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Let L be the A; root lattice and let G be a finite subgroup of Au(}'), where
V =V, is the associated lattice VOA (in this case, Aut(V') = PSL(2,C)). The fixed
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generators and determined the automorphism group when G is cyclic (from the
“A-series”) or dihedral (from the “D-series”). In the present article, we obtain
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1. INTRODUCTION

This paper is a sequel to [DG] in which we determined a set of
generators and the full automorphism groups of V+ where L,, is a rank
1 lattice spanned by an element of squared length 2 and V*2 is the fixed
points of the lattice VOA ¥V, under an automorphism of V;_ lifting the
—1 isometry of L,,. In this paper we determine a set of generators and
the full automorphism group of ¥, when L = L, is the root lattice of
type A, and G is an automorphism group of type tetrahedral, octahedral,
or icosahedral.

The graded dimensions of ¥, , V' , and the three VG realize all the
partition functions of rank 1 rational conformal field theories: such func-
tions (but not the VOAs themselves) are classified in the physics literature
[G, K]. It is unknown whether two inequivalent rank 1 rational VOAs may
have the same graded dimension and it is also unknown whether all the
VOAs above are rational. Certainly, the I, are rational (see [D, DLM2])
and some progress has been made toward showing that the V+1 are
rational, namely the finiteness of the number of isomorphism types of
irreducible modules has been proven [DN1].

It is well known that the finite subgroups of PSL(2, C) are labeled by the
simply laced Lie algebras. If G is of type 4 or D, V,¢ is V., orV for
some n. Since the full automorphism groups for all Iattlce vertex operator
algebras and 7/, have been determined in [DN2, DG], the results in this
paper complete the determination of generators and full automorphism
groups for this set of vertex operator algebras of rank 1. Using the results
from [DN2, DG] and the present paper, one can easily see that the set of
isomorphism types

F={V,, Vi, Ve In=1,G = Alt,, Sym,, Alt)

is closed in the sense that, for any IV €.% and a finite subgroup G of
Aut(V), VC e

The paper is organized as follows. In Section 2 we review the invariant
theory for the subgroups of PSL(2, C) of E-series following [S]. In Section
3 we determine the generators and the automorphism groups of VL‘z for
G = Alt,, Sym,, Alt; which are the subgroups of PSL(2,C) of type E.

We assume that the reader has some familiarity with the definition of
vertex operator algebra and vertex operator algebras associated to even
positive definite lattices as presented in [B, FLM, DG].

The following notation will be used throughout the paper.

W, The m-dimensional irreducible module for SL(2, C).
p,, The projection from a finite dimensional SL(2, C)-module onto its
W,,-homogeneous component.
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A particular copy of the finite group 2 Alt, in SL(2,O).
A particular copy of the finite group 2Sym, in SL(2,O).
A particular copy of the finite group 2 Alt; in SL(2,O).
" The fixed points of the action of a group H on a module V.

NN

2. REPRESENTATIONS OF SL(2,0)

In this section we get some special results about tensors of SL(2, C)-
modules for use in Section 3. We recall that the group SL(2,C) has a
unique irreducible module W, of any finite dimension m [H]. This module
contains an m-dimensional integral representation, spanned by a Cheval-
ley basis, of the integral Chevalley group SL(2,7Z). We shall write this
integral representation as A,, We shall need to work with SL(2, 4)
modules for various choices of a subring A4 in C. In particular, we write
W, 4 for the SL(2, A)-module 4 ®,A,. We write R for a ring of
algebraic integers, and we let bars indicate reduction modulo a prime
containing p in R and for the result of tensoring with R.

We shall be interested in tensor products of pairs of SL(2, C)-modules.
The decompositions of these tensor products into irreducibles are given by
the Clebsch—Gordan formulae: W, @ W, =W, ., oW, ., _;® - &
W, _,,+1, Which holds whenever n > m [H]. A similar decomposition of

KSL(2, K) modules holds for any subfield K in C. The main result of this
section is Theorem 2.1, which is needed in Section 3.

THEOREM 2.1. We have

O p(Ws @ WS # 0.
(i) p,(WhL @ Wi) #0.

(iii) The 1-dimensional spaces p,,(W;] ® W) and p,, (W] ® W) are
distinct.

(iv) The one-dimensional spaces p,;(Wy ® W) and p (W] @ W,
are distinct.

To establish this theorem, we must establish nontriviality for projections
of particular subspaces of tensor products of SL(2, C)-modules. (The upper
bounds of dimension 1 implicit in (iii) and (iv) are immediate consequences
of the Clebsch—Gordan formula.) We shall establish these claims by
performing explicit computations in analogous modules for a finite group
of type SL(2, R) and lifting the results to characteristic 0. We begin by
obtaining conditions under which we can lift statements about the dimen-
sion of images of projection maps.



704 DONG, GRIESS, AND RYBA

LEMMA 2.2. Suppose that L and M are finite rank R-torsion free
RSL(2, R)-modules that are equivalent over the field of fractions of R. Then L
and M are RSL(2, R)-modules with identical sets of composition factors.

Proof. The first argument for 82.1 in [CR] (which establishes an analo-
gous result for representations of a finite group) applies without change. 1

Let I, , denote the set of degrees of irreducible constituents in the
Clebsch— Gordan decomposition. Thus I, , ={m +n -1 m +n —
3,....m+n+1-2min(m,n)}. When k€T, , we write g, for the
composﬂe of the map given by extending the scalars for W, . ® W,  to
the field of fractions, K of R, followed by the projection onto the
k-dimensional irreducible constituent of the KSL(2, R)-module (the above
discussions imply that g, is well defined).

LEMMA 2.3. Suppose that k €T, ,, that W, p ® W, . is completely
reducible, and that the degrees of its irreducible constituents are given by T’ .

Then 1m(q,) is irreducible and q,: W,, r ® W, = Im(q,) is a surjection.

Proof. Let K be the field of fractions of R. The R-free RSL(2, R)-
modules W,  ® W, r and &, W, x both extend to KSL(2, R)-mod-
ules |somorph|c to W, x®W, k. "Thus, according to Lemma 2.2, the
modular reductions W,, . ® W, . and @ker W, g have the same sets of
composition factors. However, our hypothesis about the composition fac-
tors of the first of these modules shows that W, j is an irreducible
RSL(2, R)-module of degree k.

Now, Im(g,) is an RSL(2, R)-module which is K-equivalent to W, .
Hence, by Lemma 2.2, Tm(¢q,) is also an irreducible RSL(2, R)-module of
degree k. Since g, is a surjection from W, , ® W, » to Im(g,),q,, the
result of tensoring with R, is also a surjection. [

COROLLARY 2.4. Suppose thatk € T, ,, that W, ® W,  is completely
reducible, and that the degrees of its irreduczble constituents are givenby I, .
Suppose that S = {(my, n)),(my, ny),...,(m,,n)} CW, X W, p has the
property that m; ® n;,m, ® n,,...,m, ® n, haue lmearly mdependent im-
ages under an RSL(2, R)-module homomorphzsm from W, ® W,  onto its
irreducible image of degree k. Then p,(m; ® n,), p(m, ® n,),..., p(m, ®
n,) are linearly independent.

Proof. The modules W, . ®& W, . and W, , ®;W, . are naturally
isomorphic. Thus we can |dent|fy the essentially unique RSL(2, R)-module
homomorphism from W, . ® W, , onto its irreducible image of degree k
with the map g, of Lemma 2.3. Independence of images under g, implies
independence of the corresponding images under ¢, and p,. |
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Suppose that F is a finite subgroup of SL(2, C) and that the correspond-
ing character of F can be written over a ring of integers R with R = F If
the tensor product W, ® W, of SL(2, R)-modules meets the condltlons of
Corollary 24, then the p- “modular reduction of pWE e W) is the
projection of W ® W onto its unique k-dimensional summand. Our
strategy for proving Theorem 2.1 is to compute the latter projections. Such
work with barred objects is relatively pleasant since it involves linear
algebra over the integers modulo a prime.

We write r, for the projection of an SL(2, R)-module onto an irre-
ducible summand of degree k when such a summand exists and that
irreducible has multiplicity 1 in the module (the latter condition implies
uniqueness of such a projection)

Here is the computation (which says in part (ii) that “r, = p,,” for
suitable k). Theorem 2.1 follows from it and Corollary 2.4.

PrRopPosITION 2.5. Let p = 101. Then:

(i) The traces for elements of T, S, and I in SL(2,C) reduce in R to
elements of the prime field Fyy,. So if Z =T, S, or I, we may assume that R
satisfies Z < SL(2, R) and R = Fyy,.

(i) The modules Wy ® W5, Wiz ® Wy, W, @ W,, W, ® Wy, and
W, ® Wy for SL(2,101) are all completely reducible and the degree sets
of their irreducible summands are {5,7,9, 11, 13, 15, 17, 19, 21},
{9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33}, {1,3,5,7,9, 11, 13},
{3,5,7,9,11,13,15}, and {1,3,5,7,9,11, 13,15, 17}. These degree sets match
the degrees in the corresponding versions of the Clebsch—Gordan formula.

Gii) Wy © W) # 0.
(V) (W ® W,,') # 0.

(V) The one-dimensional spaces r,(W>' ® W,') and r,(W," ® Wy )
are distinct.

(Vi) The one-dimensional spaces ri;(Wy ® Wy ) and rs(W,' ® W,')
are distinct.

Method. For (i), we note that the only character irrationalities that we
need to consider involve fifth roots of unity, and that F,,, contains fifth
roots of unity. Therefore we may work over a suitable ring of integers, R,
such that R = Fy,.

For (ii), we compute the decompositions of the tensor products with the
Meat-Axe [P]. Moreover, by using the Meat-Axe to determine bases for
the irreducible submodules of the dual spaces of these tensor products, we
obtain matrices representing all projection maps, r,, onto irreducible
summands of the tensor products.
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For (iii), (iv), (v) and (vi), we compute fixed point spaces under finite
subgroups of SL(2, R) with the Meat-Axe. The projections of images of
tensor products of these spaces are then determined by using the represen-
tations of the projection maps that we computed in (ii). [

3. GENERATORS AND AUTOMORPHISMS OF VL(z

Let L, = Za, (a, a) = 2, be the A;-lattice and let VV:= 1V, be the
VOA of Iattlce type based on L,. We Iet G be a subgroup of Aut(V)
PSL(2,C) isomorphic to Alt,, Sym4, or Alt;. The irreducible W, for
SL(2,C) of dimension m may be interpreted as a module for PSL(Z,(C)
when m is odd.

THEOREM 3.1.  Aut(V ) is the identity if G = Sym, or Alt; and is
isomorphic to Z, if G = Alt,. So, in all cases, Aut(V %) = N,,,,,(G)/G.

It is well known that SL(2,C) acts on Clx, y] as a group of algebra
isomorphisms such that Cx + Cy is a natural SL(2, C)-module. One can
identify W, ., with the space of degree m homogeneous polynomials. As
an SL(2, C)-module, C[x, y] has a decomposition

Clx,y]= @D w,.

m=>1

Let G be the preimage of G in SL(2, C) (we may assume G=T, S orl)
and A4 the algebra of invariants for the action of G on C[x, yl. The
following proposition can be found in [S]. In all cases, A4 is a quotient of a
polynomial ring with three generators modulo an ideal generated by a
single relator, indicated below.

PROPOSITION 3.2.  The algebra has a set of generators as follows (f,, g,
and h, denote homogeneous polynomials of degree n):

() IfG=SL23), A= Clfs, feor f1], subject to the relation f + f
+f122 =

(i) IfG =2-Sym,, A= Clgg, g1 81s), subject to the relation g% +

8581, + 81, = 0.
(i) If G = SL(2,5), A = Clhyy, hyy, hyy), subject to the relation hS,

+ h3 + h3 =0
Let L(c, h) be the irreducible highest weight module for the Virasoro
algebra with central charge ¢ and highest weight 4 for c¢,h € C. The

subspace H of highest weight vectors for Vir in 7 is linearly isomorphic to
the subspace Clx, y]* of even polynomials in C[x, y], and we may and do
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assume that this isomorphism ¢: H — Clx, y]* preserves degree. Let
Hy, 1= ‘P_l(W2m+1)-
Recall from [DG] that there is an isomorphism

(*) Y:V= ) Wy, ® L(1m?),

m=>0

as modules for SL(2,C) X L(1,0). Let m,,, ., be the projection of (}) to
W,,. .1 ® L(1, m?). Note that since dim(W,) = 1, , can be interpreted as
a map onto L(1,0).

We need the following result from [DM2] (see Lemma 2.3; also see
[DM1D:

LEmMMA 3.3.  Let K be a compact Lie group which acts continuously on a
vertex operator algebra U. Let M, N be two finite dimensional K-submodules
of U. Then there exists n such that the linear span of L t, fors € M,
t € N, is isomorphic to M ® N as K-modules.

mZnSWL

For convenience, we set v! = @ 1(f;) (resp. ¢ '(gg) or ¢ *(hy,)),
v?= ¢ Xfy) (resp. ¢ (gy,) or ¢ t(hy)), and v3 = ¢ X(f,) (resp.
o Hgy) or ¢ 1 (hy)) if G = Alt, (resp. Sym, or Alty). Then we have

PROPOSITION 3.4. The vertex operator algebra V° is generated by
{w, v*, v?, 0%,

Proof. We prove the result for G = T, the other cases being similar.
First note that the algebra C[x, y]” is generated by f;, f5, and f;, and the
algebra product can factor through the tensor product. The T-invariants of
V' have the form

py(VT)y = D Wy, ®L(1,m?), asin(*),above.
m=0

We use ¢ to transfer the VOA structure of I to the right-hand side of
(=), as well as the action of the automorphisms. It is enough to show that
if W), ® L(1,s%)and W}, ® L(1,1?) can be generated by the y-images
of w and the v’ then so can Wy ., ,; ® L(1,(s + 1)*). We assume that
s>t

By Lemma 3.3, span{u,v|u € W,,,, ® L(1,5%), v € W,,,, ® L(1,t?),
m € 7} is exactly the subspace

(l -1 )2)
1, ——
2

W, &L
[=25s—2t+1,25s—2t+3,..., 25+2t+1
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and span{u, v |lu € W)k, ® L(1,5), v € W), ® L(1,t?), m € 7} is ex-
actly the subspace
[—1)\?
1 (_) .
2

Since poyriyr  (Waosi1 © Wohy)) = Wy oy 1, we immediately see that
Wosins1 ® L, (s +1)*) can be generated by W, , ® L(1,s°) and
Wy, ® L(1,1%). As a result, Wy, ., ® L(1,(s + 1)*) can be generated
by w and v'. |

T T
Pl(Wzs+1 ® W2z+1) ®L
I=25—2t+1,25—2t+3,...,25+2t+1

LEMMA 3.5.  Forany k > 1, there is an invariant bilinear form on W,., and
for any x, y € W, which are not orthogonal, p,(x ® y) # 0. This applies to
x =y # 0 in W whenever dim(W¢) = 1.

Proof. Since W, is the unique irreducible of dimension k, it is a
self-dual module. A nonzero invariant bilinear form is unique up to scalar
multiple. Since p, maps W, ® W, onto W, this projection is essentially
that bilinear form. Since the subspace W,¢ is nonsingularly paired with
itself under such a bilinear form, the last statement follows. [

Proof of Theorem 3.1. (i) Let G = Sym,. Let o € Aut(V°). Since o
preserves weights and fixes o, it stabilizes each Hy ., which is the
subspace of highest weight vectors of weight m? in V¢ for the Virasoro
algebra. By Proposition 3.2, W = Cgg, W5 = Cgy,, and W§ = Cgys.
Thus there are scalars c¢; € C such that og, = c;g; for i = 8,12,18. By
Lemmas 3.3 and 3.5, there exists m; € Z such that 0 # wl((g,) &) €
L(1,0). Since o is trivial on L(1,0), we immediately have ¢? = 1 for all i.
Thatis, ¢; = +1.

From Proposition 3.2, W5 is two dimensional. Since g2, € W,5, which is
regarded as a subspace of C[x, y], we see from (*) and Lemma 3.3 that
there exists m € Z such that 0 # 74,((g45),,815) € W5 ® L(1,18%). So, o
has an eigenvalue 1 on W5 ® L(1,182). Using the actions of the Virasoro
operators L(n) for n > 0 on m4,((g,5),,815), We get an eigenvector in
WS for o with respective eigenvalue 1. Similar use of Lemma 3.3
and (#) implies that there exist n;, M1 81, 3, S3 € Z such that
747((812), 7725((g12) ,812) € Wi ® L(1,18?) is an eigenvector of o with
elgenvalue ¢, and 7737((g8) 7729[(g8)s27721[(g8) g1, 1D is an eigenvector of
o with eigenvalue c§c;,. As a result W contalns three eigenvectors u, v,
and w of o with eigenvalues 1, ¢, and c3c,,. From Proposition 3.2, any
two of {u, v, w} are linearly independent and the three are linearly depen-
dent. Since W5 is two dimensional, we conclude ¢3, = c3c,, = 1, whence
cg=cp =1
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It remains to show that c¢;; = 1. By Theorem 2.1(i) and Lemma 3.3,
there exists m € Z such that m,4((gg),,g1,) € W5 ® L(1,81) is an eigen-
vector of o with eigenvalue 1. Since W is one dimensional, we see that
g1 = &1g- Since V7 is generated by w and g; (see Proposition 3.4), we
conclude that o is the identity map.

(i) The proof in the case that G = Alt, is similar to that in case (i).

(i) Let G = Alt,. In this case V¢ is generated by w and f, f5, fi,
by Proposition 3.4. Let o € Aut(V“). Since W% = Cf, and WS = Cf,,
there exist ¢4, cg € C so that o f; = ¢ f; and o fg = cgfs. Using the same
argument as used in the proof of case (i), we get ¢ = +£1 and ¢ = +1.
Note that W)§ = CfZ + Cf,, is two dimensional. From Theorem 2.1(iii)
and Lemma 3.3, there exist m,n € Z such that 7 ,((f5),, fs), 713((fs),, f3)
e W5 ® L(1,36) are linearly independent eigenvectors of o with eigen-
values 1 and c4cg. This implies that 17 is generated by o, f;, and f; and
the automorphism group is isomorphic to one of 1, Z,, and Z, X Z,.

Recall that the normalizer N(G) = N,,,(G) is isomorphic to Sym,.
From Lemma 3.2 of [DML1], we know that VN and V¢ are different,
whence an element of N(G)/G = Z, acts on V¢ as a nontrivial automor-
phism, denoted by o. So, Aut(V ) is either Z, or 7, X Z,. If Aut(V ) is
isomorphic to Z, X Z,, then there exists 7 € Aut(V'9) such that Aut(V'9)
is generated by o and 7. By Theorem 2.4 of [DLM1], V¢ can be
decomposed

Ve=vievi eV ,eVs |,

where V.9 ={v € V9 |ov = pv, Tv = v} and each is nonzero. More-
over Y(u, z)v [%GV,fM'A%Z[[z, z:]] if u eNV(g ), and v € V#SAZ It is easy
to see that VN9 =V @ V.°_, and VM has a nontrivial automor-
phism. This is a contradiction to (i). Thus Aut(V’¢) must be isomorphic to

Z,. This completes the proof. |

Remark 3.6. From the proof of Theorem 3.1, we see that, when
G = Alt,, V¢ is generated by o, f;, and f,. This strengthens the result in
Proposition 3.4.

REFERENCES

[B] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc.
Nat. Acad. Sci. U.S.A. 83 (1986), 3068—3071.

[CR] C. Curtis and L. Reiner, “Representation Theory of Finite Groups and Associative
Algebras,” Wiley—Interscience, New York, 1962.

[D] C. Dong, Vertex algebras associated with even lattices, J. Algebra 160 (1993),
245-265.



710

[DG]

DONG, GRIESS, AND RYBA

C. Dong and R. L. Griess, Jr., Rank one lattice type vertex operator algebras and
their automorphism groups, J. Algebra 208 (1998), 262-275.

[DLM1] C. Dong, H. Li, and G. Mason, Compact automorphism groups of vertex operator

algebras, Internat. Math. Res. Notices 18 (1996), 913-921.

[DLMZ2] C. Dong, H. Li, and G. Mason, Regularity of rational vertex operator algebras, Adv.

[DM1]
[Dm2]
[DN1]
[DN2]

[FLM]

Math. 132 (1997), 148-166.

C. Dong and G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997),
305-321.

C. Dong and G. Mason, Quantum Galois theory for compact Lie groups, J. Algebra
241 (1991), 92-102.

C. Dong and K. Nagamoto, Representations of vertex operator algebra ;" for rank
one lattice L, Comm. Math. Phys. 202 (1999), 169-195.

C. Dong and K. Nagamoto, Automorphism groups and twisted modules for lattice
vertex algebras, Contemp. Math., to appear.

I. B. Frenkel, J. Lepowsky, and A. Meurmann, “Vertex Operator Algebras and the
Monster,” Pure and Applied Mathematics, Vol. 134, Academic Press, San Diego,
1988.

P. Ginsparg, Curiosities at ¢ = 1, Nuclear Phys. 295 (1988), 153-170.

J. Humphreys, “Introduction to Lie Algebras and Representation Theory,” Gradu-
ate Texts in Mathematics, Vol. 9, Springer-Verlag, Berlin/New York, 1972.

E. Kiritsis, Proof of the completeness of the classification of rational conformal field
theories with ¢ = 1, Phys. Lett. B 217 (1989), 427-430.

R. A. Parker, The computer calculation of modular characters (the Meat-Axe), in
“Computational Group Theory” (M. D. Atkinson, Ed.), Academic Press, London,
1984.

T. A. Springer, “Invariant Theory,” Lecture Notes in Mathematics, Vol. 585,
Springer-Verlag, Berlin/New York, 1997.



	1. INTRODUCTION
	2. REPRESENTATIONS OF SL (2, C)
	3. GENERATORS AND AUTOMORPHISMS OF V^{G over {L_{2} }
	REFERENCES

