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Abstract

We study parametric integration of functions from the class Crð½0; 1�d1þd2Þ to Cð½0; 1�d1Þ in
the quantum model of computation. We analyze the convergence rate of parametric

integration in this model and show that it is always faster than the optimal deterministic rate

and in some cases faster than the rate of optimal randomized classical algorithms.
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1. Introduction

Summation and integration are the most famous numerical problems that
achieved a speed-up in the quantum model of computation, compared to the optimal
convergence rates of deterministic and randomized algorithms in the classical case.
In this paper, we study the problem of parametric integration, where the integral

depends on a parameter. Therefore, the solution is now a function, so the problem
carries features of both integration and approximation.
We will consider the problem from the point of view of complexity theory and

provide an analysis for the class of r-times continuously differentiable functions. For
this class, we determine the order of the minimal error (up to a logarithmic gap) by
deriving matching upper and lower complexity bounds.
In Section 2, we present the required notions from quantum information-based

complexity (IBC) theory, recall related previous results and formulate the main
result. Section 3 is devoted to the proof of the upper bound. In Section 4, we prove
the lower bound, and in the final Section 5 we give some comments on the results.
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2. Preliminaries

In this section, we formulate the problem which is investigated. Then we give the
basic definitions of quantum IBC theory, state some useful technical results and
finally formulate the main result.

2.1. Problem formulation

Let D1 ¼ ½0; 1�d1 and D2 ¼ ½0; 1�d2 with d1; d2X0: On the domain D ¼ D1 � D2 we
define the function class CrðDÞ for an integer rX1 as the set of all functions f ðs; tÞ;
for which all partial derivatives up to order r exist and are continuous. Let a be a
multiindex; then the norm jj:jjr on CrðDÞ is defined by

jj f jjr :¼ max
jajpr

jj f ðaÞjjCðDÞ:

Let CðD1Þ be the space of continuous functions on D1 with the supremum norm. We
consider the solution operator

S : CrðDÞ-CðD1Þ;

f/ ðSf ÞðsÞ ¼
Z

D2

f ðs; tÞ dt: ð1Þ

This means, we study parametric integration: Integrate the family of functions f ðs; tÞ
parametrized by sAD1 over tAD2: The limiting cases where either d1 ¼ 0 (pure
integration) or d2 ¼ 0 (pure approximation) are formally included because they
represent classical problems of numerical mathematics. The aim of this paper is to
study the intermediate cases where d1a0 and d2a0:

2.2. Quantum setting

We use the terminology developed by Heinrich in [4], which is a translation
of IBC methods to the quantum model of computation. In order to be as
self-contained as possible, we summarize the quantum IBC notions needed in this
paper.
First, we briefly recall the standard notation of quantum computing. Let H1 be the

two-dimensional complex Hilbert space C2 and

Hm ¼ H1#?#H1

be the Hilbertian tensor product of m copies of H1: We use the following
notation,

Z½0;NÞ :¼ f0;y;N 
 1g

for NAN: Let Cm ¼ fjiS: iAZ½0; 2mÞg be the set of unit basis vectors of Hm; also
called classical states or basis states, and let UðHmÞ denote the set of unitary
operators on Hm:
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Let FðD;KÞ be the set of mappings f : D-K : Now we introduce the notion of a
quantum query. For FCF a quantum query is given by a tuple

Q ¼ ðm;m0;m00;Z; t; bÞ;

where m;m0;m00AN; m0 þ m00pm; ZDZ½0; 2m0 Þ is a nonempty subset, and

t : Z-D;

b : K-Z½0; 2m00 Þ

are arbitrary mappings. The mapping t is the coding from basis states of one register
of the quantum computer to the domain of fAF ; whereas b is the coding of the
function values from the range of f to basis states of a second register of the
quantum computer. Such a tuple Q defines a query mapping

Q : F-UðHmÞ;

f-Qf

by

Qf jiSjxSjyS ¼
jiSjx"bð f ðtðiÞÞÞSjyS if iAZ;

jiSjxSjyS otherwise;

�
ð2Þ

where jiSACm0 ; jxSACm00 ; jySACm
m0
m00 (if m ¼ m0 þ m00; we drop the last
component) and " means addition modulo the respective power of 2, here modulo

2m00
: The total number of qubits needed for Q is mðQÞ ¼ m:
Suppose we are given a mapping S : F-G; where G is a normed space (in this

context S is a general mapping). We want to approximate Sð f Þ for fAF with the
help of a quantum computer. To do so, we formally define the notion of a quantum
algorithm. A quantum algorithm on F with no measurement is a tuple

A ¼ ðQ; ðUjÞn
j¼0Þ;

where Q is a quantum query on F ; nAN0 and UjAUðHmÞ ð j ¼ 0;y; nÞ; with m ¼
mðQÞ: Given such an A and fAF we define Af AUðHmÞ by

Af ¼ UnQf Un
1yU1Qf U0:

By nqðAÞ :¼ n we denote the number of queries and by mðAÞ ¼ m ¼ mðQÞ the

number of qubits used by A: We also introduce the following notation. Let Af ðx; yÞ
for x; yAZ½0; 2mÞ be given by

Af jyS ¼
X

xAZ½0;2mÞ
Af ðx; yÞjxS:

Hence, ðAf ðx; yÞÞx;y is the matrix of the transformation Af in the canonical basis Cm:

A quantum algorithm on F with output in G with k measurements is a tuple

A ¼ ððAlÞk
1
l¼0 ; ðblÞk
1

l¼0 ;jÞ;

where kAN; and Al ðl ¼ 0;y; k 
 1Þ are quantum algorithms on F without
measurement. We set ml ¼ mðAlÞ: Then b0AZ½0; 2m0Þ and for 1plpk 
 1; bl is a
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function

bl :
Yl
1
i¼0

Z½0; 2miÞ-Z½0; 2ml Þ;

and j is a function with values in G;

j :
Yk
1
l¼0

Z½0; 2ml Þ-G:

The function j combines the outputs of the algorithms Al to give a final result. The
functions bl determine the starting state of the next algorithm Al depending on the
results of the previous algorithms.
We also say that A is a quantum algorithm with measurement(s), or just a

quantum algorithm.
Let P0ðGÞ be the set of all probability measures on G whose support is a finite set.

The output of A on input fAF will be an element Að f ÞAP0ðGÞ (we use the same
symbol A for the mapping A : F-P0ðGÞ). We define Að f Þ via a sequence of random
variables ðxl; f Þk
1

l¼0 (we assume that all random variables are defined over a fixed—

suitably large—probability space ðO;S;PÞ). Let now fAF be fixed and let xl; f be

such that

Pðx0; f ¼ xÞ ¼ jA0; f ðx; b0Þj2

and, for 1plpk 
 1;

Pðxl; f ¼ xjx0; f ¼ x0;y; xl
1; f ¼ xl
1Þ ¼ jAl; f ðx; blðx0;y; xl
1ÞÞj2:

This defines the distribution of ðxl; f Þk
1
l¼0 uniquely. Let us define for

x0AZ½0; 2m0Þ;y; xk
1AZ½0; 2mk
1Þ
pA; f ðx0;y; xk
1Þ ¼ jA0; f ðx0; b0Þj2jA1; f ðx1; b1ðx0ÞÞj2

?jAk
1; f ðxk
1; bk
1ðx0;y; xk
2ÞÞj2:

It follows that

Pðx0; f ¼ x0;y; xk
1; f ¼ xk
1Þ ¼ pA; f ðx0;y; xk
1Þ:

Finally, we define the output A on input f as

Að f Þ ¼ distðjðx0; f ;y; xk
1; f ÞÞ;

the distribution of jðx0; f ;y; xk
1; f Þ:
The number nqðAÞ :¼

Pk
1
l¼0 nqðAlÞ is called the number of queries used by A: This

is the crucial quantity for our query complexity analysis.
Now we define the error of a quantum algorithm A: Let 0oyo1; and let z be a

random variable with distribution Að f Þ: Then the (probabilistic) quantum error of A

for S on input f with failure parameter y is defined by

eðS;A; f ; yÞ :¼ inffe jPðjjSð f Þ 
 zjjG4eÞpyg:
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Then we put

eðS;A;F ; yÞ :¼ sup
fAF

eðS;A; f ; yÞ

and

eq
nðS;F ; yÞ :¼ inf

A
feðS;A; f ; yÞ j nqðAÞpng:

We will consider these quantities for the fixed error probability 1=4 and set

eðS;A; f Þ ¼ eðS;A; f ; 1=4Þ; eðS;A;FÞ ¼ eðS;A;F ; 1=4Þ;

and we define the nth minimal query error of the problem class F and the mapping S

by

eq
nðS;FÞ :¼ eq

nðS;F ; 1=4Þ: ð3Þ

This means that we will analyze the error rate at given cost. There is a close
connection between eq

n and the e-complexity of a problem, which is defined by

compq
e ðS;FÞ :¼ minfm j eq

mðS;FÞpeg:

The two quantities satisfy the following relation: For all nAN0; e40 we have

eq
nðS;FÞpe3compq

e1ðS;FÞ :¼ minfm j eq
mðS;FÞpe1gpn 8e14e:

2.3. Tools from quantum complexity

For our analysis of parametric integration in the quantum model we will need
some statements from quantum IBC, which are now summarized:

Lemma 2.1. Let FCFðD;RÞ; lAN0 and let Sk : F-G ðk ¼ 0;y; lÞ be mappings,

where G is a normed space. Define S : F-G by Sð f Þ ¼
Pl

k¼0 Skð f Þ: Let y0;y; ylX0;

n0;y; nlAN0 and put n ¼
Pl

k¼0 nk: Then

eq
n S;F ;

Xl

k¼0
yk

 !
p
Xl

k¼0
eq

nk
ðSk;F ; ykÞ: ð4Þ

This is a generalization of Lemma 2 from Heinrich [6], which can be proved by the
same technique by just replacing the absolute value with the norm on G:

Lemma 2.2. Let |aFDFðD;KÞ and |aF̃DFðD̃; K̃Þ: Let G : F-F̃ be of the

following form: there exist k;m�AN and mappings

Zj : D̃-D ð j ¼ 0;y; k
 1Þ;

b : K-Z½0; 2m� Þ;

r : D̃ � Z½0; 2m� Þk-K̃;
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such that for fAF and sAD̃

ðGð f ÞÞðsÞ ¼ rðs; b3f 3Z0ðsÞ;y; b3f 3Zk
1ðsÞÞ:

Given a quantum algorithm Ã from F̃ to G; there is a quantum algorithm A from F to G

with

nqðAÞ ¼ 2knqðÃÞ

and for all fAF

Að f Þ ¼ ÃðGð f ÞÞ:

Consequently, if S̃ : F̃-G is any mapping and S ¼ S̃3G; then for each nAN0

e
q
2knðS;FÞpeq

nðS̃; F̃ Þ: ð5Þ

The proof of Lemma 2.2 can be found in Heinrich [6].
We finally state some calculation rules for the query error:

Lemma 2.3. Let S;T : F-G be mappings, nAN0 and eq
nðS;FÞ be finite. Then it holds

that

(i) en
qðT ;FÞpen

qðS;FÞ þ sup
fAF

jjTð f Þ 
 Sð f Þjj: ð6Þ

(ii) For lAR it holds that

en
qðlS;FÞ ¼ jljen

qðS;FÞ: ð7Þ

(iii) If K ¼ R and S is a linear operator from FðD;KÞ to G; then for all lAR we have

en
qðS; lFÞ ¼ jljen

qðS;FÞ: ð8Þ

The proof of this lemma can be found in Heinrich [4].
We now cite a method how to increase the success probability of a quantum

algorithm. Let MAN and c0 :R
M-R be the median of M numbers. For a quantum

algorithm A; we define c0ðAMÞ :¼ c0ðA;y;AÞ to be the median of the results of M

repetitions of A:

Lemma 2.4. Let T : F-R be a mapping and A a quantum algorithm. Then

eðT ;c0ðAMÞ; f ; e
M=8Þpe T ;A; f ; 1
4

� 	
: ð9Þ

A proof of this Lemma can be found in Heinrich [4].

2.4. Main results

First we recall the known results for the special cases where either d1 ¼ 0 or
d2 ¼ 0:
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We use the asymptotic notation an%bn for sequences of nonnegative real numbers
an and bn; which means that there exists some constant c40 and some n0AN such
that anpcbn for all nXn0: If an%bn and bn%an then we write an^bn: We often use
the same symbol c for possibly different constants. In particular, the needed
constants may depend on d1; d2 and r:
Let BðGÞ denote the unit ball of a normed space G; i.e.

BðGÞ :¼ fgAG j jjgjjGp1g:
Then we have the following two theorems that are important for our analysis. The
first considers quantum integration and was proved by Novak [9].

Theorem 2.5. Let Sint : CrðD2Þ-R be the integration operator. Then

eq
nðSint;BðCrðD2ÞÞÞ^n
r=d2
1: ð10Þ

Let Aintð�; nÞ be a sequence of quantum algorithms which is of optimal order, that
is

eðSint;Aintð�; nÞ;BðCrðD2ÞÞÞpcn
r=d2
1:

The second theorem is concerned with approximation.

Theorem 2.6. Let Sappr denote the function approximation problem, that is the

embedding operator from CrðD1Þ to CðD1Þ: Then

edetn ðSappr;BðCrðD1ÞÞ^ emcn ðSappr;BðCrðD1ÞÞ

^ eq
nðSappr;BðCrðD1ÞÞ^n
r=d1 : ð11Þ

Here edetn and emcn are the minimal deterministic and Monte Carlo error. A detailed

definition can be found in [7]. The proof of the rate for the quantum case is due to
Heinrich [5].
We state another important result, which is in fact the key to the integration result

mentioned above. Let

LN
N

:¼ fg : f0;y;N 
 1g-Rg;
with the norm jjgjjLN

N

¼ maxijgðiÞj: Then we get the optimal rate for quantum

summation, where the upper bound is from Brassard et al. [1] and the lower bound
from Nayak and Wu [8], with the extension that is used for our purpose coming from
Heinrich [4]:

Theorem 2.7. Let SN :LN
N
-R be given by SNg ¼ 1

N

PN
1
i¼0 gðiÞ: Then for noN there

are constants c1; c2 not depending on N such that

c1n

1peq

nðSN ;BðLN
N
ÞÞpc2n


1: ð12Þ
Note that the convergence rate does not depend on the number of summands, so

we can choose N to be large enough to satisfy any needed precision for the
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approximation of an integral by such a weighted sum. We denote by Asumð�; n;NÞ a
sequence of quantum algorithms with this convergence rate, meaning that

eðSN ;Asumð�; n;NÞ;BðLN
N
ÞÞpc2n


1:

Finally, we consider the rates of parametric integration. From now on let F denote
the unit ball of CrðD1 � D2Þ: In order to enable comparison, we also recall the results
in the deterministic and Monte Carlo setting. A detailed analysis for the Monte
Carlo setting can be found in Heinrich and Sindambiwe [7].

Theorem 2.8. The minimal errors of the operator S from (1) behave in the following

way:

edetn ðS;FÞ^n
r=ðd1þd2Þ; ð13Þ

emcn ðS;FÞ^ n
ðrþd2=2Þ=ðd1þd2Þðlog nÞ1=2 if r4d1=2;

n
r=d1ðlog nÞr=d1 if rod1=2

(
ð14Þ

and

n
1=2ðlog nÞ1=2%emcn ðS;FÞ%n
1=2ðlog nÞ3=2 if r ¼ d1=2:

The following theorem settles the quantum query complexity of parametric
integration and answers the question when and how much better quantum
algorithms are (as compared to deterministic and Monte Carlo methods). The
comparison is discussed in detail in Section 5.

Theorem 2.9. For d1a0; d2a0 and r40 the operator S from (1) satisfies

n

 rþd2

d1þd2%eq
nðS;FÞ%n


 rþd2
d1þd2ðlog nÞ

rþd2
d1þd2 if r4d1; ð15Þ

n
r=d1%eq
nðS;FÞ%n
r=d1ðlog nÞr=d1 if rod1 ð16Þ

and

n
1
%eq

nðS;FÞ%n
1ðlog nÞ3 if r ¼ d1: ð17Þ
Note that in asymptotic statements we leave the logarithm unspecified, whereas in

cases in which the basis is essential we write, e.g., log2 n or ln n to indicate base 2 or
the natural logarithm. The proof of the above theorem consists of two parts: First we
prove an upper bound for the query error eq

nðS;FÞ: Second, we prove a lower bound
for eq

nðS;FÞ which has the same order as the upper bound, up to a logarithmic gap.

3. Upper bound

Now we assume d1a0; d2a0 and r40: Let kAN0 be fixed, and let P
ð1Þ
k denote the

partition of D1 into cubes of sidelength 2
k with disjoint interior. Let

Lð1Þ
k :¼ fr
12
kði1;y; id1Þ : 0pi1;y; id1pr2kg
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be the equidistant mesh of sidelength r
12
k on D1: Define

n1;k :¼ jLð1Þ
k j ¼ ðr2k þ 1Þd1 : ð18Þ

Let

P
ð1Þ
k : CrðD1Þ-CðD1Þ

be the d1-dimensional composite Lagrange interpolation of degree r on Lð1Þ
k : This

means, on each cube QAPð1Þ
k the function P

ð1Þ
k f is the d1-dimensional tensor product

Lagrange interpolation over the nodes Q-Lð1Þ
k :Note that the resulting function is an

element of CðD1Þ:
For f fixed P

ð1Þ
k f is uniquely defined by f f ðsÞ : sALð1Þ

k g: Therefore, the operator
P
ð1Þ
k will also be interpreted as defined on LNðLð1Þ

k Þ; the space of real-valued

functions on Lð1Þ
k ; equipped with the maximum norm.

Finally, we also consider the operator P
ð1Þ
k as acting in the space CðD1 � D2Þ;

meaning that we interpolate with respect to the first component only, leaving the

other one fixed. In this case, P
ð1Þ
k is defined by ðPð1Þ

k f Þðs; tÞ :¼ ðPð1Þ
k f ð�; tÞÞðsÞ:

Let

Pð1Þ
k ¼ fQkjg2

d1k
1
j¼0 ;

that is D1 ¼
S2d1k
1

j¼0 Qkj and the Qkj are cubes of sidelength 2

k with disjoint interior.

Let skj be the point in Qkj with the smallest Euclidean norm. We define the restriction

operator Rkj :FðD1;RÞ-FðD1;RÞ by

ðRkjgÞðsÞ ¼
gð2kðs 
 skjÞÞ if sAQkj ;

0 otherwise:

(
ð19Þ

Let v ¼ ðr þ 1Þd1 and let

i ¼ i1ðr þ 1Þd1
1 þ i2ðr þ 1Þd1
2 þ?þ id1
1ðr þ 1Þ þ id1

for i ¼ 0;y; v 
 1 be the representation of i in base r þ 1: Let now fi ði ¼
0;y; v 
 1Þ be the tensor product Lagrange base polynomials of degree r on D1 for

the grid Lð1Þ
0 ; meaning that fiðsÞ ¼ 1 at the point s ¼ r
1ði1;y; id1Þ and fiðsÞ ¼ 0 for

all other points in Lð1Þ
0 .

Since we want to take advantage of the fast convergence of quantum summation,
we have to find a function whose integral can be approximated by quantum
summation. This function needs a small supremum norm to give quantum

summation its full impact. For each level, kX1 and a fixed gridpoint sALð1Þ
k \Lð1Þ

k
1
we define the detail function fk;sACrðD2Þ as the difference function between f and its

approximation P
ð1Þ
k
1 f ; both functions considered for this fixed s:

Let us consider the structure of the detail function in dependence of f and the

tensor product Lagrange base polynomials. For fixed sALð1Þ
k \Lð1Þ

k
1; there is a cube
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Qk
1; jðsÞAPð1Þ
k
1 with sAQk
1; jðsÞ (if there are several possibilities, choose the one with

the smallest index jðsÞ). The detail function has the form

fk;sðtÞ ¼ f ðs; tÞ 
 ðPð1Þ
k
1 f Þðs; tÞ ¼ f ðs; tÞ 


Xv
1
i¼0

ðRk
1; jðsÞfiÞðsÞ f ðsi; tÞ; ð20Þ

where

si ¼ sk
1; jðsÞ þ r
12
ðk
1Þði1;y; id1Þ: ð21Þ

The following lemma shows that the detail function has a bounded jj:jjr-norm.

Lemma 3.1. There is a constant c40 such that for any function fABðCrðDÞÞ; any

integer kX1 and any sALð1Þ
k \Lð1Þ

k
1 we have

jj fk;sjjrpc: ð22Þ

Proof. The functions Rkjfi ði ¼ 0;y; v 
 1Þ are the tensor product Lagrange base
polynomials on Qkj for the grid Qkj-Lð1Þ

k and

jjfijjCðD1Þ ¼ jjRkjfijjCðQkjÞ ð23Þ

for kAN and i ¼ 0;y; v 
 1: Since supijjfijjCðD1Þpc0 we get

jj fk;sjjrpjj f ðs; tÞjjr þ
Xv
1
i¼0

jðRk
1;jðsÞfiÞðsÞj jj f ðsi; tÞjjrp1þ vc0:

We now choose c ¼ 1þ vc0 and the statement follows. &

We will need the following:

Lemma 3.2. Let kX0 be an integer. Then the operator P
ð1Þ
k ; considered as acting from

L
n1;k
N to CðD1Þ is bounded by a constant which does not depend on k:

Proof. Let zAL
n1;k
N with jjzjj

L
n1;k
N

p1: With the notation from above we infer that for j

such that tAQkj we have

ðPð1Þ
k zÞðtÞ ¼

Xv
1
i¼0

zðiÞ � ðRkjfiÞðtÞ;

and therefore

jjPð1Þ
k zjjCðD1Þp

Xv
1
i¼0

jzðiÞj � jjRkjfijjCðQkjÞpv c0oc;

where c is the constant from the proof of Lemma 3.1, which is independent of k: &
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Let us now state the parameters that are needed for the proof of the upper bound.
We use a multilevel approach developed by Heinrich (see [3]) which was also used to
obtain the optimal Monte Carlo rates for parametric integration in [7]. For xAR the
notation Jxn means the smallest integer greater than or equal to, and Ixm the
greatest one smaller or equal to x: For nAN we set

m :¼ 1

d1 þ d2
ðlog2 nÞ þ 1

� 

: ð24Þ

The starting level m̃ is defined by

m̃ ¼
m if rXd1;

0 otherwise;

�
ð25Þ

and the final level l by

l :¼
Jð1þ d2=rÞmn if rXd1;

Jð1þ d2=d1Þmn
 p otherwise; where p :¼ Iðlog2 mÞ=d1m:

�
ð26Þ

We use n1;k points for the interpolation on level k; and we recall that n1;k ¼
ðr2k þ 1Þd1 : Let

Mk :¼ J8ðk þ 3Þ ln 2þ 8 ln n1;kn; ð27Þ

then we define the query number for quantum summation as

n2;k :¼
J2d2m
1

2
ðrþd1Þðk
mÞn if rXd1;

JM
1
k 2ðd1þd2Þm
d1k
1

2
ðd1
rÞðl
kÞn otherwise:

8<
: ð28Þ

The number of summands for quantum summation in level k ðk ¼ m̃;y; lÞ is
defined as

Nk :¼ 2rkd2nd2
2;k: ð29Þ

Let us shortly describe the main idea of the proof: In the starting level, we
approximate those integrals directly, which correspond to parameters s on the
roughest grid, with the finally needed accuracy. On the finer levels we do the same for
the detail functions. Then we interpolate the computed approximations and add
them up to get our approximation to the solution function.
Now we prepare the discretization of the functions that will be used on the

quantum computer. To do this, we need a mapping from our function class F to LNk
N
:

For kXm̃; we choose a number m� of qubits so large that

2m�=2
1
X1

and

2
m�=2p2
rkn
1
2;k: ð30Þ

Then we define

b :R-f0;y; 2m� 
 1g;
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z/

0 if zo
 2m�=2
1;

I2m�=2ðz þ 2m�=2
1Þm if 
 2m�=2
1pzo2m�=2
1;

2m� 
 1 if zX2m�=2
1:

8><
>:

Furthermore, we define

g : f0;y; 2m� 
 1g-R;

y/2m�=2y 
 2m�=2
1:

On the starting level m̃ we only have to approximate the integral of f for fixed

sALð1Þ
m̃ ; so in this case we just discretize the function f ðs; �Þ; which means that we

have a function Z : f0;y;Nm̃ 
 1g-D1 � D2 which is defined by Zð jÞ ¼ ðs; tjÞ;
where the points tjAD2 are node points needed for quantum summation, they will be

specified below. Thus, for the starting level we get

ðGm̃;s f Þð jÞ ¼ gððb3f 3Zð jÞÞÞ: ð31Þ
Let now k4m̃ be fixed. As already indicated, we will approximate the integral of the

detail function for fixed sALð1Þ
k \Lð1Þ

k
1 by quantum summation. For a fixed

summation number Nk from (29) we define

Zi : f0;y;Nk 
 1g-D1 � D2 ði ¼ 0;y; vÞ
by

Zið jÞ :¼ ðsi; tjÞ;
where sv ¼ s and the points si ði ¼ 0;y; v 
 1Þ are the points from (21).
The points tjAD2 are again node points needed for quantum summation. Finally,

we define

r : f0;y; 2m� 
 1gvþ1-R

by

rðy0;y; yvÞ :¼ gðyvÞ 

Xv
1
i¼0

ðRk
1; jðsÞfiÞðsÞgðyiÞ: ð32Þ

From these mappings we get the operator Gk;s : F-LNk
N

by

Gk;s f :¼ rððb3f 3ZiÞ
v
i¼0Þ:

This means that

ðGk;s f Þð jÞ ¼ rððb3f 3Zið jÞÞv
i¼0Þ:

Now we are ready to compute the query error of S: By Lemma 2.3, we can
decompose the query error into

eq
nðS;FÞp sup

fAF

jjSf 
 P
ð1Þ
l Sf jj þ eq

nðP
ð1Þ
l S;FÞ: ð33Þ
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So the error splits into a deterministic and a quantum part. Classical polynomial
approximation gives for gACrðD1Þ and kAN0 (see e.g. [2, Chapter 3.1]),

jjg 
 P
ð1Þ
k gjjCðD1Þpc2
rk; ð34Þ

so for the deterministic part in (33) we get

jjSf 
 P
ð1Þ
l Sf jjCðD1Þpc2
rl : ð35Þ

Next we consider the quantum part of (33). Let

j ¼ j1b
d2
1 þ j2b

d2
2 þ?þ jd2
1b þ jd2

for j ¼ 0;y;Nk 
 1; where b ¼ 2rkn2;k: Let the node points for the quantum

summation be defined as

tj :¼
j1

b
;
j2

b
;y;

jd2
b

� �
:

For k4m̃ we define the operators Jk;s : F-R by

Jk;s f :¼ 1

Nk

XNk
1

j¼0
fk;sðtjÞ; ð36Þ

which is the rectangle rule with Nk points for fk;s: Next we define, also for k4m̃;
operators Uk;s : F-R by

Uk;s f ¼
Z

D2

fk;sðtÞ dt: ð37Þ

Since the accuracy of the rectangle rule with Nk points in dimension d2 is of the order

N

1=d2
k for functions with bounded first derivatives, we get by (22) and (29)

jUk;sð f Þ 
 Jk;sð f Þjpc2
rkn
1
2;k: ð38Þ

By definition of the discretization operator Gk;s we get for jzjp1

gðbðzÞÞpzpgðbðzÞÞ þ 2
m�=2;

and by (30) this implies that

jGk;sð f Þð jÞ 
 fk;sðtjÞj

pj f ðs; tjÞ 
 gðbð f ðs; tjÞÞÞj þ
Xv
1
i¼0

jRk
1; jfiðsÞjj f ðsi; tjÞ 
 gðbð f ðsi; tjÞÞÞj

pc2
rkn
1
2;k: ð39Þ

ARTICLE IN PRESS
C. Wiegand / Journal of Complexity 20 (2004) 75–96 87



From the discretization accuracy of Gk;s and (34) we also infer that

jjGk;sð f Þjj
L

Nk
N

p jjð fk;sðtjÞÞjjLNk
N

þ jjð fk;sðtjÞÞ 
 Gk;s f jj
L

Nk
N

p c2
rðk
1Þ þ cn
1
2;k2


rkpc12

rk; ð40Þ

which implies

Gk;sðFÞDc12

rkBðLNk

N
Þ: ð41Þ

From (39) it also follows that

jSNk
Gk;s f 
 Jk;s f jp 1

Nk

XNk
1

j¼0
jðGk;s f Þð jÞ 
 fk;sðtjÞjpc2
rkn
1

2;k: ð42Þ

Now we calculate the error of the integration of the fk;s on Lð1Þ
k \Lð1Þ

k
1: We get with

Lemma 2.3, (42), Theorem 2.7, Lemma 2.2 and (41)

e
q

2ðvþ1Þn2;kðUk;s;FÞ

p sup
fAF

jUk;sð f Þ 
 Jk;sð f Þj þ e
q

2ðvþ1Þn2;kðJk;s;FÞ

p sup
fAF

jUk;sð f Þ 
 Jk;sð f Þj þ sup
fAF

jSNk
Gk;sf 
 Jk;sf j þ e

q

2ðvþ1Þn2;kðSNk
Gk;s;FÞ

pc2
rkn
1
2;k þ eq

n2;k
ðSNk

; c12

rkBðLNk

N
ÞÞ

pc2
rkn
1
2;k þ c12


rkeq
n2;k

ðSNk
;BðLNk

N
ÞÞ

pc2
rkn
1
2;k þ c2
rkn
1

2;k

pc2
rkn
1
2;k: ð43Þ

With the help of this result we can now investigate the error of the operator P
ð1Þ
l S:

Since

P
ð1Þ
l S ¼ P

ð1Þ
m̃ S þ

Xl

k¼m̃þ1
ðPð1Þ

k 
 P
ð1Þ
k
1ÞS; ð44Þ

we investigate the error of the operator

ðPð1Þ
k 
 P

ð1Þ
k
1ÞS : F-CðD1Þ:

We define

yk :¼ 2
ðkþ3Þ; k ¼ m̃;y; l: ð45Þ

Then we set

n̂m̃ :¼ Mm̃n1;m̃n2;m̃; ð46Þ
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and for k ¼ m̃ þ 1;y; l we set

n̂k :¼ Mkðn1;k 
 n1;k
1Þ2ðv þ 1Þn2;k: ð47Þ

Let Ak;s be a quantum algorithm that computes an approximation to Uk;s on F

with the rate from (43) and let zk;s be a random variable with distribution Ak;s: We

define a random variable xk with values in L
n1;k
N as follows: For sALð1Þ

k \Lð1Þ
k
1 we let

xkðsÞ be the median of Mk independent copies of zk;s; that is, we repeat Ak;s Mk

times. For sALð1Þ
k
1 we set xkðsÞ :¼ 0: Since ðUk;s f ÞðtÞ ¼ 0 for sALð1Þ

k
1; by this choice

we establish an error of zero in these points. We have

ðPð1Þ
k 
 P

ð1Þ
k
1ÞðSf Þ ¼ P

ð1Þ
k ððI 
 P

ð1Þ
k
1ÞðSf ÞÞ ¼ P

ð1Þ
k ðUk;sÞsALð1Þ

k

; ð48Þ

where on the right-hand side P
ð1Þ
k is considered as acting on L

n1;k
N : This means that

because we can interchange interpolation with respect to the first component and
integration with respect to the second component, we indeed compute an

approximation to ðPð1Þ
k 
 P

ð1Þ
k
1ÞðSf Þ by ðPð1Þ

k 
 P
ð1Þ
k
1Þxk:

By Lemma 2.4 and (43),

PðjUk;sð f Þ 
 xkðsÞj4c2
rkn
1
2;kÞpe
Mk=8: ð49Þ

Consequently,

PðjUk;sð f Þ 
 xkðsÞjp c2
rkn
1
2;k 8sALð1Þ

k Þ

X 1
 n1;ke
Mk=8X1
 2
ðkþ3Þ ¼ 1
 yk ð50Þ

by (27). From Lemma 3.2, (47), (48) and (50) we obtain for the query error of the

operator ðPð1Þ
k 
 P

ð1Þ
k
1ÞS;

e
q
n̂k
ððPð1Þ

k 
 P
ð1Þ
k
1ÞS;F ; ykÞpc2
rkn
1

2;k: ð51Þ

We use Lemma 2.1 to calculate the error of P
ð1Þ
l S: From (45), we get

Pl
k¼m̃ ykp1=4;

hence, with Lemma 2.1, Lemma 3.2, (44) and with

ñ :¼
Xl

k¼m̃

n̂k; ð52Þ

we get

e
q
ñðP

ð1Þ
l S;F ; 1=4Þp e

q
n̂m̃
ððPð1Þ

m̃ S;F ; ym̃Þ

þ
Xl

k¼m̃þ1
e

q
n̂k
ððPð1Þ

k 
 P
ð1Þ
k
1ÞS;F ; ykÞ: ð53Þ
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Now we consider the different cases:
(1) rod1: For the error on the starting level m̃ ¼ 0 we can make direct use of

Theorem 2.7 and, in this case using the operator from (31), we get

e
q
n̂0
ðPð1Þ

0 S;F ; y0Þpcðn2;0Þ
1

by Theorem 2.7, Lemma 3.2 and a similar probability argument as above. Now with
(53) and (51) we get

e
q
ñðP

ð1Þ
l S;F ; 1=4Þ

pcðn2;0Þ
1 þ
Xl

k¼1
c2
rkn
1

2;k

pcðlog2 nÞ
Xl

k¼0
2
ðd1þd2Þmþd1kþ1

2
ðd1
rÞðl
kÞ
rk

pcðlog2 nÞ2
ðd1þd2Þm
Xl

k¼0
2
1
2
ðd1
rÞðlþkÞ:

From this we get with the help of the geometric sum formula

e
q
ñðP

ð1Þ
l S;F ; 1=4Þpcðlog2 nÞ2
ðd1þd2Þmþðd1
rÞl

and with 2d1l
d2m^2d1m
log2 m we arrive at

e
q
ñðP

ð1Þ
l S;F ; 1=4Þpc2
rlpcn
r=d1ðlog2 nÞr=d1 :

For the deterministic part of the error we get by the choice of l

jjSf 
 P
ð1Þ
l Sf jjpc2
rlpcn
r=d1ðlog2 nÞr=d1 ;

which by (33) gives the desired rate for rod1:
(2) rXd1: To calculate the error on the starting level m̃ ¼ m we use Theorem 2.5

and (28) and again with the probability argument from above we get

e
q
n̂m
ðPð1Þ

m S;F ; ymÞpcðn2;mÞ
r=d2
1pcn
ðrþd2Þ=ðd1þd2Þ: ð54Þ
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With (53) and (51) we get

e
q
ñðP

ð1Þ
l S;F ; 1=4Þ

pcn
ðrþd2Þ=ðd1þd2Þ þ
Xl

k¼mþ1
c2
rkn
1

2;k

pcn
ðrþd2Þ=ðd1þd2Þ þ c
Xl

k¼mþ1
2
rk2
d2mþ1

2
ðrþd1Þðk
mÞ

pcn
ðrþd2Þ=ðd1þd2Þ þ c2
ðrþd2Þm
Xl

k¼mþ1
2


1
2
ðr
d1Þðk
mÞ

pcn
ðrþd2Þ=ðd1þd2Þ
Xl

k¼mþ1
2


1
2
ðr
d1Þðk
mÞ:

For r4d1; the sum is bounded by a constant, and for r ¼ d1 the sum gives an
additional factor of log n: By the choice of l we get

jjSf 
 P
ð1Þ
l Sf jjpc2
rlpcn
ðrþd2Þ=ðd1þd2Þ;

and with (33) we arrive at

e
q
ñðS;FÞpcn
ðrþd2Þ=ðd1þd2Þ ð55Þ

for r4d1 and

e
q
ñðS;FÞpcn
1 log n ð56Þ

for r ¼ d1:
Finally, we estimate the number of queries ñ that are needed to obtain the desired

precision. Since the total number of queries is

ñ ¼ Mm̃n1;m̃n2;m̃ þ 2ðv þ 1Þ
Xl

k¼m̃þ1
Mkðn1;k 
 n1;k
1Þn2;k;

we get for rod1;

ñ ¼M0n1;0n2;0 þ 2ðv þ 1Þ
Xl

k¼1
Mkðn1;k 
 n1;k
1Þn2;k

p c
Xl

k¼0
Mkn1;kn2;k

p c
Xl

k¼0
2d1k2ðd1þd2Þm
d1k
1

2
ðd1
rÞðl
kÞ

p c2ðd1þd2Þm
Xl

k¼0
2


1
2ðd1
rÞðl
kÞ^n;
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and for r4d1 we get

ñ ¼Mmn1;mn2;m þ 2ðv þ 1Þ
Xl

k¼mþ1
Mkðn1;k 
 n1;k
1Þn2;k

p c
Xl

k¼m

Mkn1;kn2;k

p c
Xl

k¼m

ðk þ ln n1;kÞðr2k þ 1Þd12d2m
1
2
ðrþd1Þðk
mÞ

p c log n
Xl

k¼m

2d1k2d2m
1
2
ðrþd1Þðk
mÞ

p c log n2ðd1þd2Þm
Xl

k¼m

2

1
2
ðr
d1Þðk
mÞ^n log n;

since d1k þ d2m 
 1
2
ðr þ d1Þðk 
 mÞ ¼ ðd1 þ d2Þm 
 1

2
ðr 
 d1Þðk 
 mÞ: This means

for rod1 the cost is of order n and for r4d1 it is of order n log n; such that a

rescaling of n leads to the proposed rate. In the case r ¼ d1 the cost is Oðnðlog nÞ2Þ; so
together with (56) we get the additional log-factor in the convergence rate. Now the
upper bound of Theorem 2.9 is proved.
Note that the proof of the upper bound was carried out in terms of query errors

and can easily be translated into an explicit quantum algorithm for parametric
integration. The algorithm has the following form and uses the sequences of optimal
algorithms Asumð�; n;NÞ and Aintð�; nÞ for quantum summation and quantum

integration. For a given n we recall the needed parameters, which are m ¼
1

d1þd2
ðlog2 nÞ þ 1

j k
; starting level m̃ :¼ m if rXd1 and zero otherwise, final level l :¼

Jð1þ d2=rÞmn if rXd1 and ð1þ d2=d1Þmn
 p otherwise, where p :¼ Iðlog2 mÞ=d1m:

We have n1;k ¼ ðr2k þ 1Þd1 ; Mk :¼ J8ðk þ 3Þln 2þ 8 ln n1;kn; and n2;k :¼
J2d2m
1

2
ðrþd1Þðk
mÞn; if rXd1 and JM
1

k 2ðd1þd2Þm
d1k
1
2
ðd1
rÞðl
kÞn otherwise. Finally,

we have Nk :¼ 2rkd2nd2
2;k: Now the algorithm Aparintð f ; nÞ is the following:

1. Starting level m̃: For all sALð1Þ
m̃ do:

(a) If rXd1; compute Mm̃ times Am̃;s :¼ Aintð f ðs; �Þ; n2;m̃Þ and let xm̃ðsÞ be the median
of these Mm̃ results.

(b) If rod1; compute Mm̃ times Am̃;s :¼ AsumðGm̃;s f ; n2;m̃;Nm̃Þ and let xm̃ðsÞ be the
median of these Mm̃ results.

2. Finer levels: For k ¼ m̃ þ 1;y; l do:

� For all sALð1Þ
k \Lð1Þ

k
1 do: Mk times compute Ak;s :¼ c12

rkAsumðc
11 2rkGk;s f ;

n2;k;NkÞ and let xkðsÞ be the median of these Mk results.
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� For sALð1Þ
k
1 do: xkðsÞ :¼ 0:

3. Final approximation: Aparintð f ; nÞ :¼ P
ð1Þ
m̃ xm̃ þ

Pl
k¼m̃þ1ðP

ð1Þ
k 
 P

ð1Þ
k
1Þxk:

In step 2, the function Gk;s fALNk
N

is scaled by c
11 2rk and the result then rescaled to

make sure that the algorithm Asum is applied to a function with LNk
N
-norm smaller or

equal to one.

4. Lower bound

In this section, we first cite a general result for lower bounds on the quantity
eq

nðS;FÞ and then we apply this result to the case of parametric integration.

Let D and K be nonempty sets, let LAN and let to each

u ¼ ðu0;y; uL
1ÞAf0; 1gL

an fuAFðD;KÞ be assigned such that the following is satisfied:

Condition (I): There are functions g0; g1AFðD;KÞ and a decomposition D ¼SL
1
l¼0 Dl with Dl-Dl0 ¼ | ðlal0Þ such that for tADl

fuðtÞ ¼
g0ðtÞ if ul ¼ 0;

g1ðtÞ if ul ¼ 1:

�

Next we define the function rðL; l; l0Þ for LAN; 0plal0pL by

rðL; l; l0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

L

jl 
 l0j

s
þminj¼l;l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðL 
 jÞ

p
jl 
 l0j :

Note that jðL 
 jÞ is minimized iff jL=2
 jj is maximized. For uAf0; 1gL we set

juj ¼
PL
1

l¼0 ul : Then we have the following.

Lemma 4.1. There is a constant c040 such that the following holds: Let D;K be

nonempty sets, let FCFðD;KÞ be a set of functions, G a normed space, S : F-G a

function, and LAN: Suppose ð fuÞuAf0;1gLDFðD;KÞ is a system of functions satisfying

condition ðIÞ: Let finally 0plal0pL and assume that

fuAF whenever jujAfl; l0g:

Then

eq
nðS;FÞX 1

2
minfjjSð fuÞ 
 Sð fu0 Þjj : juj ¼ l; ju0j ¼ l0g

for all n with

npc0rðL; l; l0Þ:

A proof of Lemma 4.1 can be found in Heinrich [4]. With the help of this lemma we
can now prove the lower bound for parametric integration:
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Let c0 be the constant from Lemma 4.1, and let d ¼ d1 þ d2: For nAN we choose
an even number mAN such that

L ¼ md
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
20 n2 þ 4

q
: ð57Þ

Let

i ¼ j1m
d
1 þ j2m

d
2 þ?þ jd
1m þ jd

for i ¼ 0;y;L 
 1: Let

Di ¼
Yd

l¼1

jl

m
;
jl þ 1

m

� �
; D ¼

[L
1
i¼0

Di:

Define the functions ciACNðDÞ by
ciðs1;y; sd1 ; td1þ1;y; td1þd2Þ ¼cð1Þ

i ðs1;y; sd1Þ � c
ð2Þ
i ðtd1þ1;y; td1þd2Þ

¼
Yd1
l¼1

Zðmsl 
 jlÞ �
Yd1þd2

l¼d1þ1
Zðmtl 
 jlÞ

with

ZðxÞ ¼ e

 1

xð1
xÞ; 0oxo1;

0; otherwise:

(

For k ¼
Pd1þd2

l¼1 kl it holds that

@ciðs; tÞ
@sk1

1 @sk2
2 ?@t

kd1þd2

d1þd2

¼
Yd1
l¼1

dkl

dskl

l

Zðmsl 
 jlÞ �
Yd1þd2

l¼d1þ1

dkl

dtkl

l

Zðmtl 
 jlÞ

¼
Yd1
l¼1

ZðklÞðmsl 
 jlÞmkl �
Yd1þd2

l¼d1þ1
ZðklÞðmtl 
 jlÞmkl

¼mk
Yd1
l¼1

ZðklÞðmsl 
 jlÞ �
Yd1þd2

l¼d1þ1
ZðklÞðmtl 
 jlÞ:

From this we get

jjcijjCrðDÞ ¼ maxPd1þd2

l¼1 klpr

sup
ðs;tÞAD

@kciðs; tÞ
@sk1

1 @sk2
2 ?@t

kd1þd2

d1þd2

������
������

¼ maxPd1þd2

l¼1 klpr

mk
Yd1
l¼1

sup
slA½0;1�

jZðklÞðslÞj
Yd1þd2

l¼d1þ1
sup

tlA½0;1�
jZðklÞðtlÞj

p gmr;

where

g ¼ maxPd1þd2

l¼1 klpr

Yd1
l¼1

sup
slA½0;1�

jZðklÞðslÞj �
Yd1þd2

l¼d1þ1
sup

tlA½0;1�
jZðkl ÞðtlÞj:
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Therefore, setting #ci :¼ 1
gmr ci; we have fu :¼

PL
1
i¼0 ui

#ciAF for all uiAf0; 1g; i ¼
0;y;L 
 1: Since the ci have disjoint support, fu satisfies condition (I). Let s0 ¼R 1
0 ZðxÞ dx40: It is easy to show thatZ

D

ciðs1;y; td1þd2Þ ds1ydtd1þd2 ¼
sd
0

md
:

Let now l :¼ L=2
 1 and l0 :¼ l þ 1 ¼ L=2: Then with (57) it follows that

rðL; l; l0Þ4 min
j¼fl;l0g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðL 
 jÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

2

 1

� �
L

2
þ 1

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

4

 1

s
Xc
10 n:

Since

minfjjSð fuÞ 
 Sð fu0 ÞjjCðD1Þj juj ¼ l; ju0j ¼ l0g

¼ jjSð #c0ÞjjCðD1Þ ¼
1

gmr

sd2
0

md2
jjcð2Þ

0 ðtd1þ1;y; td1þd2ÞjjCðD1Þ

¼ e
4d1sd2
0 g
1m
ðrþd2Þ ¼ Cðmd1þd2Þ


rþd2
d1þd2

¼ C0n

 r

d1þd2
þ d2

d1 þ d2

�  
;

from Lemma 4.1 we get a general lower bound for parametric integration and the
lower bound of Theorem 2.9 for rXd1:

We get a lower bound of n
r=d1 for approximation by simply choosing d2 ¼ 0; and
since parametric integration can never have a better convergence rate than
approximation, this gives us the lower bound of Theorem 2.9 for the case rod1:

5. Comments

We have solved the problem of the quantum complexity of parametric integration
for the class CrðDÞ by providing upper and lower bounds, where the rates match up
to a logarithmic factor. Now we compare our results to the known results for
deterministic and Monte Carlo methods stated in Section 2.4. We again assume rX1:
Then the optimal quantum rates are always better than the optimal deterministic
rate, except for the case d2 ¼ 0; where we have equal rates, and the following table
provides a comparison of the deterministic, Monte Carlo and quantum case (without
log-factors).

edetn ðS;FÞ emcn ðS;FÞ eq
nðS;FÞ

rXd1 n
r=ðd1þd2Þ n
ðrþd2=2Þ=ðd1þd2Þ n
ðrþd2Þ=ðd1þd2Þ

d1=2prod1 n
r=ðd1þd2Þ n
ðrþd2=2Þ=ðd1þd2Þ n
r=d1

rod1=2 n
r=ðd1þd2Þ n
r=d1 n
r=d1
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We have to distinguish three different situations, depending on the relation of the
problem parameters r and d1: For rod1=2 the quantum rate provides an
improvement over the deterministic rate, but it is as fast as the Monte Carlo rate.
For this parameter constellation both the Monte Carlo and the quantum algorithm
achieve the optimal rate of approximation which is the same in both cases.
When we have d1=2prod1; then the quantum rate is still the optimal rate of

approximation, but the Monte Carlo rate is slower, which leads to the superiority of
the quantum rate for this situation.
For the case rXd1; we still have a better performance of the quantum algorithm as

compared to Monte Carlo.
Summarizing the discussion we can say that the quantum rate is always better than

the deterministic rate, it is always at least as good as the Monte Carlo rate, and for
rXd1=2 it is better than the optimal rate of Monte Carlo algorithms.
Let us finally consider our problem in the bit model. Referring to [4,6], we find that

for our algorithm the number of qubits needed is Oðlog nÞ; the number of quantum
gates is Oðn log nÞ and the number of measurements is Oððlog nÞ3 log log nÞ:
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