static atomic algorithms (such as Reed's multiversion algorithm). In fact, hybrid atomicity is upward compatible with dynamic atomic algorithms: dynamic atomic

<table>
<thead>
<tr>
<th>Credit(m), Ok</th>
<th>Post(n), Ok</th>
<th>Debit(n), Ok</th>
<th>Debit(n), Overdraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit(m), Ok</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>Post(m), Ok</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>Debit(m), Ok</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>Debit(m), Overdraft</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
HERLIHY AND WEIHIL

algorithms guarantee serializability of committed transactions in all total orders consistent with Precedes(H); since TS(H) is one such order, global atomicity is still obtained when dynamic and hybrid atomic objects are combined in a single system.

Our results suggest that dependency is a more fundamental property than commutativity for understanding concurrency control for typed objects. In addition, the notion of a dependency relation arises in a variety of other related contexts. The constraints on the availability realizable by quorum consensus replication [11] can be expressed in terms of dependency relations. Dependency relations also form the basis for validation in type-specific optimistic concurrency control mechanisms [12], as well as type-specific locking schemes based on multi-version timestamping [13], and schemes that provide high levels of availability in the presence of partitions [14].

To summarize, we have defined a new locking algorithm that permits more concurrency than existing commutativity-based algorithms. It permits operations to be both partial and non-deterministic, and it permits responses of operations to be used in choosing locks. The algorithm exploits type-specific properties of objects; we have shown how to define a necessary and sufficient set of constraints on lock conflicts directly from the data type specification. The algorithm is optimal in the sense that no hybrid atomic locking scheme can permit more concurrency.

APPENDIX: AN EXAMPLE IMPLEMENTATION

To illustrate how our locking algorithm might be used in practice, this Appendix describes an implementation of the Account data type using Avalon/C++ [15], a programming language that supports hybrid atomicity. We assume some familiarity with C++ [28]. Although Avalon/C++ supports nested transactions, this example assumes only a single-level transaction model.

We start by describing the subsidiary data types used by the Account implementation. Avalon programmers do not manipulate transaction timestamps directly. Instead, Avalon provides a trans_id data type to permit the programmer to test serialization orders at run-time.

```cpp
class trans_id: public recoverable {
    private:
        // representation

    public:
        trans_id( ); // constructor
        bool operator == (trans_id& who); // equal?
        bool operator < (trans_id& who); // serialized before?
        // other operations
};
```

The definition of a dependency relation given in this paper is stated differently from that in other papers by Herlihy, but is easily shown to be equivalent.

Avalon/C++ defines bool to be an enumeration type with TRUE set to 1 and FALSE set to 0.
A transaction generates an identifier by a call to `new`:
```
trans_id* who = new trans_id;
```

Transaction identifiers are partially ordered by the overloaded operators """">"""" and """"<."""

If transactions P and Q respectively create identifiers t1 and t2, then the
expression

\[t1 < t2 \]

evaluates to true if and only if \((P, Q) \in \text{Known}(H)\), where \(H\) is the current history.

An account object maintains lock information in a lock table.

```
enum lock_type {CREDIT_LOCK, POST_LOCK, DEBIT_LOCK, OVERDRAFT_LOCK};
class lock_tab {
    private:
        ...
    // representation
    public:
        lock_tab(); // constructor
        void define(lock_type mode0, // register a lock conflict
                     lock_type mode1);
        bool conflict(lock_type mode, // ok to grant lock?
                      trans_id* who);
        void grant(lock_type mode, // give lock to caller
                   trans_id* who);
        void release(trans_id* who); // release caller's locks.
};
```

The account operations are represented by the enumeration type lock_type. An
empty lock table is created by declaring a variable of type lock_tab, and the define
operation marks two operations as conflicting. The conflict operation takes a lock
type and a transaction identifier, and returns true if no other transaction holds a
conflicting lock. The grant operation grants a lock for a specified operation, and
release discards all locks held by a transaction.

The net effect of a transition that executes multiple Credits, Debits, and Posts is
to replace the balance \(b \) by the affine transformation \(m*b + a \) for some \(m \) and \(a \).

Each transaction's intention is recorded in the following struct:

```
struct intent {float mul; float add;
    intent(float m, float a) {mul = m; add = a;};
};
```

The last component defines a constructor operation for initializing the struct. The
intention associated with each transaction is kept in a table:

```
class intent_tab {
    private:
        ...
    // representation
};
```
public:
 intent_tab(); // constructor
 intent lookup (trans_id* who); // return intention
 void insert(trans_id* who, // bind trans to intention
 intent what);
 void discard(trans_id* who); // discard intention
};

Lookup returns a transaction's current intention. If none exists, it returns an intention with multiplicative and additive components 1.0 and 0.0, respectively.

Intentions for committed transactions are discarded using the horizon time scheme described in Section 6. Each active transaction keeps track of the latest committed transaction guaranteed to be serialized before itself. This information is kept in a table:

class bound_tab { // map trans→lower bound
 private:
 ... // representation
 public:
 bound_tab(); // constructor
 void insert(trans_id* who, // register new lower bound
 trans_id* bnd);
 void discard(trans_id* who); // discard lower bound
 trans_id* min(); // horizon transaction
};

Transactions that are committed but not yet forgotten are kept in a heap.

class id_heap { // sorted heap of transactions
 private:
 ... // representation
 public:
 id_heap(); // constructor
 trans_id* top(); // return oldest transaction
 trans_id* remove(); // remove oldest transaction
 void insert(trans_id* who); // insert transaction
 bool empty(); // is heap empty?
};

This data type provides operations for creating an empty heap, inserting a transaction identifier in the heap, and observing or removing the oldest (i.e., minimal with respect to "<") identifier in the heap.

We are now ready to examine the Account implementation itself.

class account: public subatomic {
 private:
 lock_tab locks; // locks for operations
 intent_tab intentions; // intentions list
HYBRID CONCURRENCY CONTROL

float bal; // committed balance
id_heap committed; // committed but unforgotten transactions
trans_id* clock; // most recent transaction to commit
bound_tab bounds; // earliest possible commit times
void forget(); // for forgetting committed transactions
status sufficient(trans_id* who, // balance covers debit?
 float amt);

public:
 account();
 void credit(float amt);
 bool debit(float amt);
 void post(float amt);
 void commit(trans_id* who);
 void abort(trans_id* who);
}

The "public subatomic" declaration means that this data type ("class" in C++ terminology) inherits certain operations necessary for short-term synchronization and for ensuring that the object is recorded properly on stable storage. The object's internal representation is given by the fields following the keyword private. The locks component keeps track of the locks, intent_tab records transactions' intentions, bal is the account balance left by "forgotten" committed transactions, and committed keeps track of transactions that have committed but have not yet been forgotten. The internal function forget uses the clock and bounds fields to implement the compaction scheme described in Section 6. The internal function sufficient determines whether the balance covers an attempted debit by a particular transaction.

When an account is created, the account constructor is invoked:

account::account() {
 pinning() { // making update
 clock = new trans_id; // clock is creator's id
 bal = 0.0; // zero initial balance
 // Set up lock conflicts.
 locks.define(CREDIT_LOCK, OVERDRAFT_LOCK);
 locks.define(POST_LOCK, OVERDRAFT_LOCK);
 locks.define(DEBIT_LOCK, DEBIT_LOCK);
 }
}

To ensure proper crash recovery, all modifications to the object must occur inside a pinning statement. Most of the object's members are implicitly initialized. The clock is initialized with the creator's identifier, the balance is initialized to zero, and the lock table is initialized with the conflict relation shown in Table V.

The Credit function is implemented as follows.
void account::credit(float amt) {
 trans_id* who = new trans_id; // Get caller's id.
 when (!locks.conflict(CREDIT_LOCK, who)) // Check for conflict.
 pinning() {
 locks.grant(CREDIT_LOCK, who); // Acquire lock ...
 intent i = intentions.lookup(who); // find intention ...
 i.add = i.add + amt; // record debit ...
 intentions.insert(who, i); // and register new intention.
 bounds.insert(who, clock); // Note new bound ...
 } // Making update.
} // Update.

Each atomic object has an associated mutual exclusion lock, similar to a monitor lock. The when statement is similar to a guarded command. It repeatedly acquires the lock and evaluates the condition. If the condition is true, the associated statement is executed and the lock is released. Otherwise, the lock is released and the condition is retried after an arbitrary duration. The Credit operation generates an identifier for the caller, and checks for lock conflicts. If none is found, the caller's intention is updated, and the current clock value is recorded as the transaction's new bound. The Post operation is similar, and is omitted.

Debit is slightly more complex.

bool account::debit(float amt) {
 trans_id* who = new trans_id; // Get caller's id
 when (switch (sufficient(who, amt)) {
 case YES: // debit ok
 pinning() { // Making update.
 locks.grant(DEBIT_LOCK, who); // Acquire lock ...
 intent i = intentions.lookup(who); // find intention ...
 i.add = i.add - amt; // record debit ...
 intentions.insert(who, i); // and register new intention.
 bounds.insert(who, clock); // Note new bound ...
 return TRUE; // and return success code.
 } // Making update.
 case NO: // Ok to refuse debit.
 pinning() { // Making update.
 locks.grant(OVERDRAFT_LOCK, who); // Acquire lock ...
 return FALSE; // and return overdraft code.
 } // Making update.
 } // switch
}
The \textit{whenswitch} statement is a generalization of the \textit{when} statement that replaces the boolean expression with an expression of an enumeration type. Here, \textit{Debit} calls upon the internal procedure \textit{sufficient}, which returns \textit{YES} if the account balance covers the debit, \textit{NO} if the debit should be refused, and \textit{MAYBE} if lock conflicts leave the account status ambiguous.

The code for \textit{sufficient} appears below.

```c
enum status (YES, NO, MAYBE);
status account::sufficient(trans_id* who, float amt) {
    float view = bal; // Construct view
    id_heap h; h = committed; // Copy heap of committed id's.
    while (!h.empty()) { // Apply each committed intention.
        intent i = intentions.lookup(h.remove());
        view = i.mul * view + i.add;
    }
    intent i = intentions.lookup(who); // Apply caller's intention.
    view = i.mul * view + i.add;
    // Sufficient funds?
    if (view >= amt && !locks.conflict(DEBIT_LOCK, who)) return YES;
    // Insufficient funds?
    if (view < amt && !locks.conflict(OVERDRAFT_LOCK, who)) return NO;
    // Can't tell.
    return MAYBE;
}
```

Atomic objects in Avalon/C++ provide \textit{commit} and \textit{abort} operations, which are called by the system when transactions commit or abort. The commit operation for Account is:

```c
void account::commit(trans_id* who) {
    when (TRUE) // Always ok to commit.
    pinning() { // Updating object.
        if (*clock < *who) clock = who; // Advance clock.
        locks.release(who); // Release locks.
        bounds.discard(who); // Discard bound.
        committed.insert(who); // Mark as committed.
        forget(); // Try to forget.
    }
}
```

The clock is advanced, the committing transaction's locks are released, its lower bound is discarded, the transaction is marked as committed. The internal function \textit{forget} is called to forget committed transactions:

```c
void account::forget() {
    trans_id* horizon = bounds.min();
```

The clock is advanced, the committing transaction's locks are released, its lower bound is discarded, the transaction is marked as committed. The internal function \textit{forget} is called to forget committed transactions:
while (!committed.empty() && *(committed.top()) < *horizon) {
 trans_id* t = committed.remove(); // Remove the transaction,
 intent i = intentions.lookup(t); // find its intention,
 bal = i.mul * bal + i.add; // apply it,
 intentions.discard(t); // and discard it.
}

This function recomputes the horizon time, and applies and discards the intentions
for all committed transactions serialized before the horizon.

Abort is similar to commit:

void account::abort(trans_id* who) {
 when (TRUE) // Always ok to abort.
 pinning() { // Updating object.
 locks.release(who); // Release locks.
 bounds.discard(who); // Discard bound.
 intentions.discard(who); // Discard intentions.
 forget();
 }
}

REFERENCES

2. P. BERNSTEIN, N. GOODMAN, AND M.-Y. LAI, Analyzing concurrency control when user and system
3. P. BERNSTEIN, V. HADZILACOS, AND N. GOODMAN, “Concurrency Control and Recovery in Database
 concurrency control and recovery scheme, in “Proceedings of the 1982 SIGMOD Conference,”
 ACM SIGMOD, 1982.
6. K. P. ESWARAN, J. N. GRAY, R. A. LORIE, AND I. L. TRAIGER, The notion of consistency and
7. A. FEKETE, N. LYNCH, M. MERRITT, AND W. WEIHL, Commutativity based locking for nested
8. J. A. GOREE, “Internal Consistency of a Distributed Transaction System with Orphan Detection,”
10. T. HADZILACOS AND C. H. PAPADIMITRIOU, Algorithmic aspects of multiversion concurrency control,
12. M. P. HERLIHY, Optimistic concurrency control for abstract data types, in “Fifth ACM SIGACT-