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The splitting problem in abelian groups, in its simplest form, asks when 
is an abelian group a direct sum of a torsion group and a torsion-free one. 
This is of course a special case of the problem of describing all extensions of 
torsion-free groups by torsion groups. It is a hard problem of long standing, 
and, despite numerous attempts, only fragmentary information is available: 
for instance, see the papers in the bibliography. In this paper we develop 
what seems to be a new approach to solving the splitting problem. 

The outline of the paper is as follows: The notation and terminology are 
collected in Section 1. 

In Section 2 we quickly reduce the splitting problem to two problems, the 
splitting of those whose quotient by their torsion subgroup is reduced, and 
those whose quotient by their torsion subgroup is divisible. For simplicity, 
we concentrate on groups whose torsion subgroups are primary. (See, how- 
ever, the remark at the end of the section). The main result of this section, 
Theorem 1.2, shows that decomposing a group of the first kind as the tensor 
product of two other groups is at least as good a reduction as decomposing 
it into the direct sum of two groups. For we show that if 
A = B @ C, then A splits if, and only if, both B and C do. Note 
that rank A = (rank B) x (rank C), whereas in A = K @ L, 
rank A = rank K + rankl, so that usually the ranks of B and C are smaller 
than those of K and L. 

In Section 3, we investigate groups whose quotient by their torsion sub- 
group is divisible. It turns out that for this class of groups it is fruitful to 
define the notion of splitting length Z(x) of a group X. This is defined in 
Section 3 as the least positive integer 1z, such that X @ a.* @ X, 11 times, 
splits. This has the following properties: Denote by C, the class of those 

423 
0 1970 by Academic Press, Inc. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82633354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


424 IRWIN, KHABBAZ, AND RAYNA 

groups of splitting length n, a group being in C, if it is not in any C, , 
n < cc. Then, 

(1) Every group is in some class by definition. 

(2) Each C, is nonempty. 
(3) Groups in class C,, are simpler, with respect to failure to split, than 

those in C,,, (and, indeed C, is the class of groups which split). The meaning 
of “simpler” may be clarified by saying that l(x) is proportional to the size 
of the subgroups S of the torison subgroup of X required for X/S to lie 
in class C, . This is borne out by the main theorem of this section which, 
loosely expressed, relates the splitting of X @ X to that of X/S. 

The main result of Section 4 is to show that each class C, is nonempty. 
Finally, we wish to remark that this is a first paper on the subject, and so 

there is no need for us to pose questions. As he progresses, the reader will 
find himself being stared in the face by a host of questions which are left 
unanswered. 

SECTION 1 

In this section we comment briefly about notation and terminology. 
First and foremost “group” means “abelian group” throughout this paper. 

“Map” means “homomorphism.” 
The symbol T(G) is used to denote the torsion subgroup of group G. The 

symbol [x] means the cyclic group generated by x. 
Very importantly, “G splits” means T(G) is a direct summand of G. 
Unless otherwise clear from the context, we use “quotient” to mean 

“a group modulo its torsion subgroup”. 
We occasionally use “rank” to mean “torsion-free rank,” that is, the rank 

of the group modulo its torsion subgroup. 
Recall that where A, B are any abelian groups and R C A, SC B are 

arbitrary subsets, the notation (R, S> designates the subgroup of A @ B 
generated by elements r @ s E A @ B, T E R, s E S. 

For the definitions of “cotorsion,” “adjusted,” and homological terms we 
refer to Harrison’s paper, [8] and Mac Lane [lo]. 

SECTION 2 

The purpose of this section is to present some reduction theorems and 
observations which may provide motivation for the results which follow. 
Some results are mentioned in this section which are of interest in themselves 
and others are given for completemess. 
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We begin with 

LEMMA 2.1. Let f : A + A/T(A) be the natural homomorphism, and let 
A/T(A) = D @ R. Then A splits if, and only if, bothf -l(D) andf -l(R) split. 

Proof. Suppose A splits. Then A = F @ T(A) where F is torsion free. Let 
FD = {a E F : f (a) E D}. Since T(A) _C f -l(D), we have f -1(D) = Fr, @ T(A) 
which shows that f -l(D) splits. Similarly f -l(R) splits. 

Conversely, suppose that f-'(D) and f-l(R) both split. Since 
T[f -l(D)] = T(A) = T[f -l(R)] we have f-‘(D) = F. @ T(A) and 

f-l(R) = FR @ T(A) where F. and FR are torsion-free subgroups of A. 
Clearly, A = F. + FR + T(A). N ow suppose a E (FD + FR) n T(A). Then 

0 = a + T(A) =fD +fR + T(A) = [fo + TV)1 + [fR + T(41, 
and since A/T(A), f -l(D), and f -l(R) are the given direct sums fD = fR = 0 
and the proof is complete. 

An observation which reduces the splitting problem into two cases is 

COROLLARY 2.1. The splitting problem for arbitrary Abelian groups may be 
reduced to the problem for those groups G with G/T(G) reduced and those groups 
G with G/T(G) is divisible. 

Proof. Let A be any group. Write A/T(A) = D @ R where D is divisible 
and R is reduced and apply Lemma 2.1. Then A splits if, and only if, both 
f-'(D) and f -l(R) do. 

In much of what follows we will often make the simplifying assumptions 
‘p divisible” instead of “divisible” and ‘p reduced” instead of “reduced” 
and T(A) primary instead of torsion, but we shall always make these distinc- 
tions clear as we go along so as to make most of the statements of the results 
self-contained. 

Remark. Referring to G/T(G) as the quotient of G, notice that 

{groups with p reduced quotient} C {groups with reduced quotient} 

and 

{groups with divisible quotient} C {groups with p-divisible quotient} 

Notice that those groups whose quotients are both divisible and reduced must 
be torsion groups. 

Our next observation shows that tensoring by p-reduced groups does not 
affect the splitting of a group A with T(A) p primary: 

Remark. The authors are indebted to the referee for the shortened proofs of Theorems 
2.1 and 2.3 which follow. 
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THEOREM 2.1. Suppose M is a group where M/T(M) is not p divisible and 
A is any group with T(A) p primary. Then M @ A splits implies that A splits. 

Proof. Let B/T(M) be p-basic subgroup (see [7]) of M/T(M). Then 
B = T(M) @F where F is free. Also F f 0 for M/T(M) is not p-divisible. 
Now M/B z (M/T(M))/(B/T(M)) is p-t orsion free and p divisible. Hence, 
the exact sequence 

0-t T(A)- A-A-O 
T(A) 

gives exact sequence 

O-+Tor(g,T(A))-Tor(g,A)-+O, 

but Tor[M/B, T(A)] = 0, since T(A) is p primary and M/B p-torsion free. 
Hence, Tor(M/B, A) = 0. Now the exact sequence 

M 
O+B--+M+----0 

B 

gives exact sequence 

M 
O-tA@B:A@M+A@--0. 

B 

Using the facts that M/B is p divisible, T(A) is p primary, and Exercise 16, 
p. 256 of [6], we have 

e[T(A @ B)] = T(A @ M). 

Since A @ M splits and e[T(A @ B)] = T(A @ M), A @B s e(A @B) 
also splits. 

Since 2 is a direct summand of B, we have that A z A @ 2 is a direct 
summand of A @ B and, therefore, A splits as stated. 

As a special case where T(M) = 0, we have 

COROLLARY 2.2. Let A be any abelian group with T(A) p-primary. Let M 
be torsion free, and not p divisible. Then A splits if and only if A @ M splits. 

As an important application of Corollary 2.2 we have the following: 

COROLLARY 2.3. The splitting question for any group A with T(A) p 
primary reducrs to the splitting question for two groups G and H, one with 
G/T(G) p reduced, the other such that H/T(H) is divisible. 
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Proof. Let R-, = {a/b E Q : (b, p) = l} C Q. Clearly, pR_, < R-, and so 
R-, = M and A satisfy the hypotheses of Corollary 2.2. Hence, A splits if, 
and only if R-, @ A splits. (Note that for any A, T(R-, @ A) is p primary). 
Next apply Corollary 2.1 to R-, @ A and set G = f -l(R) and H =f-l(D). 
Now it suffices to show that G/T(G) is p reduced. Since G in this case is 
divisible by every prime 4 #p and G/T(G) is reduced, G/T(G) must be 
p reduced as stated. 

A major consequence of Theorem 2.1 is the following 

THEOREM 2.2. For each i = I,..., n let Ai be any group having the property 
that each T(A,) is p primary and that no AJT(A,) is p divisible. Then 
A, @ A, @ ... @ A, splits if, and only ;f, each Ai splits. 

Proof. If each Ai splits then A, @ A, @ *.a @A, splits, simply because 
the tensor product of torsion groups, and of torsion and torsion free groups, 
is torsion while the tensor product of torsion free groups is torsion free. 

To prove the converse, first suppose n = 2. Set A, = M and A, = A and 
assume that our conditions are satisfied on M and A, and that M @ A splits. 
Then, by Theorem 2.1, A (that is, A,) splits. Interchanging the roles of A, 
and A, , we conclude in the same way that A, splits. This completes the proof 
of the theorem for the case n = 2. 

The case of general n > 2 follows, by induction, using the “p-divisible 
quotient” case of the following lemma: 

LEMMA 2.2. For any groups A and B, G = A @B is such that G/T(G) is 
p divisible if, and only if, one of A, B is such that A/T(A) or B/T(B) is p divis- 
ible. 

Remark. Another way of stating this lemma which makes it more palat- 
able is: 

For any groups A and B, G = A @ B has a p divisible quotient if, and 
only if, at least one of A, B does. 

Proof. Let C = A/T(A), D = B/T(B). Recall (for example, from Fuchs, 
p. 252) that (A @ B)/T(A @ B) E C @ D. Hence, if C or D is p divisible, 
so is (A @ B)/T(A @B). 

To prove the converse: If neither C nor D is p divisible, then pC # C and 

pD#D. 
Now we have a natural homomorphism of C @ D onto C&C @ DjpD. 

The latter is not the 0 group, and is a direct sum of cyclic groups of order p. 
Hence it cannot be p-divisible. But it is a homomorphic image of 
(A @ B)/T(A @ B), so the latter group is not p divisible. 

Several corollaries of Theorem 2.2 are worth noting. 
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COROLLARY 2.4. For any group A = B, @ B, such that T(B1), T(B,) 
p primary and A/ T(A) not p d ivisible, A splits if, and only if, B, and B, both do. 

Proof. The assumption that A/T(A) is not p divisible implies the same 

for B, and B, . The conclusion follows by Theorem 2.2. 
This corollary shows that for groups with p-reduced quotients, “decompo- 

sition” as a tensor product shares a useful property with decomposition as a 

direct sum: if A = B, @ B, or A = B, @ B, , A splits if, and only if, B, 
and B, both do. 

The next observation is important for our notion of splitting length in 
what follows. 

COROLLARY 2.5. If T(A) is p primary, and A/T(A) is not p divisible, and 
A doesn’t split, then neither does A @ A @ .-a @ A for any number of factors. 

Remark. It may be of interest to observe that in the proof of Theorem 2.2, 

we can actually show that, under the assumption of that Theorem, not only 
is each A3 isomorphic to a p-pure subgroup of A, @ A, @ *-- @ A, , but 

indeed if {ii ,..., i,,J is any subset of { l,..., n], then Ai1 @ .+. @ Aim is also 
isomorphic to such a subgroup. 

The next lemma relates the splitting of a group A to that of A/W where the 

subgroup WC T(A). 

LEMMA 2.3. Let A be agroup and W a subgroup of T(A). Let f : A -+ A/W 
be the natural homomorphism. If A splits, then A/W splits, and, hence, can be 
written as T(A/ W) OF; and the subgroup f-l(F) defined thereby also splits. 
Conversely, if A/W splits: Al W E T(A/W) OF, and if f -l(F) also splits, 
then A splits. 

Proof. Write f-l(F) as f-l(F) = T(f-l(F)) @ H where H is torsion 
free. Then it is easy to see that A = T(A) @ H. If A splits, then clearly 
A/W and f -l(F) split. 

The next observation shows that the splitting of a group A is reduced to 
the splitting of a subgroup M of A whose torsion subgroup is a direct sum of 
cyclic groups. 

COROLLARY 2.6. Let B be a basic subgroup of T(A). Then (A/B) decomposes 
as A/B = T(A)/B @ M/B; and A splits z# M splits. 

Proof. Use Lemma 2.3, setting W = B and F = M/B; the proof is 
straightforward. 

A reduction theorem, to groups of torsion -free rank one, for those groups 
whose quotients are p divisible is 
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THEOREM 2.3. Let A be any abelian group such that T(A) is p primary, 
suppose that A/T(A) is p divisible, and let f : A -A/T(A) be the natural 
homomorphism. Then A splits if, and only if, f-l(C) splits whenever C is any 
p-pure rank one subgroup of A/T(A). 

Proof. The “only if” part is obvious. 
To prove the converse, observe that Ext(B, T) g Ext(R-, @ B, T) where 

B is torsion free, Tp primary and R-, = {a/b EQ : (p, b) = I}. The isomor- 
phism is the map which takes equivalence class [0 ---f T - X - B - 0] onto 

[0-TrR-,@T-R-,@X-R-,@B-01. 

Therefore, 
f A 

r:O-T(A)-A-To-O 

splits if, and only if, 

A 
.*:O-R-&T(A)-R,@A$R-,@- 

T(A) -+O 

splits. Since A/T(A) is torsion free and p divisible R-, @ A/T(A) = CAEn QA 
where QA denotes a copy of rationals for each A E A. Hence, E* is equivalent 
to a vector (c,,*) representing an element in nlnsn Ext[Q, , T(A)]. The 
hypothesis that f -r(C) splits whenever C is a rank one p-pure subgroup of 
A/T(A) implies that f*-l(QJ splits for each A, i.e., l A* = 0 for each h E A 
and thus c* = 0. Hence, c = 0 and A splits. 

The next two observations compare the torsion subgroups of G and 
G @ G. 

LEMMA 2.4. Let G be any mixedgroup for which G/T(G) is divisible. Then 
T(G @ G) is a direct sum of cyclic groups. 

Proof. The pure exact sequence 

04 T(G)-G-G-0 
T(G) 

yields 

and 

G 

0-T(G)@T(G)-GOT(G)-0. 

From the last two sequences we see that T(G @ G) s T(G) @ T(G) and it 
is well known that this last group is a direct sum of cyclic groups. 
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An easy consequence of Lemma 2.4 is 

COROLLARY 2.1. Any cotorsion adjusted mixed group G is such that 
T(G @ G) is a direct sum of cyclic groups. 

Proof. G/T(G) is divisible. 
Along these lines we have the following n.a.s.c.: for T(G) and T(G @ G) 

to be a direct sum of cyclic groups together. 

THEOREM 2.4. Let G be a mixed group with T(G) p primary, G reduced and 
G/T(G) p reduced. Then T(G @ G) is a direct sum of cyclic groups, if, and only 
if, T(G) is. 

Proof. Let T(G) b e a direct sum of cyclic groups. Then put 
e = Ext(Q/Z, G) an d we have G/G is torsion-free divisible. This means that 
T(G) = T(G). Now the pure exact sequence 

Q: 
O-+G-+G-+--+O 

G 

yields 

and 

where the groups on the right all torsion-free divisible. Hence, 
T(G @ G)= T(G @ G) E T(G @ G). But by Harrison we have 
G = T(e) @ C = A @ C where A is adjusted and C torsion-free. Now 
~@I$~(A@A)@(A@C)@(C@A)@(C@C). The torsion sub- 
group on the right is a direct sum of the torsion subgroups of its summands 
each of which is a direct sum of cyclic groups since T(G) is. 

For the converse, notice that G/T(G) # 0 being p reduced allows us to 
select a p-pure cyclic subgroup [y] G 2 in G. To see this pick an element in 
G/T(G) of p-height zero and jump back and forth via the natural map. Next 
consider the p-pure exact sequence 

O-r[y]+G+O 

from which we get the exact sequence 0 -+ [y] @ G + G @ G whence we 
have that T(G) must be a direct sum of cyclic groups. Note the last sequence 
is left exact since [y] is p-pure in G and the tensoring G has only p torsion. 
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Remark. Notice that using the same technique as in the proof of the 
foregoing theorem it can be shown that if X and Y are groups satisfying the 
hypotheses on G in Theorem 2.4, we have that T(X @ Y) is a direct sum of 
cyclic groups if, and only if, both T(X) and T(Y) are. (Actually we may 
repIace “p reduced” by “not p divisible” on X/T(X) and Y/T(Y).) Using 
induction and the proof of Corollary 2.4 we obtain: 

THEOREM 2.5. For each i = 1, 2,..., n let Ai be any group having the 
property that T(AJ is p primary and that Ai/T(A,) is not p divisible, and that 
Ai is reduced. Then T(A, @ A, @I *.* @ A,) is a direct sum of cyclic groups if, 
and only if, each T(A,) is. 

Setting each Ai = G in Theorem 2.4 we have easily 

COROLLARY 2.8. Let G satisfy the hypotheses on the Ai in Theorem 2.5, 
and let G” = G @ *a* @ G (n factors). Then for n = 1,2,3,..., T(Gn) is a 
direct sum of cyclic groups if, and only ift T(G) is. 

Remark. The following example shows that a word of caution is necessary: 
That splitting in the p-primary case in some sense does not imply splitting 
in general. To see this consider the following example: Let {p,} be the set of 
primes and set G = nbl C(p,). N o Ice that T = @%& C&i) is the rotsion t’ 
subgroup of G such that G/T is divisible. The interesting thing is that each 
G, = T, = C(p) is a direct summand of G. But the torsion subgroup T is 
not a direct summand. Along these lines see also [12]. 

SECTION 3 

In this section we study conditions for Bl @ B, to split where Bi are 
groups such that T(B,) is p primary and Bi/ T(B,) is p divisible. 

In Section 2 we established a rather satisfactory role for the tensor product 
in the splitting of an abelian group whose quotient is reduced. Now we 
consider the other main class of groups, namely those for which the quotient 
is p divisible. Here as one might forsee from the fact that the tensor product 
of torsion groups is a direct sum of cyclic groups, tensoring plays the role 
of a simplifying operation. This is definitely so for groups of finite splitting 
length, while for those of infinite splitting length it at least points to a more 
intrinsic complication. Perhaps certain algebraic operations involving “limits” 
provide the appropriate tool for their study. We begin with a few lemmas. 

The following fact is standard: 

LEMMA 3.1. Suppose A is an abelian group such that T(A) is p-primary, 
and has a p-pure torsion pee subgroup B such that A/B is a torsion group. Then 
A splits. 
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Proof. Define the subgroup F of A: 

F = (a E A / for some integer m, (m, p) = 1, mu E B}. 

We claim F is torsion free, pure (not only p pure) in A, and A/F is a torsion 
group. The first and third facts are obvious. We prove the purity as follows: 

Suppose a E A, ca E F, c # 0. We may write c as c = npi, where (n, p) = 1. 
By the definition of F, for some integer m, (m, p) = 1, m(cu) E B. By the 
p purity of B in F, there exists b E B such that pi@ - mna) = 0. Now 
(S - mna) has order prime to mn, hence, there exists t E T(A) such that 
mnt = (b - mnu). Since pi(mnt) = 0, so does pit = 0 already, since T(A) 
is p primary. Let a’ = a + t. Then mnu’ = mnu + (b - mna) = b E B, 
so a’ EF; and ~(a’ - a) = ct = npit = 0. 

We shall now show that A = T(A) OF. Given a E A, then, for some 
nonzero integer c, cu E F (since A/F is torsion). F being pure and torsion free, 
there is a unique a’ E F such that c(u’ - u) = 0. The required splitting is: 
a = (a - a’) + a’. 

A rather interesting fact is found in 

LEMMA 3.2. Let C and D be any ubeliun groups, and ussume that C @D 
splits into C @ D = T(C @ D) @F where F # 0. Then F contains u non-zero 
element of the form c 0 d, c E C, d E D. 

Proof. Let f : C --+ C/T(C) and g : D -+ D/T(D) be the natural homo- 
morphisms, and let x and y be elements of C and D, respectively, having 
infinite order. Then it is well known that (f @ g) (x By) has infinite order in 

C/T(C) 0 Dl T(D), where (f @A (x 0~) =fH @g(y). Hence, x Or 

may be written in the form t + z, t E T(C @ D) and 0 # z EF. If order 
t = n, then nx @ y obviously is in F and is not zero. Set c = nx and d = y. 

Remark. It is interesting to note that if in Lemma 3.2 we have C = D, 
and rank [C/T(C)] = 1, then F contains a nonzero element of the form 
c @ c, c E C. For let nx and y be as in the proof of Lemma 3.2. Since the 
torsion free rank of C is one, there exist nonzero integers m and k such that 
m(nx) = ky. Then mk(nx @y) is in F and we may take c = mnx = ky. 

In the following lemma we make two simple observations, needed in some 
subsequent proofs, on the preservation of p divisibility. 

LEMMA 3.3. Assume X/T(X) is p divisible. Let Y be any ubeliun group, and 
A any subgroup of X. Then: 

(1) (X @ Y)/T(X @ Y) is p divisible, and 

(2) (X/A)/T(X/A) is p divisible. 
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Proof of (1). Let x @ y be any generator of X @ Y. Since X/T(X) is 
p divisible, there exists x’ in X such that 

Then 

px’ - x E T(X). 

p(x’ my) - (x By) = (fix’ - x) @ y E (T(X), Y) C T(X @ Y). 

Proof of (2). Let x E X be a representative of any element x + A of 
X/A. There exists x’ in X such that 

Then 

px’ - x E T(X). 

The next observation is one of those “technical” lemmas that will come in 
handy. 

LEMMA 3.4. Let X, be a p-primary torsion group, and let Y be such that 
Y/T(Y) is p divisible. Then the natural map i : X, @ T(Y) -+ X,, @ Y is an 
isomorphism. 

Proof. From the exact sequence 

Y 
0-t T(Y)+ Y-t---- 

T(Y) +’ 

and the fact that X, @ [Y/T(Y)] = 0, we have (using the half-exactness of 
the @ functor) the exactness of 

X,@T(Y)-+X,@Y-tO; 

so i is onto. 
To show that i is one-to-one, we need only observe that T(Y) is pure in Y, 

and that, as is well known, for any pure subgroup A of a group B and for any 
group G, the induced map G @ A -+ G @ B is one-to-one. 

An easy consequence of the foregoing lemma is 

COROLLARY 3.1. Under the assumptions of Lemma 3.4, X, @I Y is a direct 
sum of p-primary cyclic groups. 

Proof. It is well-known that the tensor product of two torsion groups is a 
direct sum of cyclic groups. The corollary follows immediately. 
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DEFINITION. Let A be an abelian group, x an element of A, and p be a 
a prime. A sequence x1 , x2 , xQ ,... of elements of A will be called a p sequence 
for x if, and only if, px, = x and pxn+l = x, , n = 1,2, 3 ,.,. . 

Observe that if A is torsion free and pA = A, then each element of A 
has a p sequence which is unique. 

An easy result which uses the idea of a p sequence and is fundamental in 
this paper is 

PROPOSITION 3.1. Let A be a group where A/T(A) is of rank 1, T(A) is 
p primary, and let 0 # a E A be an element of in.nite order having a p sequence 
{a,} in A. Then A splits. 

Proof. Let B be the subgroup of A generated by {a, a, , a2 ,...}. Notice 
that B is torsion-free. (mu, = 0 yields mpna, = 0 or mu = 0, thus m must 
be 0.) Since B is p divisible, B is p pure in A, and A/B is torsion since A is of 
torsion-free rank 1. Now by Lemma 3.1 we have that A splits as stated. 

An interesting p sequence is displayed in 

LEMMA 3.5. Let X and Y be groups and be such that X/T(X) has rank 1. 
Let Y be such that Y/T(Y) is p divisible. Assume that X @ Y splits: 
X @ Y = T(X @ Y) OF. Consider any z1 = x @ y in F. Then there exists a 
p sequence xa , za , zq , . . . for z1 in F; and each zi can be written in the form 
zi = x @ bi, bi E Y. 

Proof. Assuming zi E F is determined, we construct zdfl . Since Y/T(Y) 
is p divisible, so is (X @ Y)/T(X @ Y) (by assertion (1) of Lemma 3.3, with 
the roles of X and Y interchanged). But this factor group is isomorphic to 
F, so there exists xi+i E F such that 

(Since F is torsion free, zi+i is in fact unique.) 
It remains to be proved that the zi can be represented in the form claimed. 
Consider f : X @ Y + (X/[x]) @ Y. Clearly f (x By) = 0. Since 

piZi = x @ y, we Z&O have Pi = 0; so each f (zi) lies in the p-primary 
component of (X/[x]) @ Y, which component is naturally isomorphic to 
X, @ Y where X, is the p-primary component of the torsion group X/[x]. 

By Corollary 3.1, X, @ Y is a direct sum of p-primary cyclic groups. On 
the other hand, each zi , and, hence, each f (zi), has infinite p height. This is 
impossible unless every f (.zJ = 0. 

Finally, it follows from the half-exactness of the @ functor that the ker off 
is precisely the set of elements of X @ Y which are of the form x @ b with 
b E Y. Hence each xi is of this form. 
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Another one of those technical lemmas which turns out to be very useful is 

LEMMA 3.6. Let X and Y be groups such that X/T(X) is p-divisible, 
T(Y) is p-primary and X @ Y splits. Let 01 be a homomorphism of X onto E 
where E is torsion free p divisible. Then (ker a) @ Y splits. 

Proof. Since E is torsion free, ker OL is pure so that 

O-+(kera)@Y-+X@Y+E@Y-+Oisexact. 

Since E is torsion free p divisible and T(Y) is p primary, E @ Y is torsion 
free. This means that T[(ker a) @ Y] g T(X @ Y) = T so that 

O+b-40Y : XC3 Y 
T T 

is exact whence 

is exact. Since the extension giving rise to (ker a) @ Y is the p image of the 
extension giving rise to X @ Y (and the latter is zero since X @ Y splits) we 
have that (ker a) @ Y splits. 

And now with the help of Lemma 3.6 we can give a slightly better version 
of Lemma 3.5, as 

LEMMA 3.7. Let X and Y be groups such that T(X)and T(Y) are p primary 
and Y/T(Y) is p divisible. Further suppose that X @ Y splits as 
X@Y=T(X@Y)@FwhereFistorsionfreeandO#x@y~F.Then 
for some integer n, x @I ny has a p sequence {Zi} where each Xi has the form 
X(=X@yi,yiEY. 

Proof. Embed x + T(X) in a pure subgroup S of X/T(X) of rank 1. 
Consider the sequence of maps 

and let 01 be the composition: 01 : X 4 E. Clearly, ker 01 has torsion free rank 1, 
contains T(X), and (ker a)/T(X) is p d ivisible. By Lemma 3.6, (ker a) @ Y 
splits into T[(ker a) @ Y] OF’. Since ker a: has rank 1 and for some integer 
n, x @ ny EF’, Lemma 3.5 applies and we have the desired p sequence. 

We now have enough tools to manufacture a proof of one of the main 
results in this paper. But first a 
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DEFINITION. Consider abelian groups X, Y, and their tmor product 
X @ Y. For any x E X, we dejke 

x=(yEYIx@y=O}. 

Now we can prove: 

THEOREM 3.1. Let X, Y be abelian groups such that T(X), T(Y) are p 
primary and X/T(X), Y/T(Y) are p divisible. Then X @ Y splits af, and only 
if, Y/X splits for e-very x E X. 

Proof. Suppose, first, that Y/X splits for every x E X. Let {x,+} be a 
maximal linearly independent set in X. Then, in particular, each Y/F* splits. 
Since Y/s* is isomorphic to (xA , Y) _C X @ Y, we can write 

@A , Y> = T(<xA 9 Y>) OFn . 

Y/T(Y) is p divisible; hence, by Lemma 3.3 so is each (Y/%J/T(Y/%J E FA . 
Let F = ZAFA _C X @ Y. 
Since each F,, is torsion free and p divisible, so is F. We now show that 

(X @ Y)/F is a torsion group. For let x E X, y G Y be given. By the maximal- 
ity property of {xA}, we know that there exists a nonzero integer c, and integers 
cA , such that cx = ZAcAxA . Hence, 

the sum including, of course, only finitely many nonzero terms. Each 
x, @ (cA y) E (xA , Y) differs by an element of finite order from an element of 
Fh; hence, c(x @ y) differs by an element of finite order from an element of F, 
and so, for a suitable multiple c’ of c, c’(x By) EF, as was claimed. 

Thus we have: T(X @ Y) is p primary; F is p divisible, hence, p pure in 
X @ Y; F is torsion free; and (X @ Y)/F is a torsion group. From Lemma 
3.1 we conclude that X @ Y splits. 

To prove the converse, suppose that X @ Y splits into T(X @ Y) OF. 
We must show that Y/Z splits for every x E X. 

If x is of finite order, then Y/f is a torsion group and splits trivially. So let x 
be of infinite order. Now let {yA} be a maximal torsion free linearly inde- 
pendent set in Y. By multiplying, each yn by some nonzero integer n,, if 
necessary, we have that each x @ n,y, is in F. Then Lemma 3.7 tells us that 
for some multiple m,, of nAyA we have that x 0 mAnAyA = x @ yA’ 
( yA’ = mAnAy,) has a p sequence in X @ Y of the form x my;, . Notice 
that {yh’} is still a maximal independent set in Y. So replacing the yn’ by yA 
we proceed. Let 3 be the subgroup of <x, Y> generated by the set (x @ yA,> 
where the indices range over all A and all i. Then B is torsion free p divisible, 
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and, hence, p pure in (x, Y). Also (x, Y)/B is a torsion group. From Lemma 
3.1 we conclude that (x. Y) g Y/Z splits as stated. 

Remark. Note in the first part of the proof, that Y/Z,, splits for every x, 
in some maximal torsion free linearly independent set is enough to guarantee 
that X @ Y splits. 

An easy consequence of the preceding theorem is 

THEOREM 3.2. Let X and Y be groups such that T(X) und T(Y) are p 
primary and X/T(X) and Y/T(Y) are p divisible. Let {x~} be a maximal torsion 
free linearly independent subset of X such that each x,, is of injnite p he&ht. Then 
X @ Y splits. 

Proof. It s&ices to show by the above remark that Y/z~ splits for each h. 
But Z~ = T(Y). To see this recall that C~ C T(Y), since xA is of infinite order. 
Now suppose y E T(Y) of order pn. Write x, = p”x and we have 
xh@y=pnx@y=x@pny=O so that T(Y)CZ~. So Y/n,,=Y/T(Y) 
which splits trivially and that’s that. 

Remark. In the above theorem notice that in applications to rank 1 
groups, the existence of a single element x of infinite height and infinite order 
in X is sufficient. 

SECTION 4 

In this section we shall study the splitting of tensor products 
A @ A @ ..* @ A of certain groups. In view of the reduction Theorem 2.3, 
we shall be mainly concerned with groups of torsion-free rank one. 

To simplify the notation, we shall use A” to designate A @ *** @ A with n 
factors. 

DEFINITION. A is said to have splitting length a, denoted Z(A) = Q, if (I 
is the smallest positive integer such that Aa splits. (In particular, if A splits 
its splitting length is 1.) If Au splits for no u, we call the splitting length 
infinite. 

LEMMA 4.1. Let X, Y be groups with T(X), T(Y) p primary and X/T(X), 
Y/T(Y) p divisible. Then Z(X @ Y) < min{Z(X), Z(Y)}. 

Proof. Suppose Z(X) = n, so that Xn = T @F where T is torsion and 
F is torsion-free. Then T must bep primary and Fp divisible. Now 
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Since the first summand is torsion and the second torsion-free, Z(X @ Y) < n. 
Interchanging the roles of X and Y, if necessary, the lemma stands proved. 

COROLLARY 4.1. If T(A) is p primary, then An splits if, and only ;f, 
n > Z(A). 

Proof. If T(A) is p primary and A/T(A) p divisible, it follows from the 
above lemma that if A0 splits then A ~+l splits. On the other hand, if T(A) is 
p primary but A/T(A) is not p divisible, then (by Theorem 2.2) either A 
splits or no A0 splits: that is, either Z(A) = 1, and every Au splits, or 
Z(A) = co, and none does. 

LEMMA 4.2. Suppose there is a homomorphism f of X onto Y with kernel a 
torsion group. Then Z(Y) < Z(X). 

Proof. Suppose Z(X) = n, so Xn splits. The homomorphism f induces 
f” : Xn-+ Y”, whose ker is again torsion. Thus, by Lemma 2.3, Yn splits. 

THEOREM 4.1. Let X, Y be groups with T(X), T(Y) p primary and X/T(X), 
Y/T(Y) p divisible and of rank 1. Let x,, E X be of infinite order, and 
go = {x E X 1 x @ x0 = 0 in X 0 X}. Then Z(X/*J < Z(X) < Z(X/%J + 1. 

Proof. Since %,-, C T(X), the preceding lemma yields the first inequality. 
For the second inequality, let Z(X/%,,) = n - 1, and consider the map 
f : Xn-l -+ X” determined by 

f(x10x,0.‘.0X,_,)=X10X20...0X,-10Xg. 

The ker off contains every x1 @ x2 @ *** @ xnel in which some xi belongs to 
2,. Hence, the map f can be factored 

x n-1 
xn-l!+ - ( ) TO 

s xn, 

where g is induced by the natural quotient map on each factor. 
By assumption, (X/%o)n-1 splits. The torsion-free summand is of rank one 

and is p divisible, since X/T(X) is such and go is torsion. Also Xn/T(Xn) is 
of rank one and is p divisible. Furthermore, the homomorphism h maps the 
element a of (X/go)+l represented by ~0”~~ into x0” in Xm. From these facts, 
the following lemma allows us to conclude that X” splits, yielding the second 
inequality. 

LEMMA 4.3. Let A, B be groups with A/T(A), B/T(B) of rank one and 
p divisible. Assume there exists a homomorphism h : A + B whose image contains 
an element of injinite order. Then if A splits, so does B. 

Proof. By hypothesis there exists a E A such that h(a) is of infinite order, 
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and so is itself of infinite order. Since A splits: A = T(A) OF, some non- 
zero multiple 71~ of a belongs to F. Since F s A/Z’(A), it is torsion-free and 
p divisible, so na possesses a p sequence in F. The image under h of this p 
sequence is a p sequence in B. Thus, by Proposition 3.1, B splits. 

In the remainder of this section, we shall consider onIy groups A with 
T(A) p primary and A/T(A) p divisible. 

We begin by exhibiting groups A, and A, of splitting lengths 2, 3, res- 
pectively. They are, in fact, members of a family of groups A, , each of 
splitting length exactly u, which will be described later in this section; but 
the computations needed for determining 1(A,) and Z(A,) are considerably 
simpler than for the general A, . 

Let A, be the abelian group with countably many generators a, , a, , a2 ,..., 
with the relationsp$ = a,, for i = 1, 2, 3,... . (This group appears in Fuchs, 
p. 200, exercise 4.) It can be described more concretely as follows: Let R 
be the group of rational numbers, and for each i, i = 1, 2, 3,..., let [Q] be a 
cyclic group of order pi generated by ci . Then A, is isomorphic to the sub- 
group of the group (@L, [Q]) @ R generated by the elements of the form 
ce + p-i, i = 1, 2, 3 )... .) 

Then A, is not p divisible; but A,/T(A,) is, being in fact isomorphic to 
the group R, of rationals whose demonimators are powers of p. A, does not 
split, since it has no subgroup isomorphic to A2/T(A2). But by Theorem 3.2 
A, @ A, does split, since A, contains the element a,, of infinite order and 
infinite p-height. 

Let A, , similarly, be the abelian group with countably many generators 
a,, , a, , u2 ,..., with the relations p%z, = piu,, for i = 1, 2,3 ,... . We shall use 
Theorem 3.1 to prove that A, @ A, does not split, by calculating $ explicitly 
and then showing that, not surprisingly, AZ/ii0 is isomorphic to the group A, 
which is known not to split. Since we will later prove [(A,) = (r in general- 
although by a slightly different method-the present computation, intended 
to aid the reader’s insight, is not given in complete detail. 

Let cf = pai+, - ai, for i = 0, 1,2 ,... . Then ci is of order pzi+l, that is, 
exponent (2i + 1); and it is easy to see that T(A,) is the direct sum of the 
cyclic subgroups generated by the ci’s. 

Let h(x) denote the p height of X. Then it is obvious from the defining 
relations that h(piuJ 3 2i; and it can be shown without difficulty that these 
are actually equalities. 

Our first aim is to determine 4 , that is, {X E A 1 x @ a, = 0 in A, @ As}. 
Any x E g,, must be of finite order, so expressible as a finite sum J&c, . Now 
(.&& @ a,, = 0 if, and only if, for each i, ci @ rzia,, = 0; so if the p height 
of niu,, is greater than the exponent of ci: 

2ei>2i+1, 

4W14/4-2 
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where pet is the highest power of p dividing ni . The least ni for which this 
occurs is ni =pi. There fore, a,, is generated by 

{pit,} = (pi+Gz,+l - p$zt]; 

or, more conveniently, by the set (p’a, - a,). 
The group A,/&, can be determined by adjoining the relations p’u, = a, 

to those given for A, . But in fact the new relations imply the old ones; so 
A3/g0 is defined by the relations p%z, = a, , the same as those defining A, . 
This proves the isomorphism, and so the nonsplitting of A, @ A,. 

We are now ready to exhibit groups A, of arbitrary finite splitting length a. 
Each of these will be defined by a system of generators a,, a, , ua ,..., subject 
to relations of the form 

p”Qz, = pk%z, . 

DEFINITION. For o = 2, 3,4 ,... the group A, is the free Abelian group 
generated by a,, , a, , a, ,..., modulo the subgroup generated by the relators 

pb-mu, _ pco-z,tao . 

Thus, in A,, , pm+Gzi = pma, if m 2 (U - 2) i. In the simplest case, A,, 
p%z, = a, for every i. 

We also define a group A, by the relations 

This is isomorphic to the group R, of rationals whose denominator is a power 
of p. 

In order to achieve our goal of showing that A, has splitting length u, 
we first study the group AZ-l. 

LEMMA 4.4. Let u > 2, and {i, j ,..., k} be a set of u - 1 nonnegutive 
integers. Then, in AZ-‘, we have: 

Proof. We shall show that if K > max{i, j ,..., k}, then 

(Since we can, in particular, take i = j = *.. = k = 0, this will prove the 
lemma.) 
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For consider min(i, i,..., A). Suppose this to be, say, i. Then 

P i+~+*.*+k+o-2(ai @ . ..) =p0+j+'.*+k+o-2(ag @ . ..) 

=pCi+l,cj+...+k+0-2(~~+1 @ . ..). 

both equalities holding because 

(0+j+*~~+K+0-2)~(0-2)(i+1)~(0--2)i. 

Thus either the minimum is increased, or the number of places at which the 
minimum occurs is decreased. Hence, in a finite number of iterations of this 
process, we reach 

From this Lemma we obtain immediately the 

COROLLARY 4.2. A; splits. 

Proof. Let X = AZ-‘, and Y = A, . It is clear that T(X), T(Y) are p 
primary, and that X/T(X), Y/T(Y) are each isomorphic to R, and so of 
rank 1 and p divisible. The lemma just proved shows that the element 

is of infinite p height. Thus Theorem 3.2 applies, and shows that X @ Y 
splits, as was to be demonstrated. 

On the other hand, we can show the 

COROLLARY 4.3. As-’ does not split. 

Proof. Let B be the subgroup of AZ-’ generated by the elements of the 
form 

(ai@a,@‘-@ak)-p - (nz t)+(m-i)+..‘+(m-k,(,~ @ a, @ . . . @ am) 

where m = max{i,i ,..., A}. 
By the lemma, each of these generators is of finite order, hence B is a 

subgroup of T(AE-I). Let C = AZ-‘/B. It is easy to see that C is isomorphic 
to the group defined by a system of generators {c,}, subject to the relations 

p(o-l)m+&z)c, = pcu-z,~, , 

the isomorphism being given by 
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C does not split: for every element in C/T(C) has a p sequence, while no 
nonzero element of C does. 

Now recall the exact sequence defining C: 

where B C T(Ag’). If AZ-’ were to split, so would C. Hence AZ-’ does not 
split. 

FinalIy, we can prove 

THEOREM 4.2. For u = 1,2, 3 ,..., the group A, has splitting length u. 

Proof. The case u = 1 is trivial, since A, is torsion-free and so splits. 
For u > 2, the two corollaries just demonstrated prove the theorem. 
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