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Abstract

We study parametric integration of functions from the class C"([0, 1] ") to C(]0,1]") in
the quantum model of computation. We analyze the convergence rate of parametric
integration in this model and show that it is always faster than the optimal deterministic rate
and in some cases faster than the rate of optimal randomized classical algorithms.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Summation and integration are the most famous numerical problems that
achieved a speed-up in the quantum model of computation, compared to the optimal
convergence rates of deterministic and randomized algorithms in the classical case.

In this paper, we study the problem of parametric integration, where the integral
depends on a parameter. Therefore, the solution is now a function, so the problem
carries features of both integration and approximation.

We will consider the problem from the point of view of complexity theory and
provide an analysis for the class of r-times continuously differentiable functions. For
this class, we determine the order of the minimal error (up to a logarithmic gap) by
deriving matching upper and lower complexity bounds.

In Section 2, we present the required notions from quantum information-based
complexity (IBC) theory, recall related previous results and formulate the main
result. Section 3 is devoted to the proof of the upper bound. In Section 4, we prove
the lower bound, and in the final Section 5 we give some comments on the results.
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2. Preliminaries

In this section, we formulate the problem which is investigated. Then we give the
basic definitions of quantum IBC theory, state some useful technical results and
finally formulate the main result.

2.1. Problem formulation

Let D; = [0,1]" and D, = [0, 1] with d,d>>0. On the domain D = D, x D, we
define the function class C"(D) for an integer r>1 as the set of all functions f (s, 7),
for which all partial derivatives up to order r exist and are continuous. Let o be a
multiindex; then the norm ||.||, on C"(D) is defined by

11, = max || £ @] (-
o] <7

Let C(D;) be the space of continuous functions on D; with the supremum norm. We
consider the solution operator

S: C"(D)— C(Dy),
f (S)(s) = A f(s,t)dr. (1)

This means, we study parametric integration: Integrate the family of functions f'(s, ¢)
parametrized by seD; over teD,. The limiting cases where either d; =0 (pure
integration) or d, = 0 (pure approximation) are formally included because they
represent classical problems of numerical mathematics. The aim of this paper is to
study the intermediate cases where d; #0 and d, #0.

2.2. Quantum setting

We use the terminology developed by Heinrich in [4], which is a translation
of IBC methods to the quantum model of computation. In order to be as
self-contained as possible, we summarize the quantum IBC notions needed in this

paper.
First, we briefly recall the standard notation of quantum computing. Let H; be the

two-dimensional complex Hilbert space C* and
H,=H®: - ®H,
be the Hilbertian tensor product of m copies of H;. We use the following
notation,
Z[0,N) ={0,...,.N — 1}
for NeN. Let €,, = {|i): i€Z]0,2™)} be the set of unit basis vectors of H,,, also

called classical states or basis states, and let %(H,,) denote the set of unitary
operators on H,,.
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Let # (D, K) be the set of mappings f : D— K. Now we introduce the notion of a
quantum query. For F=.% a quantum query is given by a tuple

Q = (m7ml7m”7Z7T7ﬁ)7
where m, m’',m" eN, m' + m" <m, Z<7[0,2™) is a nonempty subset, and
T : Z-D,

B : K—7[0,2"")

are arbitrary mappings. The mapping 7 is the coding from basis states of one register
of the quantum computer to the domain of f'e€ F, whereas f§ is the coding of the
function values from the range of f to basis states of a second register of the
quantum computer. Such a tuple Q defines a query mapping

Q: F->%Hy,),
/=0
by
. _ 1D x@B(S @)Dy if ieZ,
Olidx>ly> = { [i>]|x>y> otherwise, 2)

where i) €@, |x) €Cr, |y €Crppy—wr (f m=m'+m" we drop the last
component) and @ means addition modulo the respective power of 2, here modulo
2""The total number of qubits needed for Q is m(Q) = m.

Suppose we are given a mapping S: F— G, where G is a normed space (in this
context S is a general mapping). We want to approximate S(f) for f € F with the
help of a quantum computer. To do so, we formally define the notion of a quantum
algorithm. A quantum algorithm on F with no measurement is a tuple

A= (0, (U)iy),
where Q is a quantum query on F, neNg and Uje#(H,) (j=0,...,n), with m =
m(Q). Given such an 4 and f € F we define A, € %(H,,) by

Ay = Uy Qs Upr... U1 Or Up.
By ny(A) =n we denote the number of queries and by m(4) =m =m(Q) the

number of qubits used by 4. We also introduce the following notation. Let 4, (x,y)
for x,y€Z[0,2™) be given by
Adyy = D Ap(xp)lx).
xeZ[0,2m)

Hence, (47(x,y)),, is the matrix of the transformation Ay in the canonical basis €.
A quantum algorithm on F with output in G with k£ measurements is a tuple

A= (A5 ()i o),

where keN, and A4; (/=0,...,k—1) are quantum algorithms on F without
measurement. We set m; = m(4;). Then byeZ[0,2") and for 1<I<k—1, b is a
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function

/-1
b+ I z(0,2) - z[0,2™),
i=0

and ¢ is a function with values in G,

k—

o H 7[0,2™) -
1=0

The function ¢ combines the outputs of the algorithms A4; to give a final result. The
functions b; determine the starting state of the next algorithm A4; depending on the
results of the previous algorithms.

We also say that A4 is a quantum algorithm with measurement(s), or just a
quantum algorithm.

Let 2)(G) be the set of all probability measures on G whose support is a finite set.
The output of A on input f e F will be an element A(f)ePy(G) (we use the same
symbol 4 for the mapping 4 : F — 24(G)). We define A( /) via a sequence of random
variables (él,f)f:_ol (we assume that all random variables are defined over a fixed—
suitably large—probability space (2,2, P)). Let now f'e F be fixed and let &; ; be
such that

P(&o,y = x) = |05 (x, bo)
and, for 1</<k—1,

P& =€ = X0y ooy &y = X121) = | A1 (X, bi(xo, .y x1-1)) [
This defines the distribution of (& f)ézol uniquely. Let us define for
X0€Z[0,2™M0), ... X1 €Z[0,2"1)

Py (X0, - Xk1) = Ao, (%0, b0) P41, £ (x1, b1 (x0))

| Ak, f(Xk—1, bre—1(xo, X))

It follows that

P(&o, = X0, ooy Chmt, p = Xk—1) = P, r (X0, ooy Xk1)-
Finally, we define the output 4 on input f as

A(f) = dist(e(&o, s --- Ek—1, 7)),

the distribution of ¢ (& 7, ..., ko1, 7).

The number n,(4) = )~ 01 nq(A;) is called the number of queries used by A. This
is the crucial quantity for our query complexity analysis.

Now we define the error of a quantum algorithm A4: Let 0<0<1, and let { be a
random variable with distribution A( /). Then the (probabilistic) quantum error of 4
for S on input f with failure parameter 0 is defined by

e(S, A,f,0) = inf{e| PIS(/) — Ll >#) <O}
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Then we put

o(S, 4, F.,0) = sup (S, 4.1,0)
fer

and
el(S,F,0) = ir/lif {e(S,A4.,f,0) |ny(A)<n}.

We will consider these quantities for the fixed error probability 1/4 and set
e(S,A,f)=e(S,A4,f,1/4), e(S,4A,F)=e(S,A,F,1/4),
and we define the nth minimal query error of the problem class F and the mapping S
by
el(S,F) =el(S,F,1/4). (3)
This means that we will analyze the error rate at given cost. There is a close
connection between e and the e-complexity of a problem, which is defined by
comp?(S, F) =min{m | el (S, F)<e}.
The two quantities satisfy the following relation: For all ne Ny, ¢>0 we have
el(S,F)<e<comp{ (S, F) =min{m | el (S, F)<e1}<n Ve >e.

m

2.3. Tools from quantum complexity

For our analysis of parametric integration in the quantum model we will need
some statements from quantum IBC, which are now summarized:

Lemma 2.1. Let F=% (D,R), [eNgy and let Sy :F—>G (k=0,...,I) be mappings,
where G is a normed space. Define S: F -G by S(f) = Zizo Si(f). Let 0y, ...,0,=0,
ny, ...,n€Ng and put n = Eizo ny. Then

I

i
el <S, Fy ek> < el (S, F,0h). (4)
k=0

k=0

This is a generalization of Lemma 2 from Heinrich [6], which can be proved by the
same technique by just replacing the absolute value with the norm on G.

Lemma 2.2. Let 0#F<% (D,K) and 0#F< 7 (D,K).
following form: there exist k,m* €N and mappings

n D-D (j=0,...,k—1),

Let I' : F—F be of the

B K—Z[0,2™),

p: DxZ[0,2") =K,
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such that for f€F and s€ D
(L)) = p(s, Bofong(s), ..., Bofon,_ (s))-

Given a quantum algorithm A from F to G, there is a quantum algorithm A from F to G
with

ny(4) = 2, (A)
and for all feF
A(f) = A ().
Consequently, if S : F— G is any mapping and S = S-I', then for each ne N,
(S, F)<el(S,F). (5)
The proof of Lemma 2.2 can be found in Heinrich [6].

We finally state some calculation rules for the query error:

Lemma 2.3. Let S, T : F— G be mappings, ne Ny and el(S, F) be finite. Then it holds
that

O (T, F)<el(S,F) +sup || T(f) — S(f)]. (6)
feF
(ii) For ZeR it holds that
eg(i& F)= M|€Z(S7 F). (7)

(i) If K = R and S is a linear operator from 7 (D, K) to G, then for all 1€ R we have
€, (S, AF) = [|e)(S, F). (8)

The proof of this lemma can be found in Heinrich [4].

We now cite a method how to increase the success probability of a quantum
algorithm. Let M eN and v, : RY - R be the median of M numbers. For a quantum
algorithm 4, we define /,(4AM) == (4, ..., A) to be the median of the results of M
repetitions of A4.

Lemma 2.4. Let T : F— R be a mapping and A a quantum algorithm. Then
e(T o(AY).f,e M) <e(T, 4,1 7). (9)

A proof of this Lemma can be found in Heinrich [4].
2.4. Main results

First we recall the known results for the special cases where either d; =0 or
dr, = 0.
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We use the asymptotic notation a, < b, for sequences of nonnegative real numbers
a, and b,,, which means that there exists some constant ¢>0 and some nyeN such
that a,<cb, for all n>=ng. If a,<b, and b,<a, then we write a, <b,. We often use
the same symbol ¢ for possibly different constants. In particular, the needed
constants may depend on dj,d> and r.

Let #(G) denote the unit ball of a normed space G, i.e.

#(G) ={geG|llgllg<1}-

Then we have the following two theorems that are important for our analysis. The
first considers quantum integration and was proved by Novak [9].

Theorem 2.5. Let S™ : C"(D,)— R be the integration operator. Then
(S, B(C(Dy)))=n~" " (10)

Let Ain (-, 1) be a sequence of quantum algorithms which is of optimal order, that
is
(8™ Ainy(-, 1), B(C"(D1))) <en™/B71,

The second theorem is concerned with approximation.

Theorem 2.6. Let S*PP" denote the function approximation problem, that is the
embedding operator from C'(Dy) to C(Dy). Then

¢ (SUPP, B(CT(Dy)) = ¢ (S*P, B(C" (D))

= e!(SPPT B(CT(Dy))=n""/4. (11)

Here ¢t and e™ are the minimal deterministic and Monte Carlo error. A detailed

definition can be found in [7]. The proof of the rate for the quantum case is due to
Heinrich [5].
We state another important result, which is in fact the key to the integration result
mentioned above. Let
LY ={g:{0,...,N — 1} >R},

with the norm [[g||,v = max[g(i)|. Then we get the optimal rate for quantum

summation, where the upper bound is from Brassard et al. [1] and the lower bound
from Nayak and Wu [8], with the extension that is used for our purpose coming from
Heinrich [4]:

Theorem 2.7. Let Sy : LY —> R be given by Syg =+ 2?501 g(i). Then for n<N there
are constants cy, ¢, not depending on N such that
an ' <el(Sy, B(LN)) <com™ . (12)

Note that the convergence rate does not depend on the number of summands, so
we can choose N to be large enough to satisfy any needed precision for the
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approximation of an integral by such a weighted sum. We denote by Agm(-,n, N) a
sequence of quantum algorithms with this convergence rate, meaning that

e(Sy, Aqum (-1, N), B(LY ) <can™.

Finally, we consider the rates of parametric integration. From now on let F denote
the unit ball of C"(D; x D). In order to enable comparison, we also recall the results
in the deterministic and Monte Carlo setting. A detailed analysis for the Monte
Carlo setting can be found in Heinrich and Sindambiwe [7].

Theorem 2.8. The minimal errors of the operator S from (1) behave in the following
way:

(S, F) /() (13)
(S F) = n*(r+d2/2)/(d1+d2)(logn)l/z if r>d /2, (14
n ) - ) r/dl .

n"1% (log n) if r<d/2

and
n*l/z(logn)l/zﬁe;nC(S,F)<n*1/2(logn)3/2 if r=d/2.
The following theorem settles the quantum query complexity of parametric
integration and answers the question when and how much better quantum

algorithms are (as compared to deterministic and Monte Carlo methods). The
comparison is discussed in detail in Section 5.

Theorem 2.9. For dy#0,d>#0 and r>0 the operator S from (1) satisfies

_ rtd _ rtds r+d>
n dtdgel(S F)xn dtd(logn)htd if r>d, (15)
nh Lel(S, Fy<n~" (log n)h it r<d (16)
and
n'gel(S,F)xn~ (logn)’ if r=d. (17)

Note that in asymptotic statements we leave the logarithm unspecified, whereas in
cases in which the basis is essential we write, e.g., log, n or Inn to indicate base 2 or
the natural logarithm. The proof of the above theorem consists of two parts: First we
prove an upper bound for the query error e?(S, F). Second, we prove a lower bound
for €4(S, F) which has the same order as the upper bound, up to a logarithmic gap.

3. Upper bound

Now we assume d; #0,d> #0 and r>0. Let ke N be fixed, and let H,(C1> denote the
partition of D; into cubes of sidelength 2= with disjoint interior. Let

AV = G727 iy i) 10y i <28)



C. Wiegand | Journal of Complexity 20 (2004) 75-96 83

be the equidistant mesh of sidelength r~'27% on D;. Define
=AY = (28 1) (18)
Let
PV (D)) - C(D))

be the d)-dimensional composite Lagrange interpolation of degree r on A(l) This
means, on each cube QeH the function P f is the d;-dimensional tensor product

Lagrange interpolation over the nodes Qr\/lk . Note that the resulting function is an
element of C(Dy).

For f fixed P,(cl)f is uniquely defined by {f(s): seA } Therefore, the operator

P,g) will also be interpreted as defined on L%(/l,(c)), the space of real-valued
functions on A,(C]), equipped with the maximum norm.

Finally, we also consider the operator P,((l) as acting in the space C(D; x D),
meaning that we interpolate with respect to the ﬁrst component only, leaving the
other one fixed. In this case, P is defined by ( f) (s,1) = (P,(Cl)f(-7 1))(s).

Let
dik
{ij}z l 17

thatis D| = U2 Vel Oyj and the Qy; are cubes of sidelength 2~ -k with disjoint interior.

Let s4; be the point in Qy; with the smallest Euclidean norm. We define the restriction
operator Ry;: 7 (D, R)—Z (D, R) by

g(2%(s — s15)) if s€ O,
(Rug)(5) = {0 / (19)
otherwise.
Let v = (r+1)" and let
i=i(r+ )" hr+ DT i (1) + g,
for i=0,...,v—1 be the representation of i in base r+ 1. Let now ¢; (i =
0, ...,v—1) be the tensor product Lagrange base polynomials of degree r on D, for

the grid /1(()1), meaning that ¢,(s) = 1 at the point s = r~!(iy, ..., iy ) and ¢,(s) = 0 for
all other points in /1(()1) .

Since we want to take advantage of the fast convergence of quantum summation,
we have to find a function whose integral can be approximated by quantum

summation. This function needs a small supremum norm to give quantum

summation its full impact. For each level, k=1 and a fixed gridpoint ve/l(l)\/l(l)
we define the detail function f; ;€ C"(D;) as the difference function between f and its

approximation P,(clzl £, both functions considered for this fixed s.
Let us consider the structure of the detail function in dependence of f and the

tensor product Lagrange base polynomials. For fixed seA,((l)\Ailjl, there is a cube
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Ok—1, js) EHE( | with se O j(s) (if there are several possibilities, choose the one with
the smallest index j(s)). The detall function has the form

—_

v—

Jis(t) = f(s:0) = (P 1) (s,1) = (Ric-1,j) i) () S (51, 1), (20)
0

=l
where
Si = Sk—1,(s) +r7127<k71)(i1a --~7id1)' (21)

The following lemma shows that the detail function has a bounded |[|.||,-norm.

Lemma 3.1. There is a constant ¢>0 such that for any function f€#(C"(D)), any
integer k=1 and any seA,(cl)\Ailjl we have

[ fiesll, < e (22)

Proof. The functions Ry;j¢; (i =0,...,0— 1) are the tensor product Lagrange base
polynomials on Qy; for the grid ijmAl((l) and

||(/5iHC(D1) = ||Rk.f¢i||C(Q,g-) (23)

for keN and i =0, ...,v — 1. Since sup;||§;||c(p,) <" we get

—1

ksl <17 G 1, +Z| Rt @) ) IS (six DIl <1+ we”

We now choose ¢ = 1 4+ v¢’ and the statement follows. [
We will need the following:

Lemma 3.2. Let k=0 be an integer. Then the operator Pg), considered as acting from

LY to C(Dy) is bounded by a constant which does not depend on k.

Proof. Let ze L7 with ||z|[,nx <1. With the notation from above we infer that for j

such that te Qy; we have
(PU2)(0) = Y () - (Righi) (),

and therefore

v—1

||P ZHCDI S Z|Z || Rij; ||c () SV d<e,
i=0

where c is the constant from the proof of Lemma 3.1, which is independent of k. [
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Let us now state the parameters that are needed for the proof of the upper bound.
We use a multilevel approach developed by Heinrich (see [3]) which was also used to
obtain the optimal Monte Carlo rates for parametric integration in [7]. For xe R the
notation [ x| means the smallest integer greater than or equal to, and | x | the
greatest one smaller or equal to x. For ne N we set

m = {dl s (log, n) + IJ. (24)
The starting level 7 is defined by
m if r=d,
= { 0 otherwise, (25)
and the final level / by
_ { [ (14 dy/r)m] if r>d, (26)
[ (1 4+dy/d))m] —p otherwise, where p = | (log, m)/d; |.

We use n;, points for the interpolation on level k, and we recall that nj; =
(r2F + 1)%. Let

M = |—8(k+3)1n2+81nn17k—|, (27)

then we define the query number for quantum summation as
1
p |—2dsz§(r+d1)(k7m) -| if r>d,, (28)
’ [ M 12 o )m—dy k=3 —r)(1-k) 1 otherwise.

The number of summands for quantum summation in level k (k=m,...,[) is
defined as

Ni = 2"%bp, (29)

Let us shortly describe the main idea of the proof: In the starting level, we
approximate those integrals directly, which correspond to parameters s on the
roughest grid, with the finally needed accuracy. On the finer levels we do the same for
the detail functions. Then we interpolate the computed approximations and add
them up to get our approximation to the solution function.

Now we prepare the discretization of the functions that will be used on the
quantum computer. To do this, we need a mapping from our function class F to L.
For k>=m, we choose a number m* of qubits so large that

2m*/271 >1
and

272y (30)
Then we define

B:R—-{0,...,2" — 1},
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0 if z< — 221
Z > |_2m*/2(z 4 Zm*/Zfl)J if — 2)11*/271 <Z<2m*/271,
p L if 2>/

Furthermore, we define
y:{0,...,2" — 1} >R,
y'_)zm*/zy _ 2m*/271.
On the starting level 71 we only have to approximate the integral of f for fixed

se/ll(i:), so in this case we just discretize the function f(s,-), which means that we
have a function #:{0,..., N — 1} - Dy x D, which is defined by n(j) = (s,¢),
where the points #;e D, are node points needed for quantum summation, they will be
specified below. Thus, for the starting level we get

(Lo /() = v((Bfon())))- (31)
Let now k> be fixed. As already indicated, we will approximate the integral of the

detail function for fixed se/l}\,”\/l}(lf)1 by quantum summation. For a fixed
summation number N from (29) we define

n;:{0,....Ny —1}>D; x Dy, (i=0,...,0)
by
ni(J) = (si, ),
where s, =5 and the points s; (i=0,...,v—1) are the points from (21).

The points #;€ D, are again node points needed for quantum summation. Finally,
we define

p:{0,....2" —1}""' SR

by

|
—_

v

P05 s 10) =) = D (Ri—1, o)) ()7 (i) (32)

1

Il
o

From these mappings we get the operator Iy : F— LV by

Tisf = p((Bofon;)iz)-

This means that
(Fies () = p((Befoni(/))io)-
Now we are ready to compute the query error of S. By Lemma 2.3, we can
decompose the query error into

e(S, F)< sup||Sf — P} sf|| + el(P"'S, F). (33)
feF
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So the error splits into a deterministic and a quantum part. Classical polynomial
approximation gives for ge C"(D;) and keNj (see e.g. [2, Chapter 3.1]),

1 —r
lg — P gllc(p,y <27, (34)

so for the deterministic part in (33) we get

1 —r
1S — PVSF Nl ey <27 (35)

Next we consider the quantum part of (33). Let
J= b b b+,

for j=0,...,Ny — 1, where b=2%ny;. Let the node points for the quantum
summation be defined as

o= (L2 Jh
= (G ).

For k> we define the operators Ji,: F—R by

Ni—1

1
Jesf =5 ; fies (1), (36)

which is the rectangle rule with Ny points for fi ;. Next we define, also for k> i,
operators Uy, : F—R by

Ues S = A Jies(1) dt. (37)

Since the accuracy of the rectangle rule with Ny points in dimension d, is of the order
N, Y for functions with bounded first derivatives, we get by (22) and (29)

|Uks(f) = Jrs () < €27 oy (38)

By definition of the discretization operator I'y s we get for |z|<1

y(B(2))<z<y(B(z)) +27" 72,

and by (30) this implies that
\Fies (1)) = fies(57)]

v—1

<If s 6) =2 (BU (DI D[R i (91 iy 1) = 2(BUS (53 1)

i=0
< c2”'kn£,1€. (39)
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From the discretization accuracy of I';; and (34) we also infer that

ks (O e S N s O e+ 1(Fes () = Ties S 1
<27 feny 27 <27, (40)

which implies
Tis(Fyse 27" B(LN). (41)

From (39) it also follows that
Nk

Sn Tes f — Jkyf\< Zmﬁf — Jis(t)] <2y (42)

Now we calculate the error of the integration of the fj , on /1,<(1>\/1§(1_>1. We get with
Lemma 2.3, (42), Theorem 2.7, Lemma 2.2 and (41)

eg(L‘ﬂLl)nzvk(Uk,ﬁ F)
<;2€|Uk,x(f) — Ties () + o1y, s F)
< sup U s(f) = Jis(Sf)] +/§1;113 1S3 Tt = Jif |+ €y, (v T F)
<27y} + el (Sy,, a2 A(LY)
<2y +c12 ’kesz(SNk,%(L]O\Z))
<2 ny )k 2" 'knzk
<C2_’kn£,i. @)

With the help of this result we can now investigate the error of the operator PEI)S.
Since

[
1 1 1
=pPYs+ Y (P - PV )s, (44)
k=m+1

we investigate the error of the operator
(P — PV )S: F—C(Dy).
We define
0 =2~ k=m, .. I (45)

Then we set
N = Muny una i, (46)
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and for k=m+1,...,] we set

Ay = Mk(l’llﬁk — nlﬁk_1)2(v + 1)1’123/‘,. (47)

Let Ay, be a quantum algorithm that computes an approximation to Uy, on F
with the rate from (43) and let {; ; be a random variable with distribution A;,. We

define a random variable &, with values in L* as follows: For seA,g)\/l,((l_)] we let
&k (s) be the median of M) independent copies of (;,, that is, we repeat Ay, M

times. For seA( >1 we set &(s) == 0. Since (U, f)(¢) = 0 for se/lfcljl, by this choice
we establish an error of zero in these points. We have

(P = PSP = P = PSP = P (U, 0 (48)

where on the right-hand side P,(cl) is considered as acting on L"'*. This means that
because we can interchange interpolation with respect to the first component and
integration with respect to the second component, we indeed compute an

approximation to (Pf(l) - P,(cljl)(Sf) by (PE{1> - Pfcljl)ék.
By Lemma 2.4 and (43),

P(|Uks(f) = Ek(s)|> 27" myp) <eMe/%, (49)
Consequently,
P(|Uks(f) = ()| < 2y} vsea)
>1—ne M1 27 =1 g, (50)

by (27). From Lemma 3.2, (47), (48) and (50) we obtain for the query error of the
operator (P,(Cl) - P,EIJI)S,

¢ (P — PSS F,00) <27 ). (51)

n

We use Lemma 2.1 to calculate the error of PEI)S. From (45), we get ch:m 0, <1/4;
hence, with Lemma 2.1, Lemma 3.2, (44) and with

!
= i (52)
k=m
we get
A(PVS F1/4)< el ((PY)S,F,0:)
I
+ 30 (P~ P )S FL0) (53)
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Now we consider the different cases:

(1) r<d,: For the error on the starting level i = 0 we can make direct use of
Theorem 2.7 and, in this case using the operator from (31), we get

¢l (PYS, F,00) <c(my) "

by Theorem 2.7, Lemma 3.2 and a similar probability argument as above. Now with
(53) and (51) we get

Sz*&

( SF 1/4)
<c }’120 +Z c2” 'kI’IZk

/
lngn 2 : 2 (d\+d>) m+d1k+2(d1 r)(I—k)—rk
k=0

<c(logy m)2 (@ Z 2%(d1—r)(l+k).
=0

From this we get with the help of the geometric sum formula
(PSS, F1/4)<c(log, n)2~(ddmdi=n

and with 241/=dm = pdim=log M we arrive at
APV F1/4)<e27 <en (logy n)

For the deterministic part of the error we get by the choice of /
157 — PVsfl|<c2 " <en "/ (logy n) ™,

which by (33) gives the desired rate for r<d,.
(2) r=d;: To calculate the error on the starting level 7#1 = m we use Theorem 2.5
and (28) and again with the probability argument from above we get

n ( IS F 0 ) (n2 ) V/dzfl<Cn—(l‘+d2)/(d1+d2)- (54)

m
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With (53) and (51) we get

(PSS, F,1/4)

1
gcn_<"+d2)/(dl+d2)+ Z 2 rk”z_llc

k=m+1
! |
Sen™ /() | ¢ N kg (rkd) ko)
k=m+1
! L
<Cn—(r+dz)/(d|+dg) —(r+dy)n Z 9 —3(r=di)(k=m)

:m

/
(/) 3 —3(r—dv) k=)

k=m+1

<cn

For r>d,, the sum is bounded by a constant, and for » = d; the sum gives an
additional factor of logn. By the choice of / we get
= Pgl)SfH <szrl<Cn7(r+d'z)/<d]+dz)’

and with (33) we arrive at

¢S, F)<en )/ () (55)
for r>d; and

el(S,F)<cn'logn (56)
for r =d,.

Finally, we estimate the number of queries 7 that are needed to obtain the desired
precision. Since the total number of queries is

/
A= Myunyana;m + 2+ 1) Z My (ny e — ny je—1)n2k,
k=m+1

we get for r<d,

i = Mony onao +2(v+ 1) My (ny g, — nyj—1)nog

=~
Il ~
R

/
<c Z Myny gno i
k=0
! 1
<c Z ko (di-+da)m—di k(e =) (I—k)
=0
! 1
< C2 (dy+d>)m Z E (dy— =n,
=0
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and for r>d; we get

/

A= Mun mno, +2(v+1) Z M (m g — i g—1)n2 g
k=m+1

!
<ce > Mimgnyi
k=m

/
1
<Y (k+Inn ) (r2k + 1)hadmalrd)tom

k=m

/
<clogn ik ydom—5 -+ ) (k—m)

k=m

!
|
< clogn2ldi+dm Z 2720 d=m) — p log n,
k=m

since dk + dam — L (r +dy)(k — m) = (dy + do)m — % (r — dy)(k — m). This means
for r<d, the cost is of order n and for r>d, it is of order nlogn, such that a

rescaling of n leads to the proposed rate. In the case r = d; the cost is ¢(n(log n)?), so
together with (56) we get the additional log-factor in the convergence rate. Now the
upper bound of Theorem 2.9 is proved.

Note that the proof of the upper bound was carried out in terms of query errors
and can easily be translated into an explicit quantum algorithm for parametric
integration. The algorithm has the following form and uses the sequences of optimal
algorithms Agm(-,n, N) and Ay (-,n) for quantum summation and quantum

integration. For a given n we recall the needed parameters, which are m =

[m (log, n) + IJ7 starting level 7 .= m if r>d, and zero otherwise, final level / :=

[ (1+dy/r)m] ifr=d, and (1 4+ d»/d))m| — p otherwise, where p .= | (log, m)/d| |.

We have n= 28+ 1", M =[8k+3)n2+8Inn,], and my =
1 |

[2‘!2’"’50'*‘1')(’(*’”)], if r>d; and [Mk“2(“"“!2)"”‘!""5("'”'>(H‘>] otherwise. Finally,

we have Nj, = Z’kdln‘fk. Now the algorithm Aparinc(f,7) is the following:

1. Starting level 7i: For all SE/l,(q;) do:

(a) If r=d,, compute M,; times A, 5 = Aint(f (s, ), n2,7) and let £,;(s) be the median
of these M,; results.

(b) If r<d;, compute My; times A5 = Asum(Dinsf, 12, Nii) and let &;(s) be the
median of these M,; results.

2. Finer levels: For k=m+1,...,] do:

® For all seAE{”\AE{QI do: M times compute Ay = ¢127"% Agum(c7'2% s f
n2x, Nic) and let £,(s) be the median of these M results.
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1
® For SEAQl do: & (s) =0.

3. Final approximation: Aparint(f,7) = P,(,—:)é,;, + Zi,:,ﬁﬂ(P]({l) — P;cljl)fk.

In step 2, the function I'y /'€ LY is scaled by 01‘12”‘ and the result then rescaled to
make sure that the algorithm A is applied to a function with LY¥-norm smaller or
equal to one.

4. Lower bound

In this section, we first cite a general result for lower bounds on the quantity
e?(S, F) and then we apply this result to the case of parametric integration.
Let D and K be nonempty sets, let LeN and let to each

u= (Uo, ---7uL71)e{07 l}L

an f,€ 7 (D, K) be assigned such that the following is satisfied:
Condition (I): There are functions go,g1€% (D,K) and a decomposition D =
UIL:_Ol D; with Dy~ Dy =@ (I#1!') such that for te D,

fult) = {go(t) if =0,

gi(0) if w=1.
Next we define the function p(L,/,I') for LeN,0</#/'<L by

L mil’lj:]y[/ ](L —])

p(Lalvl,): |l_l/| |l_l/|

Note that j(L — j) is minimized iff |L/2 — j| is maximized. For ue{0,1}* we set
lu| = E,L:_ol ;. Then we have the following.

Lemma 4.1. There is a constant cy>0 such that the following holds: Let D,K be
nonempty sets, let F= % (D, K) be a set of functions, G a normed space, S: F -G a
function, and LeN. Suppose (f,:,)ue{o,l}L <=7 (D, K) is a system of functions satisfying
condition (I). Let finally 0</#1'<L and assume that

fu€F whenever |u|le{l,l'}.
Then

ef(S, F) = ymin{||S(fu) = S(fu)ll : |u| = 1, [u'] =1I'}
for all n with

n<cop(L,1,1).

A proof of Lemma 4.1 can be found in Heinrich [4]. With the help of this lemma we
can now prove the lower bound for parametric integration:
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Let ¢y be the constant from Lemma 4.1, and let d = d| + d>. For neN we choose
an even number me N such that

L=m">/4c;’n* +4. (57)

i=jim" 4 pm? T 4 e jm g
fori=0,...,L —1. Let

d . - L-1
1
D; = {J_lﬁi} , D= U D,.
Zpumem i=0

Define the functions ;€ C* (D) by

Let

1 2
wi(sh -"7Sd17td|+]a "')Zd1+d2) :‘//1( )(S], "'7Sd1) ' ‘/15 )(Zd1+la "')Zd1+d2)
d] d1+d2
=TI ntmsi =y~ T nOmu —jr)
I=1 I=d+1

with
1
n(x) = {€x<lx), O0<x<l1,
0, otherwise.

For k = YT, it holds that
(s, 1) H dh At gk

ki ko Kivay — nms; — i) - —=n(mt; — ji)
8s118s2‘-~~6tdll‘++;£ ds}’ i dty!
di+d,
_H” (msy —jym’ =TT 0™ (mt; — jr)m"
I=d,+1
d dy+dy
= H ) (ms; — ji) - H n®) (mt; — ).
=1 I=d,+1
From this we get
(s, t
Willew = _max - su S
ZLI Qe <r (s)eD 831'8322 ”'aldll—o—di
d dy+d
= _max  m* [ sup |y (0l [T sup ng, ()
S ke =1 siel0.]] 1=di1 1el0.]]
<y,
where
) di+dy

p=_max [[ sup [ngy(sl- [T sup Ing@@)l:
Sl k< =1 0] 1Zdi+1 uel0]
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Therefore, setting 1, = L wn’ V;, we have f, = Z, 0 YuppieF for all u;e{0,1},i=
0, .. — 1. Since the y; have disjoint support, f, satisfies condition (I). Let gy =

fo x) dx>0. It is easy to show that

od

/D x//,(sl, "'ald]+d2) ds ~~dtd1+dz = mfg]
Letnow /:=L/2—1and /' =1+ 1= L/2. Then with (57) it follows that

L L L?
/ 1 / —7) = —_ — — = _ > '71 .
p(L, 1,1)>jir{1}’rl}} J(L—J) \/(2 1) (2 + 1) \/ 2 1=cy'n

Since
min{||S(f.) — S(fu’)HC(Dl)| ul =1, |d| =1}
A 1
=ISWollcp,) = - mdz HlPo (Lay+1, oos tay+an) | e(py)
r+dy

4d1 O.dz 7 lm (r+dy) _ C(mdl+d2)7d1+d2

r dy
_ _(d+d+d +dz)
=Cn 1+dy " dy ,

from Lemma 4.1 we get a general lower bound for parametric integration and the
lower bound of Theorem 2.9 for r>d,.

We get a lower bound of n~"/% for approximation by simply choosing d» = 0, and
since parametric integration can never have a better convergence rate than
approximation, this gives us the lower bound of Theorem 2.9 for the case r<d|.

5. Comments

We have solved the problem of the quantum complexity of parametric integration
for the class C"(D) by providing upper and lower bounds, where the rates match up
to a logarithmic factor. Now we compare our results to the known results for
deterministic and Monte Carlo methods stated in Section 2.4. We again assume r> 1.
Then the optimal quantum rates are always better than the optimal deterministic
rate, except for the case d, = 0, where we have equal rates, and the following table
provides a comparison of the deterministic, Monte Carlo and quantum case (without
log-factors).

ex'(S, F) e, (S, F) el (S, F)
r=d, nr/(di+da) = (rd2/2)/(d+dy) p—(r+d2)/(dv+dy)
dl /2 < r< dl n*r/(dl +d2) n*(i’“rdg/z)/(d] +d2) n*}’/d]

r<d;/2 n—r/(di+da) nrld n-r/d
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We have to distinguish three different situations, depending on the relation of the
problem parameters r and d;. For r<d;/2 the quantum rate provides an
improvement over the deterministic rate, but it is as fast as the Monte Carlo rate.
For this parameter constellation both the Monte Carlo and the quantum algorithm
achieve the optimal rate of approximation which is the same in both cases.

When we have d;/2<r<d, then the quantum rate is still the optimal rate of
approximation, but the Monte Carlo rate is slower, which leads to the superiority of
the quantum rate for this situation.

For the case r>d,, we still have a better performance of the quantum algorithm as
compared to Monte Carlo.

Summarizing the discussion we can say that the quantum rate is always better than
the deterministic rate, it is always at least as good as the Monte Carlo rate, and for
r=d; /2 it is better than the optimal rate of Monte Carlo algorithms.

Let us finally consider our problem in the bit model. Referring to [4,6], we find that
for our algorithm the number of qubits needed is @(log 1), the number of quantum

gates is ((nlogn) and the number of measurements is €((logn)* loglogn).

Acknowledgments

I thank Stefan Heinrich for scientific guidance, discussions, and suggestions
concerning this paper.

References

[1] G. Brassard, P. Hayer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation,
Technical Report, Departement IRO, Universite de Montreal, 2000; see also http://arXiv.org/abs/
quant-ph/0005055.

[2] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1976.

[3] S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complexity 14 (1998)
151-175.

[4] S. Heinrich, Quantum summation with an application to integration, J Complexity 18 (2002) 1-50 see
also http://arXiv.org/abs/quant-ph/0105116.

[5] S. Heinrich, Quantum Approximation II. Sobolev Embeddings, J. Complexity 20 (2004) 2644 see also
http://arXiv.org/abs/quant-ph/0305031.

[6] S. Heinrich, Quantum integration in Sobolev classes, J. Complexity 19 (2003) 19-42 see also http://
arXiv.org/abs/quant-ph/0112153.

[7] S. Heinrich, E. Sindambiwe, Monte Carlo complexity of parametric integration, J. Complexity 15
(1999) 317-341.

[8] A. Nayak, F. Wu, The quantum query complexity of approximating the median and related statistics,
Technical Report, Computer Science Division, UC Berkeley, 1998; see also http://arXiv.org/abs/
quant-ph/9804066.

[9] E. Novak, Quantum complexity of integration, J. Complexity 17 (2000) 2—16 see also http://arXiv.org/
abs/quant-ph/0008124.


&ast;http://arXiv.org/abs/quant-ph/0005055
&ast;http://arXiv.org/abs/quant-ph/0005055
&ast;http://arXiv.org/abs/quant-ph/0105116
&ast;http://arXiv.org/abs/quant-ph/0305031
&ast;http://arXiv.org/abs/quant-ph/0112153
&ast;http://arXiv.org/abs/quant-ph/0112153
&ast;http://arXiv.org/abs/quant-ph/9804066
&ast;http://arXiv.org/abs/quant-ph/9804066
&ast;http://arXiv.org/abs/quant-ph/0008124
&ast;http://arXiv.org/abs/quant-ph/0008124

	Quantum complexity of parametric integration
	Introduction
	Preliminaries
	Problem formulation
	Quantum setting
	Tools from quantum complexity
	Main results

	Upper bound
	Lower bound
	Comments
	Acknowledgements
	References


