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Abstract

We study the independent dominating set problem restricted to graph classes de"ned by "nitely
many forbidden induced subgraphs. The main result is two su3cient conditions for the problem
to be NP-hard in a "nitely de"ned class of graphs. We conjecture that those conditions are also
necessary and describe several classes of graphs verifying the conjecture.
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1. Introduction

In a simple graph, a subset of vertices S is called dominating if every vertex outside
S has a neighbor in S. A subset S is called independent if no two vertices in S are
linked by an edge. We study the problem of "nding an independent dominating set
(ID-set) of minimum cardinality in a graph. Sometimes it is referred to as the min-
imum maximal independent set (IS) problem, since every maximal (under inclusion)
independent set is obviously dominating. In a sense, independent domination can be
viewed as an intermediate problem between two others: the minimum DS and the max-
imum IS. To justify this point of view, we "rst point out the relationships between the
respective graph parameters:

�(G) 6 i(G) 6 �(G);
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Table 1

Classes\problems DS IDS IS

Planar graphs NP-c NP-c NP-c
Triangle-free graphs NP-c NP-c NP-c
Bipartite graphs NP-c NP-c P
Claw-free graphs NP-c NP-c P
Split graphs NP-c P P
2K2-free graphs NP-c P P
Co-bipartite graphs P P P
P4-free graphs P P P

where �(G); i(G); �(G) stand for the size of a minimum dominating, minimum inde-
pendent dominating and maximum IS in a graph G, respectively. Another observation
compares the complexity of the three problems on diBerent classes of graphs. Table 1
compiles several available results on this issue and suggests the idea that DS is the
“most di3cult” problem among those under the comparison, while the independent
domination (IDS) is somewhat between the two others.

There is a vast literature that investigates the complexity of DS and IS on diBerent
graph classes. Surprisingly enough, the ID-set problem is not so well studied. Several
available results deal mainly with subclasses of perfect graphs (such as chordal [14] or
co-comparability graphs [20]) or some other well-structured classes (such as circular-
arc graphs [7]). In the present paper, we study the problem on graph classes that
can be de"ned by "nitely many forbidden induced subgraphs. The main result is two
su3cient conditions for the problem to be NP-hard in a "nitely de"ned class of graphs.
However, the question whether those conditions are necessary remains open. Toward
answering the question, we consider several graph classes that fail both conditions and
present polynomial time algorithms for them.

All graphs we consider are undirected, without loops or multiple edges. Graph G
is said to be H -free if G does not contain H as an induced subgraph. The subgraph
of G induced by a subset of vertices U is denoted G[U ]. For a vertex v of G, we
denote by N (v) the neighborhood of V (the subset of vertices adjacent to v), and
by N [v], the closed neighborhood of v, i.e. N [v] =N (v)∪{v}. As usual, Kn is the
complete graph on n vertices, Kn;m is the complete bipartite graph with parts of size n
and m, Cn is a chordless cycle and Pn is a chordless path on n vertices. By mK2 we
denote the disjoint union of m copies of a K2. Following the tradition, we use special
names for some particular graphs: a claw is a K1;3; a paw is the graph obtained from
a claw by adding an edge; a diamond, denoted K4 − e, is the graph obtained from
a K4 by deleting an edge; a bull can be obtained from a P5 by connecting its non-
adjacent vertices of degree 2 by an edge; a fork (also called a chair) is the result of a
single subdivision of an edge in a claw. We refer to the complement of a graph G as
to co-G.

Throughout the paper, “independent dominating set” is abbreviated as “ID-set”.
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Fig. 1. Transformation Q.

Fig. 2. Transformation R.

2. NP-hardness

The results of this section are based on the following graph transformations.
Transformation P: In a graph G, let (x1; x2) be an edge. If N (x1) − N [x2] or

N (x2)−N [x1] is a clique, then replace (x1; x2) with a chordless path P5 = (x1; a; b; c; x2).
Informally, transformation P can be viewed as a triple subdivision of the edge (x1; x2).
The resulting graph will be denoted P(G) =P(G; (x1; x2)).
Transformation Q: In a graph G, let x be a vertex whose neighborhood admits

a partition into two cliques C1 and C2. Replace x with a path P4 = (x1; a; b; x2) and
connect xj to each vertex in Cj for j = 1; 2 (see Fig. 1). The resulting graph will be
denoted Q(G) =Q(G; x).
Transformation R: Let x be a vertex of degree at least 3 in a graph G. Partition

the neighborhood of x into three subsets A1; A2; A3 in an arbitrary way. Replace x
with the subgraph induced by vertices a1; b1; c1; a2; b2; c2; a3; b3; c3 depicted in Fig. 2
and connect aj to every vertex in Aj for j = 1; 2; 3. The resulting graph will be denoted
R(G) =R(G; x; A1; A2; A3).

Lemma 1. i(P(G)) = i(G) + 1.
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Proof. Consider a minimum ID-set I in G. If I contains x1, then I ′ = I ∪{c} is an
ID-set in P(G; (x1; x2)). The case x2∈I is symmetric. If I ∩{x1; x2}= ∅, then obviously
I contains both a vertex adjacent to x1 and a vertex adjacent to x2 else I is not
dominating. But then I ′ = I ∪{b} is an ID-set in P(G). Hence i(P(G))6i(G) + 1.

Conversely, let I ′ be a minimum ID-set in P(G). Clearly, I ′∩{a; b; c} �= ∅, otherwise
I ′ is not dominating. Assume "rst b∈I ′ and let N (x2) − N [x1] be a clique. If x1 �∈ I ′,
then I ′ − {b} is an ID-set in G. If x1∈I ′, then we can assume without loss of gen-
erality that x2 �∈ I ′. Indeed, if x2∈I ′, then there must be a vertex z in N (x2) − N [x1]
such that x2 is the only neighbor of z in I ′ else (I ′ − {b; x2})∪{c} is a smaller
ID-set in P(G), contradicting the assumption. But now (I ′ − {x2})∪{z} is an ID-set
of the same size as I ′. Thus we assume x2 �∈ I ′ and hence I = I ′ − {b} is an ID-set
in G.

Now let b �∈ I ′. If a∈I ′ and c �∈ I ′, then x2 belongs to I ′ due to its maximality
and hence I ′ − {a} is an ID-set in G. If both a∈I ′ and c∈I ′, then exactly one
of the following three sets is an ID-set in G: I ′ − {a; c} or (I ′ − {a; c})∪{x1} or
(I ′ − {a; c})∪{x2}. Therefore, i(G)6i(P(G)) − 1.

Lemma 2. i(Q(G)) = i(G) + 1.

Proof. Let I be a minimum ID-set in G. If x∈I , then I ′ = (I − {x})∪{x1; x2} is an
ID-set in Q(G; x). If I ∩C1 �= ∅, then I ′ = I ∪{b} is an ID-set in Q(G; x). Consequently,
i(Q(G))6i(G) + 1.

Now let I ′ be a minimum ID-set in Q(G; x). Obviously, 16|I ′∩{x1; a; b; x2}|62.
If no vertex in C1∪C2 belongs to I ′, then the P4 = (x1; a; b; x2) contains exactly two
vertices in I ′. In that case, replacing those vertices with x results in an ID-set in G.
Assume next that C1 contains a vertex in I ′. Then obviously x1 �∈ I ′. Moreover, since
I ′ is of minimum size, we may suppose that x2 �∈ I ′ as well. Indeed, if x2∈I ′, then
a∈I ′ else a has no neighbors in I ′. Besides, there must be a vertex z∈C2 such that x2

is the only neighbor of z in I ′ else (I ′ − {a; x2})∪{b} is a smaller ID-set in Q(G; x),
contradicting the assumption. But then (I ′ − {x2})∪{z} is an ID-set in Q(G; x) of the
same size as I ′ but without x2. Thus, assuming that x2 �∈ I ′, we conclude that exactly
one vertex of the P4 belongs to I ′. Deleting this vertex from I ′ produces an ID-set in
G. Therefore, i(G)6i(Q(G)) − 1.

Lemma 3. i(R(G)) = i(G) + 2.

Proof. Let I be a minimum ID-set in G. If I contains vertex x, then I ′ = (I−{x})∪
{a1; a2; a3} is an ID-set in R(G). If I contains a vertex y∈A1, then I ′ = I ∪{b2; c3}
is an ID-set in R(G). Up to the symmetry this exhausts all possibilities and hence
i(R(G))6i(G) + 2.

Conversely, let I ′ be a minimum ID-set in graph R(G). We will show that G contains
an ID-set I of cardinality |I |6|I ′|−2. Denote Tj = {aj; bj; cj} (j = 1; 2; 3), and I ′′ = I ′−
V (G). Clearly I ′′ contains at most one vertex in each Tj.

If |I ′′|= 3, then either I = I ′− I ′′ or I = (I ′− I ′′)∪{x} is the desired set. If |I ′′|¡3,
then |I ′′|= 2. Indeed, if I ′′∩T1 = ∅, then both b2∈I ′ and c3∈I ′ else vertices b1; c1 have
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no neighbors in I ′. In that case I = I ′−I ′′ is the set sought for. Thus i(G)6i(R(G))−2,
which completes the proof of the lemma.

Proposition 1. The ID-set problem is NP-hard in the class of (K1;3; K4; K4 − e)-free
graphs with maximum degree 3.

Proof. The proof is given in several steps. We "rst apply transformation R to reduce
the problem to graphs with vertex degree at most 4. To this end, consider a graph G
and a vertex x in G with neighborhood N (x) = {x1; x2; : : : ; xl}, where l¿4. Apply trans-
formation R with respect to x with A1 = {x1}; A2 = {x2; x3} and A3 =N (x)− (A1∪A2).
In the graph R(G; x; A1; A2; A3) all the new vertices, except a3, have degree at most
4, and the degree of a3 is exactly one less than that of x. Thus, repeatedly ap-
plying R as described above, one can transform G into a graph G′ with maximum
degree 4.

In the second step, we transform G′ in such a way that the neighborhood of every
4-degree vertex would induce a 2K2. Assume "rst that a 4-degree vertex y has an
edge (z1; z2) in the neighborhood. Then apply transformation R with respect to y with
|A1|= |A2|= 1, and A3 = {z1; z2}. In the transformed graph, the neighborhood of a3

induces a 2K2 and every other new vertex has degree 3. If the neighborhood of y is
edgeless, then application of R with |A1|= |A2|= 1, and |A3|= 2 creates a new vertex
a3 of degree 4 with an edge in the neighborhood.

In the next step, we reduce the problem to graphs of degree at most three by applying
transformation Q to every vertex of degree 4.

Finally, given a graph with maximum degree 3, we apply R to each vertex of degree
3. In the resulting graph G∗ the maximum degree is at most 3 as well, and moreover,
every vertex of degree 3 is the center of a paw. Therefore, G∗ is (K1;3; K4; K4 − e)-
free. It is not hard to see that the total time complexity for transforming an arbitrary
graph into a (K1;3; K4; K4−e)-free graph with vertex degree at most 3 is bounded by a
polynomial in the size of the input graph. Together with Lemmas 2 and 3, this proves
the proposition.

Denote by Si; j; k and Ti; j; k the graphs depicted in Figs. 3(a) and (b), respectively.
In this notation, S1;1;1 is a claw, S1;1;2 is a fork, T1;1;1 is a triangle, T1;1;2 is a paw,
T1;2;2 is a bull. Moreover, we let some of the indices i; j; k equal 0. In particular,
S0; j; k =Pj+k+1 and T0; j; k =Pj+k .

Denote by S the class of graphs whose every connected component is of the form
Si; j; k , and by T the class of graphs whose every connected component is of the form
Ti; j; k .

Theorem 1. Let X be a class of graphs de=ned by a =nite set F of forbidden induced
subgraphs. If F∩S = ∅, then the ID-set problem is NP-hard for bipartite graphs
in X.

Proof. Let k be an integer greater than the number of vertices in a largest graph in
F . We will show that any (K1;3; K4; K4 − e)-free graph G with maximum degree 3 can
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Fig. 3. Graphs Si; j; k (a) and Ti; j; k (b).

Fig. 4. Graph Hi .

be transformed by transformation P into a bipartite graph in X with maximum degree
3 in polynomial time.

It is not hard to see that transformation P can be applied to any edge of a (K1;3; K4;
K4 − e)-free graph G with maximum degree three. Denote by NP the transformation
consisting in applying P to each edge of the graph. Under NP the length of every
induced cycle increases by a factor of four, and therefore NP(G) is a bipartite graph.
Moreover, it is obvious that graph NP(G) is again of degree at most 3 and every edge of
this graph admits transformation P. Applying NP su3ciently many times, we transform
G into a bipartite graph G′ of degree at most 3 containing no induced cycles Ci with
i6k and no graphs of form Hi (see Fig. 4) with i6k.

Now we show that G′∈X . Assume by contradiction that G′ does not belong to X .
Then it must contain an induced subgraph A∈F . First, we note that A is a cycle-free
graph. Indeed, due to the above observation, A is Ci-free for i6k. In addition, A is
Ci-free for i¿k, since |V (A)|¡k due to the choice of k. Hence A is a forest. Similar
arguments show us that A contains no graphs of form Hi. Thus, every connected
component of A has at most one vertex of degree 3 and hence A∈S, contradicting the
assumption. As a consequence, G′ belongs to X . The time needed to transform G into
G′ is obviously bounded by a polynomial in the size of G. Together with Lemma 1
and Proposition 1 this yields the conclusion.

Theorem 2. Let X be a class of graphs de=ned by a =nite set F of forbidden induced
subgraphs. If F∩T = ∅, then the ID-set problem is NP-hard in the class X.

Proof. The proof is similar to that of Theorem 1, so we restrict ourselves to a sketch.
We start with a (K1;3; K4; K4 − e)-free graph G with maximum degree 3 and apply
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Fig. 5. Graph %i .

transformation P to those edges of G that belong to no triangle. Obviously, such an
application preserves the initial properties of the graph. Applying the transformation
su3ciently many times we produce a graph G′ in which any induced cycle of length
more than 3 and any graph of form %i (see Fig. 5) is large enough, so that no induced
subgraph of G′ belongs to F .

Hence, the resulting graph G′ belongs to X , which means that the ID-set problem
is NP-hard in X .

3. Polynomially solvable cases

Theorems 1 and 2 provide two su3cient conditions for the ID-set problem to be NP-
hard in a "nitely de"ned class of graphs. A natural question is whether those conditions
are necessary as well. If the answer is a3rmative, the only way to prove it is to develop
polynomial time algorithms for graph classes that fail both conditions. This problem
seems to be much more di3cult. In this section, we review several general graph
techniques that might be useful in solving the problem and illustrate their application
to particular graph classes. Most approaches permit to solve the problem even in the
case of weighted graphs (weighted independent domination).

A simple idea to solve the problem is to generate all maximal ISs. For a graph G
with n vertices and m edges, this can be done in time O(nmN ), where N is the number
of maximal ISs in G [27]. In case that N is bounded by a polynomial in the size of
the graph, this idea leads to a polynomial algorithm to "nd an ID-set of minimum
weight. This is the case for mK2-free graphs with arbitrary "xed m, which has been
proven independently by several researchers [1,2,25].

Another important notion that provides polynomial time solutions to weighted in-
dependent domination in a large family of graph classes is the clique-width of a
graph. This notion was introduced in [8] and is de"ned as the minimum number of
labels needed to represent the graph by an algebraic expression over a set of cer-
tain graph operations. As proved in [9], many NP-hard problems become tractable
when restricted to graphs with bounded clique-width, provided that an algebraic ex-
pression representing the graph can be constructed in polynomial time. This is true
for problems expressible in a monadic second-order logic with quanti"cation over sub-
sets of vertices but not edges. Paper [9] lists several such problems, including mini-
mum dominating and maximum IS problems. As an immediate consequence, one may
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conclude that independent domination "ts the formalism. Among graphs of bounded
clique-width are trees, cographs (P4-free graphs), distance hereditary graphs [18], S1;2;3-
free bipartite graphs [21]. Moreover, for any graph in the listed classes, an alge-
braic expression with bounded number of labels that represents the graph can be
constructed in polynomial time. Examples of graphs with unbounded clique-width
are split graphs [22] and bipartite permutation graphs [6]. As a result, the clique-
width is not bounded for 2K2-free graphs (contain split graphs) and general bipar-
tite graphs. Moreover, it has been shown in [10] that the clique-width is bounded
for graphs in a certain class if and only if it is bounded for their complementary
graphs. Consequently, co-bipartite graphs are not of bounded clique-width, in
general.

3.1. Modular decomposition

The notion of clique-width was developed as a natural generalization of the concept
of modular decomposition [23]. The latter approach was applied repeatedly to solve the
maximum weight IS problem in special classes of graphs (see e.g. [3,12,15–17]). In
fact, this approach is helpful for the ID-set problem as well. Given a class of graphs,
modular decomposition reduces both problems to prime graphs in that class, de"ned
as follows. Let M be a subset of vertices in a graph G. We say that a vertex x �∈M
distinguishes M if x has both a neighbor and a non-neighbor in M . A module in the
graph is a proper subset of vertices in M indistinguishable to the vertices outside of
M . A module M is called trivial if |M |= 1. A graph whose every module is trivial is
called prime.

A remarkable property of maximal modules is that if G and co-G are both con-
nected, then maximal modules of G are disjoint and they can be found in poly-
nomial time (see e.g. [23]). This property permits to reduce both problems from
graph G to a graph G∗ obtained from G by contracting each maximal module to
a single vertex. We describe this reduction more formally in the recursive procedure
SET(G) below, where w(S) denotes the weight of set S, i.e. the sum of weights of its
vertices.
Procedure SET(G)
Input: a weighted graph G
Output: a maximal IS S in G with minimum (maximum) weight.

1. If |V (G)|= 1, set S =V (G) and go to 7.
2. If G is disconnected, partition it into connected components M1; : : : ; Mk .
3. If co-G is disconnected, partition G into co-components M1; : : : ; Mk .
4. If G and co-G are connected, partition G into maximal modules M1; : : : ; Mk .
5. Construct a weighted graph G∗ by contracting each Mj (j = 1; : : : ; k) to a single

vertex and assigning to that vertex weight w(SET(G[Mj])).
6. Find in G∗ a maximal IS S∗ with minimum (maximum) weight, and set S =⋃

j∈S∗ SET(G[Mj]).
7. Return S and STOP.

Procedure SET shows that weighted independent domination in a class of graphs
X is polynomially equivalent to the same problem on prime graphs in X . For certain
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classes of graphs, this leads to polynomial time algorithms. As an example, we consider
the class of (P5,co-A,co-domino)-free graphs, where a domino is the graph obtained
from a cycle C6 by connecting two vertices at distance 3. An A is the graph produced
from a domino by disconnecting a pair of 2-degree vertices.

Theorem 3. Weighted independent domination is polynomially solvable in the class
of (P5; co-A; co-domino)-free graphs.

Proof. It has been proven in [19] that any prime graph containing an induced 2K2

contains also either a P5 or co-A or co-domino as induced subgraphs. Therefore, any
prime (P5,co-A,co-domino)-free graph is 2K2-free. As mentioned above, for 2K2-free
graphs, an ID-set of minimum weight can be found in polynomial time with exhaustive
search of all maximal ISs. Hence the problem is polynomially solvable for (P5,co-A,co-
domino)-free graphs by means of modular decomposition.

Remark 1. Note that (P5,co-A,co-domino)-free graphs include both P4-free and 2K2-
free graphs and hence are not of bounded clique-width.

Our next theorem deals with two subclasses of bull-free graphs: (bull, P5)-free and
(bull, chair)-free graphs. Observe that independent domination is NP-hard in the class
of bull-free graphs (by Theorem 1) as well as in the class of chair-free graphs (by
Theorem 2).

Theorem 4. Weighted independent domination is polynomially solvable for (bull; P5)-
free and (bull, chair)-free graphs.

Proof. For both classes, we use the result of De Simone [12], who studied the class
of graphs in which every prime graph is either bipartite or co-diamond-free or an odd
hole (i.e. an induced cycle Ck with odd k¿5). Speci"cally, she has characterized this
class by a list of forbidden induced subgraphs. It is a trivial task to verify that every
forbidden graph in the list containing no bull as an induced subgraph contains either a
chair or a P5. Therefore, both (bull, chair)-free graphs and (bull, P5)-free graphs are
subclasses of the class studied by De Simone. As a consequence, every prime graph in
those classes is either bipartite or co-diamond-free or an odd hole. For co-diamond-free
graphs the problem is polynomially solvable since it is a subclass of 3K2-free graphs.
Solvability of the problem for cycles follows from the fact that these are graphs of
bounded clique-width [10]. The same is true for bipartite P5-free and chair-free graphs
since these are subclasses of S1;2;3-free bipartite graphs, whose clique-width is at most
"ve [21].

Remark 2. Both (bull, P5)-free and (bull, chair)-free graphs extend cographs but
neither of these classes is of bounded clique-width. Indeed, all three forbidden graphs
contain the complement to a triangle and hence both classes include all co-bipartite
graphs.
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Fig. 6. Graphs Sun3 and +(u1; u2; u3; u4; u5; u6; u7).

3.2. Neighborhood reduction

Let G be a graph with vertices v1; v2; : : : ; vn, and let Gj denote the induced subgraph
of G obtained by deleting the closed neighborhood of vertex vj.

Lemma 4. Polynomial solvability of the weighted ID-set problem for graphs G1;
G2; : : : ; Gn implies polynomial solvability of the problem for G.

Proof. Given a vertex v in a graph G, any maximal under inclusion IS in G contains
at least one vertex in N [v]. For a vertex u∈N [v], denote by Su an ID-set of minimum
weight in the subgraph G − N [u]. Then a set of form Su∪{u} with minimum weight
gives a solution to the problem in the graph G.

We now apply the preceding lemma to prove polynomial solvability of the problem
in the class of (S2;2;2; Sun3)-free bipartite graphs (see Fig. 6 for de"nition of Sun3).
Note that the problem is NP-hard in the class of Sun3-free bipartite graphs due to
Theorem 1.

We show polynomial time solvability of the problem in the class of (S2;2;2; Sun3)-
free bipartite graphs by reducing it to the class of bipartite permutation graphs, i.e.
the intersection of the class of bipartite graphs with that of permutation graphs. To
derive the result we use the characterization of bipartite permutation graphs in terms
of forbidden induced subgraphs: these are precisely the bipartite graphs containing no
S2;2;2; Sun3; + or Cn with n¿5 as induced subgraphs (the forbidden induced subgraph
characterization of permutation graphs can be found in [13]).

Theorem 5. If G is a connected (S2;2;2; Sun3)-free bipartite graph, then for any vertex
v of G, subgraph G − N [v] is a bipartite permutation graph.

Proof. According to the induced subgraph characterization of bipartite permutation
graphs, we have to show only that G−N [v] contains no + and no cycle Cn with n¿5.
Assume the contrary and let "rst G−N [v] contain a Cn with vertices u1; u2; : : : ; un (n ¿
5). We consider a shortest path (uj = x0; x1; x2; : : : ; xk = v) of length k¿2 connecting the
cycle to vertex v. It is easy to see that x1 is not adjacent to uj+2 else G contains a Sun3
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induced by vertices uj−1; uj; uj+1; uj+2; uj+3; x1; x2. Symmetrically, x1 is not adjacent to
uj−2. But then an induced S2;2;2 arises.

Now let G − N [v] contain a + induced by vertices u1; : : : ; u7 as shown in Fig. 6.
Again, consider a shortest path (uj = x0; x1; x2; : : : ; xk = v) of length k¿2 connecting the
+ to vertex v. Up to the symmetry, we have to analyze 5 cases: j = 1; 2; 3; 4; 5. In the
analysis, we denote U = {x1; x2; u1; : : : ; u7}.
Case j = 1: If x1 is adjacent to u3, then G contains a Sun3 induced either by U −

{u5; u6} (if (x1; u7) �∈E) or by U − {u1; u5} (if (x1; u7)∈E). By symmetry, x1 is not
adjacent to u7. But then U − {x2; u5} induces a S2;2;2.
Case j = 2: If x1 is adjacent to u4, then G contains a Sun3 induced either by U −

{u3; u7} (if (x1; u6) �∈E) or by U − {u1; u2} (if (x1; u6)∈E). By symmetry, x1 is not
adjacent to u6. But then U − {u1; u5} induces a S2;2;2.
Case j = 3: If x1 is not adjacent to u1, then G contains a Sun3 induced either by

U−{x2; u7} (if (x1; u5) �∈E) or by U−{u4; u7} (if (x1; u5)∈E). Therefore, x1 is adjacent
to u1 and consequently to u7 else U − {u5; u6} induces a Sun3. But now a Sun3 is
induced by U − {u1; u5}.
Case j = 4: If x1 is adjacent to u6, then G contains a Sun3 induced by U −{u1; u2}.

If x1 is not adjacent to u6, then G contains a Sun3 induced either by U − {x2; u7} (if
(x1; u2) �∈E) or by U − {u3; u7} (if (x1; u2)∈E).
Case j = 5: If x1 has no neighbors in {u3; u7}, then a S2;2;2 arises induced by vertices

U−{u1; u2}. If x1 is adjacent to, say, u3, then x1 is not adjacent to u7 else G contains a
Sun3 induced by U−{u1; u5}. But now G contains a Sun3 induced either by U−{u4; u7}
(if (x1; u1) �∈E) or by U − {u3; u6} (if (x1; u1)∈E).

Combining Lemma 4 and Theorem 5 with a polynomial time solution to the problem
in bipartite permutation graphs (see, e.g., [5]), we derive the conclusion.

Corollary 1. Weighted independent domination is polynomially solvable in the class
of (S2;2;2; Sun3)-free bipartite graphs.

Remark 3. Note that the clique-width of (S2;2;2; Sun3)-free bipartite graphs is un-
bounded since they contain all bipartite permutation graphs.

3.3. Decreasing graphs

Now let us consider the class of claw-free graphs. By Theorem 2, the ID-set problem
is NP-hard in this class. In contrast, the maximum IS problem has a polynomial time
solution for claw-free graphs [24,26]. The idea to solve the latter problem is based
on "nding augmenting graphs. This suggests an approach that can hopefully lead to
e3cient algorithms for the ID-set problem in subclasses of claw-free graphs. The idea
is as follows.

Let G be a graph and S an ID-set in G. We call the vertices in S white and the
remaining vertices of G black.

Assume G contains an induced bipartite subgraph H = (W;B; E) with set of white
vertices W and set of black vertices B satisfying the following conditions: |B|¡|W |,



282 R. Boliac, V. Lozin / Theoretical Computer Science 301 (2003) 271–284

and S ′ = (S−W )∪B is an ID-set in G. Since the size of S ′ is strictly smaller than that
of S, we call the subgraph H decreasing for S, and say that S admits the decreasing
graph H .

Conversely, assume the cardinality of S is not minimum and let S ′ denote a smaller
ID-set in G. Then obviously the subgraph of G induced by set (S − S ′)∪(S ′ − S) is
decreasing for S. We thus have proved the following theorem.

Theorem 6. An ID-set S in a graph G is minimum if and only if S admits no de-
creasing graph.

For any induced bipartite subgraph H = (W;B; E) with set of white vertices W and
set of black vertices B, the value of |W | − |B| will be called the decrement of H . We
call H = (W;B; E) even if |W |= |B|, or odd otherwise. Clearly, every decreasing graph
is odd else its decrement is zero.

We now turn our attention to some properties of claw-free decreasing graphs. By
de"nition, any decreasing graph is bipartite. Obviously any connected component in a
claw-free bipartite graph is either a cycle or a path. We can say more when restricting
ourselves to decreasing graphs that are minimal under inclusion.

Lemma 5. Let S be an ID-set and H = (W;B; E), a disconnected claw-free decreas-
ing graph for S which is minimal under inclusion. Denote by H1 = (W1; B1; E1) any
proper collection of connected components of H with positive decrement and let
H2 = (W2; B2; E2) be the rest of H. Then there is a black vertex outside H that
has exactly one neighbor in W1 and exactly one neighbor in B2.

Proof. Exchanging white vertices of H1 with its black vertices produces an independent
set S ′ of smaller size than S. Obviously, S ′ is not dominating else H1 would be a
decreasing graph for S contradicting minimality of H . Hence, there must be a black
vertex v non-adjacent to any vertex in S ′⊇B1∪W2. Since S is a dominating set, vertex
v has a neighbor in W1. Furthermore, v has a neighbor in B2, otherwise (S −W )∪B is
not a dominating set. Any other neighbor of v in W1 or B2 would lead to an induced
claw with center v.

Lemma 6. In the class of claw-free graphs every minimal decreasing graph H =
(W;B; E) is cycle-free.

Proof. Assume H contains a connected component H2 being a cycle. Then H1 =H−H2

has a positive decrement and hence meets the condition of Lemma 5. Consequently,
there is a vertex that has exactly one neighbor in H2, and clearly this neighbor is the
center of a claw.

The general properties of claw-free decreasing graphs described in the two proceeding
lemmas are not su3cient to solve the problem. However, they can be helpful in solving
the problem in certain subclasses of claw-free graphs. An example of such a class
follows below.
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Lemma 7. In the class of (P6; claw)-free graphs any minimal decreasing graph is
connected.

Proof. Let G be a (P6,claw)-free graph, S a maximal independent set in G, and
H = (W;B; E) a minimal decreasing graph for S. At least one connected component of
H is a path Pk with positive decrement, i.e. k¿2. Assume by contradiction that H
is disconnected and let H2 =H − Pk . By Lemma 5, there exists a vertex v that has
a neighbor u in Pk and a neighbor w in H2. Obviously, u is an endpoint of the path
Pk else it is the center of a claw. But now vertices of Pk together with v, w and a
neighbor of w in H2 induce a path with at least 6 vertices, a contradiction.

We now summarize all the above arguments in the following theorem.

Theorem 7. Given a (P6; claw)-free graph G with n vertices, one can =nd an ID-set
of minimum cardinality in G in time O(n3).

Proof. Let S be an ID-set in G. If S admits a decreasing graph, then minimal of such
a graph is either a P3 or P5 due to the lemma above. Determining whether S admits
a decreasing P3 or P5 can be trivially implemented in time O(n2). Since the number
of decreasing steps is at most n, the total time to solve the problem is O(n3).

Remark 4. Both a P6 and a claw contain the complement to a triangle as an induced
subgraph. Therefore, the class of (P6,claw)-free graphs includes all co-bipartite graphs,
which means that the clique-width of (P6,claw)- free graphs is unbounded.

The result for (P6,claw)-free graphs is sharp in the following sense. In the class of
(Pk ,claw)-free graphs with k¿6, there are minimal decreasing graphs with arbitrary
many vertices. To show this, consider a graph G with 3m vertices a1; : : : ; am; b1; : : : ; bm;
c1; : : : ; cm. Assume vertices a1; : : : ; am form a clique in G, every vertex of form cj is
of degree 1, and every vertex of form bj has exactly two neighbors in G, namely aj

and cj. It is easy to see that G is a (Pk ,claw)-free graph for any k¿6. Consider an
independent set S1 = {a1; c1; : : : ; cm} in G. It is maximal but not minimum, since set
S2 = {b1; : : : ; bm} is a maximal independent set of smaller size. It is not hard to verify
that the subgraph of G induced by vertices S1∪S2 is a minimal decreasing graph for
set S1, which is not connected.
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