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Abstract Fuzzy number was introduced by Dubois and Prade [10] to handle im-
precise numerical quantities. Later it was generalized to intuitionistic fuzzy number
by Burillo et al. [5]. Ranking intuitionistic fuzzy numbers plays an important role
in decision making and information systems. All over the world many researchers
have proposed different score functions for ranking intuitionistic fuzzy numbers but
unfortunately every method produces some anti-intuitive results in certain places. A
complete ranking on the entire class of fuzzy numbers have been achieved by W.
Wang, Z. Wang [22] using upper dense sequence defined in (0, 1]. But a complete
ranking on the set of all intuitionistic fuzzy number remains an open problem till to-
day. Complete ranking on the class of intuitionistic fuzzy interval number was done
by Geetha et al. [13]. In this paper, total ordering on the entire class of intuitionistic
fuzzy number (IFN) using upper lower dense sequence is proposed and compared
with existing techniques using illustrative examples. This new total ordering on intu-
itionistic fuzzy numbers (IFNs) generalizes the total ordering defined in W. Wang, Z.
Wang [22] for fuzzy numbers (FNs).
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1. Introduction

The concept of fuzzy sets was introduced by Zadeh [27]. Atanassov generalizes this
idea to intuitionistic fuzzy sets (IFSs) [1], and later there has been much progress
in the study of IFSs. As a special case of fuzzy sets, fuzzy number was introduced
by Dubois and Prade [10] to handle imprecise numerical quantities. The ranking of
intuitionistic fuzzy numbers plays an important role in real life problems involving
uncertainties, imprecise and incomplete information. Since intuitionistic fuzzy sets
are characterized by membership, non-membership functions, it is a powerful alter-
native tool to characterize uncertainty, imprecision and vagueness in many fields such
as decision making, logic programming, machine learning, information systems etc.
The concept of real valued intutionistic fuzzy numbers was introduced by Xu [24]
and it has been generalized to interval valued intuitionistic fuzzy number by Xu and
Chen [25]. Total ordering on the class of real valued IFNs is given by Xu [26]. Later
in 2009, Wang et al. [23] gave a complete ranking procedure on the class of intu-
itionistic fuzzy interval numbers (IFINs). Ranking fuzzy numbers and intuitionistic
fuzzy numbers have started long back, but till date there is no common method is
available to rank any two given IFNs. The difficulty of defining total ordering for all
intuitionistic fuzzy numbers is that there is no effective tool to identify an arbitrarily
given intuitionistic fuzzy number by only finitely many real-valued parameters. In
this work by establishing a new decomposition theorem for IFSs, any IFN can be
identified by countable number of parameters.

W. Wang and Z. Wang [22] introduced the concept of upper dense sequence to
identify any two given fuzzy numbers by countable number of real valued parame-
ters. In the same way in this paper, a new concept of upper lower dense sequence in
[0, 11X [0, 1] is introduced. Actually there are many upper lower dense sequences are
available in [0, 1] X [0, 1]. A new decomposition theorem for intuitionistic fuzzy sets
is established by the use of any one of the upper lower dense sequences defined in
[0, 1] X [0, 1]. Then using a chosen upper lower dense sequence as one of the neces-
sary reference systems, infinitely many total orderings on the set of all IFNs can be
well defined. This paper is divided into seven sections. After introduction, some ba-
sic definitions are given in Section 2. The concept of upper lower dense sequence in
[0, 1] x [0, 1] is introduced and a new decomposition theorem for intuitionistic fuzzy
sets is established in Section 3. Total ordering on the class of intuitionistic fuzzy
number using upper lower dense sequence is achieved in Section 4. Comparison be-
tween our proposed method with other existing ones are explained in Section 5 with
illustrative examples. Application of our proposed method in solving multi-criteria
decision making problem is represented in Section 6. Finally comes the conclusions
in Section 7.

2. Preliminaries

Here we give a brief review of some preliminaries.
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Definition 2.1 [24] Let X be a nonempty set. An intuitionistic fuzzy set (IFS) A in
X is defined by A = (ua,va), where us : X — [0,1] and v4 : X — [0, 1] with the
conditions 0 < pa(x) + va(x) < 1,VYx € X. The numbers ps(x),va(x) € [0, 1] denote
the degree of membership and non-membership of x to lie in A respectively. For each
intuitionistic fuzzy subset A in X, ma(x) = 1 — ua(x) —va(x) is called hesitancy degree
of x to lie in A.

Definition 2.2 [20] Let X be a nonempty universal set and A be a intuitionistic fuzzy
set of X with membership function s and with a nonmembership function va4. The
(o, B)-cut and strong (e, B)-cut of A are denoted by ©P A and P+ A respectively,
thatis, @PA = {x | ua(x) = @, and vo(x) < B, x € X}, equivalently > PA = “ANPA
and @ P*A = (x| ua(x) > @, and va(x) < B, x € X}, equivalently @ P*A = “*A N
B+A for all a, B € [0,1]. The Level set of A is defined by Ly = {(a, B) | ua(x) =
a, and va(x) =, x € X} forall a, B €0, 1].

One way of representing a fuzzy set is by special fuzzy sets on a-cuts and another
way of representing a fuzzy set is by special fuzzy sets on strong a-cuts. As a gener-
alization of fuzzy sets, any intuitionistic fuzzy set can also be represented by the use
of special intuitionistic fuzzy sets on («, f8) cuts and special intuitionistic fuzzy sets
on strong (a,p) cuts. The special intuitionistic fuzzy sets o, pA = A N gA, and
(@ p+A = oA N p A are defined as follows,

Ao = { (@, B), x € pp and x € Pyy,
(@ pAX) =

(0, 1), otherwise,

(@, B), x € uyand x € Py,
(a, ﬁ)+A(x) = . A

(0, 1), otherwise.
Let I C [0, 1] X [0, 1] be the set which is used to give values for «, 8 in (@, 8)-cut, and
it is defined as I = {(o,B) € [0, 1] X [0,1] | +B < 1}.
Definition 2.3 [24] An intuitionistic fuzzy number A = (ua,va) in the set of real
numbers R, is defined as

fa(x), ifa<x<b,

1’ lfbl <x< bz,
Hax) = i

gax), ifbpy<x<ec,

0, otherwise,

and

ha(x), ife<x<fi,

0, iffi <x<f,
va(x) = o

ka(x), iffp<x<g,

1, otherwise,

where 0 < us(x)+va(x) < land a,by, by, c,e, fi, fr,g € Rsuchthate < a, f < by <
by < fr,c < g, and four functions fy,ga,ha,ka : R — [0,1] are called the legs of
membership function us and nonmembership function va. The functions fy and ks are
nondecreasing continuous functions and the functions hy and ga are nonincreasing
continuous functions.

An intuitionistic fuzzy number {(a, b, by, ¢), (e, f1, f>, &)} With (e, f1, >, &) < (a, by,
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by, ¢)° is shown in Fig.1.

(0.1 (e, 1) (a.) (&) (521D (e D (g

0.0  (a.0) (£.00(5,.0) (52.03(_f.0) (.0}

Fig. 1 Intuitionistic fuzzy number

Definition 2.4 A trapezoidal intuitionistic fuzzy number A with parameters e <
a,fi < by £ by < fo,c < g isdenoted as A = {(a,by,bs,¢), (e, f1, f>,8)} in the
set of real numbers R is an intuitionistic fuzzy number whose membership function

and non-membership function are given as

X—ap .

—, ifaj <x<ap,

a) —ap

1, ifa, < x < as,
Ha(x) = as — X .

—, ifaz3<x<ay,

as —az

0, otherwise,

X—C .

—, ifas<x=<c,

cp—C

, ifca <x <,
VA(X) = xX—c3 .

—, ifcz<x<ay,

Cq4—C3

1, otherwise,

If a; = a3 (and ¢, = ¢3) in a trapezoidal intuitionistic fuzzy number A, we have the
triangular intuitionistic fuzzy numbers as special case of the trapezoidal intuitionistic
fuzzy numbers. A trapezoidal intuitionistic fuzzy number A = {(a, by, b2, ¢), (e, fi, f>,
g)} with fi < by, fo = by, e < a,and g > c is shown in Fig. 2.

We note that the condition (e, fi, f>,8) < (a, by, b, c)° of the trapezoidal intu-
itionistic fuzzy number A = {(a, b, by, ¢), (e, f1, f2, g)} whose membership and non-
membership fuzzy numbers of A are (a, by, by, c) and (e, fi, f>,g) implies f; < by,
f> = by, e <a,and g > c on the legs of trapezoidal intuitionistic fuzzy number.

Definition 2.5 [25] Let D|0, 1] be the set of all closed subintervals of the interval
[0, 1]. An interval valued intuitionistic fuzzy set on a set X # ¢ is an expression given
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Fig. 2 Trapezoidal intuitionistic fuzzy number

by A = {{x, ua(x), va(x)) | x € X}, where uy : X — D[0, 1],v4 : X — DI[0, 1] with the
condition 0 < sup, pa(x) + sup, va(x) < L.

The intervals p4(x) and v4(x) denote, respectively, the degree of belongingness
and non-belongingness of the element x to the set A. Thus for each x € X, p4(x) and
va(x) are closed intervals whose lower and upper end points are, respectively, denoted
by p1a, (%), pa, (x) and va, (x), pa, (x).

We denote A = {{x, [1a, (%), tta, (0], [Va, (X), va, (0)]) | x € X} where 0 < pia(x) +
va(x) < 1.

For each element x € X, we can compute the unknown degree (hesitance degree)
of belongingness 4 (x) to A as ma(x) = 1 — pa(x) = va(x) = [1 — pa, (x) = va, (x), 1 -
Ha, (x) = va, (x)]. We denote the set of all IVIFSs in X by IVIFS(X). An intuitionistic
fuzzy interval number (IFIN) is denoted by A = ([a, b], [c, d]) for convenience.

Definition 2.6 [22] Orderings: Let X be a non-empty set. Any subset of the cartesian
product X X X is called a relation, denoted by R, on X. We write aRb iff (a,b) € R.
Relation R is called a partial ordering on X if it is reflexive, antisymmetric, and
transitive. A Partial ordering R on X is called Total ordering if either aRb or bRa
for any a,b € X. Two total orderings R\ and R, are different iff there exist a,b € X
with a # b such that aR,b but bRya. For any given total ordered infinite set, there
are infinitely many different ways to redefine a new total ordering on it. Relation R is
called an equivalence relation if it is reflexive, symmetric and transitive.

3. A Complete Ranking of Intuitionistic Fuzzy Numbers

The difficulty of defining total ordering on the set of IFNs is that there is no effec-
tive tool to identify any given IFN by finitely many real valued parameters. In this
section, the total ordering on the class of intuitionistic fuzzy numbers is achieved by
establishing a new decomposition theorem for IFSs. In this section first we will see
total ordering defined on several common proper subsets of IFNs, before defining a
complete ordering on the set of IFNs. We may write any IFIN A as A = ([a, b], [¢, d]).
Clearly, we know that the set of IFIN is a proper subset of IFNs.
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A complete ranking of an IFIN using membership, nonmembership, vague and
precise score functions has been done by Geetha et al. [13]. In this section, the
ranking methodology of Geetha et al. [13] is reviewed briefly.

Definition 3.1 [17] For any IFIN A = ([a, b], [c,d]), the membership score function

b-c-d bd
isdqﬁnedasL(A):a+ ¢ 2+ac+ .

Definition 3.2 [13] For any IFIN A = ([a,b],[c,d]), the non-membership score

—a—b+c+d+ac+bd
function is defined as LG(A) = a-bre +2 tactbd

Definition 3.3 [13] For any IFIN A = ([a,b], [c,d]), the vague score function is

defined as P(A) = a—b—c+2d+ac+bd

Definition 3.4 [13] For any IFIN A = ([a, D], [c,d)), the imprecise score function is

“d+b—c+d—ac+bd
defined as IP(A) = —*F ”2 act

Let A = ([a1, D11, [c1,d1]), B = ([a2, b2], [c2, d>]) be any two IFINs. The complete
ranking < on the class of IFIN may be defined to one of the following criterion:

(1) L(A) < L(B), or
(2) L(A) = L(B) but — LG(A) < —LG(B), or

(3) L(A) = L(B) and LG(A) = LG(B) but P(A) < P(B), or

(4) L(A) = L(B), LG(A) = LG(B) and P(A) = P(B) but — IP(A) < —IP(B).

The above way of defining a total ordering is often referred to as lexicographic in
literature [19].

Note 3.1 LetA = ([a;, b1],[1-by, 1—a;]) and B = ([az, by],[1-b2, 1 —a;]) be any two

3(ar + b
TFIN. From Definitions 3.1 and 3.2 it is very clear that, L(A) = % —(+ayby),
+b 3(ar + b
LGA) = (1 - aiby) - w and L(B) = % — (1 + asby), LG(B) =

(1 —axby) — M. Suppose L(A) = L(B)- - - (I;) and LG(A) = LG(B)- - - (1), then

3% (11) + (12) gives albl = axby- - (13) and (11)-(12) giVCS ay+by=a+by--- (14)
Hence from (/3) and (I4) we get a; = a; and by = b;.

Thatisif A = ([a1, b1], [1-by, 1—a;]) and B = ([ay, b2 ], [1-b,, 1—a3]), then (1) and
(2) (L and LG) are enough to cover any two arbitrary IFINs using new decomposition
theorem.

3.1. Upper Lower Dense Sequence

In this section, the concept of upper lower dense sequence on / is introduced in order
to establish new decomposition theorem for IFSs. This upper lower dense sequence
on [ gives values for @, 8 in the (a, 8)-cut of IFNs. The already defined upper dense
sequence [22] on (0, 1] is sufficient to give value for @ in the e-cut of an FN. But
for IFNs, two sequences are needed to give value for @ & g in the («,5)-cut where
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a € (0,1] & B € [0,1). The upper dense sequence defined in [22] is sufficient to
give value for « in the (e, 8)-cut of IFN but for giving values to 3 it is needed for us
to define a new lower dense sequence in the interval [0, 1), since 8 € [0, 1). In this
section, the new lower dense sequence in the interval [0, 1) is introduced and some
properties of this new lower dense sequence is studied.

Let us recall the concept of upper dense sequence before defining a lower dense
sequence in [0, 1).

Definition 3.5 [22] Let D be a set of real numbers in (0, 1]. A set D is dense in (0, 1]
if for every point [0, 1) and any € > 0, there exists 6 € D such that |x — 0| < €.

Definition 3.6 [22] Let D be a set of real numbers in (0, 1]. A set D is upper dense in
(0, 11 if, for every point x € (0, 1] and € > O, there exists 6 € D such that § € [x, x+¢€).
A set D is lower dense in (0, 1] if, for every point x € (0, 1] and any € > 0, there exists
8 € D such that 6 € (x — €, x].

Theorem 3.1 [22] If D is dense in (0, 1] and 1 € D, then it is upper dense in (0, 1].
Theorem 3.2 [22] If D is dense in (0, 1], then it is lower dense in (0, 1].

Definition 3.7 Let D be a set of real numbers in [0, 1). A set D C [0, 1) is said to be
upper dense in [0, 1) if, for every point x € [0, 1) and € > 0, there exists § € D such
that § € [x,x+¢€). Aset D C [0, 1) is said to be lower dense in [0, 1) if, for every point
x € [0, 1) and any € > 0, there exists 6 € D such that § € (x — €, x].

Definition 3.8 Ler D be a set of real numbers in [0, 1). A set D is dense in [0, 1) if,
for every point [0, 1) and any € > 0O, there exists 6 € D such that |x — 6| < €.

Theorem 3.3 If D is dense in [0, 1) and O € D, then it is lower dense in [0, 1).

Proof The proof of this theorem is similar to the proof of Theorem 1 in [22].

Theorem 3.4 If D is dense in [0, 1), then it is upper dense in [0, 1).
Proof The proof of this theorem is similar to the proof of Theorem 2 in [22].

From Theorems 3.1 and 3.2 it is noted that, any upper dense sequence in (0, 1] is
nothing but a dense sequence with real number 1 and is also a lower dense sequence.
Similarly, from Theorems 3.3 and 3.4 it is noted that, any lower dense sequence in
[0, 1) is nothing but a dense sequence with real number O and is also an upper dense
sequence.

Definition 3.9 Let D, = {a; |i=1,2,---} be the upper dense sequence in (0, 1] and
letDg = {B;i|i=1,2,---} be the lower dense sequence in [0, 1). Then the upper lower
dense sequence is of the form: D) = {(@;, ) | @; + i < 1, wherei=1,2,---}C I

Examples for upper dense sequence in (0, 1] and lower dense sequence in [0, 1) are
given as follows.

Example 3.1 Let D, = {d,, | i = 1,2,---} be the set of all rational numbers in (0, 1],

1 1 2 1 3 1 2
where dar. = ladarz = zidﬂ/] = g’dm = 5»‘105 = Z!dﬂ!(, = Zs da7 = gvdag = §7d(lq =
3 4

gvd(rz = gv
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Clearly, D, is an upper dense sequence in (0, 1]. If we allow a number to have
multiple occurrences in the sequence, the general members in upper dense sequence

k-1
S¢ = {8, |i=1,2,---} can be expressed by s, = (é - —),i =1,2,---, where

|t o

That is, Say = L, Say, = ia Sa; = 1, Say = §’ Sas = 5’ Sag = I, a; = Z’ Sag =
2 3 . .
T Say = 1 In sequence S ,, for instance, s,, is the same real number as s, .
Example 3.2 Let Dg = {dg, | i = 1,2, -} be the set of all rational numbers in [0, 1),

4 2 2 2 5 1
:—’d = = —,d :—,d :_,d :_ad :_’dk =
9 B3 5 7 Bs 3 B 9 B 7 Bs 2 Bo

(k2 + k — 2i 11
- and dy, = (%), i=1,2- and k = {,/2”2—5]. Therefore

43222511 . .
Dg = 40, 573973 [ Now sequence D is lower dense sequence in
[0, 1).

Example 3.3 In Examples 3.1 and 3.2, let D) = {(d(,,,d/j,) | do, € Do&edp, € Dﬁ} =
{(1,0),(1/2,4/9),(1/3,3/5),(2/3,2/7),(1/4,2/3),(3/4,2/9),(1/5,5/7),(2/5, 1/2),
-+ }. Clearly, D(, g is a upper lower dense sequence with d,, + dp, < 1.

where dg, = 0, dp, ,dg, =

(ST

3.2. Decomposition Theorem for Intuitionistic Fuzzy Number Using Upper Lower
Dense Sequence

In this subsection, the total ordering on the class of intuitionistics fuzzy numbers is
achieved by establishing a new decomposition theorem for IFSs. Before establish-
ing a new decomposition theorem, we recall existing decomposition theorems for
intuitionistic fuzzy sets. The following decomposition theorems will show the repre-
sentation of an arbitrary IFS in terms of the special IFSs (4 ,A.

Theorem 3.5 (first decomposition theorem of IFS [20]) Let X be a non-empty set.
For an intuitionistic fuzzy subset A in X, A = Uy, peo,1] (@ pA-

Theorem 3.6 (second decomposition theorem of IFS [20]) Let X be a non-empty set.
For an intuitionistic fuzzy subset A in X, A = Uy, pef0,1] (e, p+A-

Theorem 3.7 (third decomposition theorem of IFS [20]) Let X be a non-empty set.
For an intuitionistic fuzzy subset A in X, A = Uy, g e 1, (@pA, where Ly is a Level set
of A.

Regarding IFN as special intuitionistic fuzzy subsets of R, these decomposition
theorems are also available for IFNs. Unfortunately, all the above three decomposi-
tion theorems are failed to identify an arbitrary IFN by countable number of real-
valued parameters. Therefore, establishing a new decomposition theorem, which
identifies any IFN by only countably many real valued parameters is essential.

Theorem 3.8 (fourth decomposition theorem of IFS) Let A be an intuitionistic
fuzzy subset of X, and let S be a given upper lower dense sequence in I. Then
A = U pes @ pA, where o pA = (a, B)*PA.
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Proof Let A be an intuitionistic fuzzy subset of X, and S be a given upper lower
dense sequence in /.

Claim: A = U(a, PES (. ﬁ)A.

Since S C I, we have Uy, gies (@ A S Ute, pret (@. pA = A, 1.€., SUP (a, )ef0.11x[0.1]
Hia, pa(X) Z8UD (@, pres M, pa(x) and infig, gief0,11x(0.11 Vi, pa(¥) < Inf @, pres V., pa(x)
for every x € X which implies that,

A2 U@ pes @ pA- 3.1

Now we have to show that ua(x) < sup (o, ges K, a(x) and va(x) > inf(y, pies v, 54
(x) for every x € X.

Let x be an arbitrary element in X and let p4(x) = a and v4(x) = b. By second
decomposition theorem, we have for each x € X,
(a(x), va(x)) = (SUP (o, prer M, pea(X), Infia, prer v, 5,4 (X))
= (SUP (0. pef0.ayx10.11c] Ko, oA Inf (@, p)efo.11xb. 111 Vo, 5yt (X))-
For each a € [0,a) and B € (b, 1], since S is upper lower dense in I, we may find
(Kj, K3) € S such that K; > @, and K, < 3, which implies that
(ﬂm‘ BHA(X)’ V. /WA(X)) = ((1’, ﬁ) = (/J(n. /3)A(x)a Vi, 5)A(x))-
Since g1, ,a(x) < H,. K2)+A(x)’ and v, ,a(x) > Yy, WA(X), we get
W, a0,V pa (X)) < W, oA Vg, g4 (X))
= (K1, K2) = W, ka0, Vg, ,a (),
which implies that
He, ﬁ)A(x) < Hg,, KZ)A(X) < Sup (k. kyes M, KZ)A(X)
and
Vi paA(0) 2 Vi 0 a(X) 2 Inf (k,, kr)es Vg, g,a(0)-
Since Sup (k,, ky)es Mg, xpa(*) is an upper bound for p, , 4(x) and Infik,, k,)es
Vi, kpa(X) is an lower bound for v, , 4(x), we have
SUp (@, pret K, pa(X) < SUP (k,, Kr)es Hig,, xya(X)
and
inf (o, prer Y, pa(®) 2 1Inf (k. Kyes Vi, 1a(X).
Therefore
1A (X) < SUP (4, pes My, pa(X) and v4(x) 2 inf (o, pies v, 5a(x) Yx € X. (3.2)
The proof is now concluded from (3.1) and (3.2).

4. Total Ordering on the Set of All Intuitionistic Fuzzy Numbers

The fourth decomposition theorem established in Section 3 identifies an arbitrary
intuitionistic fuzzy number by countably many real-valued parameters. It provides
us with a powerful tool for defining total order in the class of IFN by using extended
lexicography.

Note4.1 LetS = {(a;,B:) |i=1,2,---} € [0, 1] be an upper lower dense sequence for
any given intuitionistic fuzzy number A. Since we know that the (o, 8)-cut of an IFN A
ateacha;,B;,i=1,2,---,is aclosed interval which is obtained by taking intersection
between the a-cut of a membership function of A and the S-cut of a non-membership

3 i+ bi
function of A and it is denoted by [a;, b;]. Let Cpy = % — (1 + a;by),
—(a; + b;
Cy = M + (1 — a;b;) where i = 1,2,---. By fourth decomposition theorem

2
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these countably many parameters {C; | j = 1,2, -} identify the intuitionistic fuzzy
number. Using these parameters, we define a relation on the set of all intuitionistic
fuzzy number as follows.

Definition 4.1 Let A and B be any two IFNs. For any given upper lower dense
sequence S = {(«;, ) | i = 1,2,---} in I, we use Cj(A) and C;(B) to denote above
mentioned C's for A and B respectively. We say that A = B iff their («,[)-cuts at
each a;,B; are equal to each other, that is, (@ifi) A =(aifi) Bforalli=1,2,--- and
we say that A < B iff there exists a positive integer j such that C;(A) < C;(B) and
Ci(A) = Ci(B) for all positive integers i < j. We say that A < Biff A< Bor A = B.

Theorem 4.1 Relation < is a total ordering on the set of all intuitionistic fuzzy num-
ber.

Proof We claim that < is total ordering on the set of all intuitionistic fuzzy num-
bers. To prove < is total ordering we need to show the following (a) < is a partial
ordering on the set of intuitionistic fuzzy numbers, (b) Any two elements in the set of
intuitionistic fuzzy numbers are comparable.

(a) To show < is a partial ordering on the set of intuitionistic fuzzy numbers: We
need to prove

(i) < is reflexive: Which is obvious.

(ii) < is antisymmetric:

IfA<Band B<A,thenA = B.

Suppose A # B, then from the hypothesis A < B and B < A. From Definition 4.1,
we can find j; such that C; (A) < C;,(B) and C;(A) = C;(B) for all positive integers
J < Jji. Similarly, we are able to find j, such that C},(A) < C},(B) and C;(A) = C;(B)
for all positive integers j < j,. Then j;&j, must be the same, let it to be jj. But
Cj,(A) < Cj,(B), and C},(B) < Cj,(A) this contradicts our hypothesis. Therefore our
assumption A # B is wrong. Hence A = B.

(iii) Now we prove < is transitive: If A < Band B < C,then A < C.

Let A, B, C be three IFNs. Let us assume A < Band B < C. Therefore from A < B,
we can find a positive integer k; such that Cy, (A) < Cy, (B) and Cy(A) = Cy(B) for all
positive integer kK < k;. Similarly from B < C, we can find a positive integer k» such
that Cy,(B) < Ci,(C) and Ci(B) = Ci(C) for all positive integer k < k. Now taking
Jjo = min(ky, kz), we have Cy,(A) < Cy,(C) and Cr(A) = Ci(C) for all positive integer
k < ko, i.e., A < C. Hence < is transitive.

Therefore from (i), (ii), and (iii), we proved the relation < is partial ordering on
the set of all IFNs.

(b) Any two elements in the set of intuitionistic fuzzy numbers are comparable.
For any two IFNs A and B, they are either A = B, or A # B. In the latter case, there
are some integers j such that C;(A) # C;(B). Let J = {j | C;(A) # C;(B)}. Then J
is lower bounded by 0 and therefore, according to the well ordering property, J has
unique smallest element, denoted by jo. Thus we have C;(A) = C;(B) for all positive
integers j < jo, and either C,(A) < Cj,(B) or Cj,(A) > C;,(B), that is, either A < B
or B < A in this case. So, for these two IFNs, either A < B or B < A. This means
that partial ordering < is a total ordering on the set of all intuitionistic fuzzy numbers.
Hence the proof.
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Similar to the case of total orderings on the real line (—oo, +o0), total ordering on
the class of IFNs shown in Section 3, infinitely many different total orderings on the
set of IFNs can be defined. Even using a given upper lower dense sequence in I,

there are still infinitely many different ways to determine a total ordering on the set
of IFNs. A notable fact is that each of them is consistent with the natural ordering on
the set of all real numbers. This can be regarded as a fundamental requirement for
any practice of ordering method on the set of all IFNs.

Numerical Examples:

The following examples show that, how the total orderings work for ranking of IFNs.
Many researchers have proposed different ranking methods on IFNs, but none of
them has covered the entire class of IFNs, and also almost all the methods have the
disadvantage that at some point of time they ranked two different numbers as the
same. But the proposed total ordering can order any given IFNs.

Example 4.1 Let M = ((0.4,0.5,0.7,0.9),(0.3,0.4,0.8,0.9)) and N = ((0.4,0.5,0.7,
0.8),(0.2,0.3,0.7,0.85)) be two IFNs. The total ordering < defined by using upper
lower dense sequence D, g) given in Example 3.3 and the way shown in Definition
4.1, Note 4.1 are now adapted. Since @M =* MNAM. Fori = 1,(a,81) = (1,0),
We have WOM =' M n °M = [0.5,0.7] and C;(M) = C|(N) = 045, C2(M) =
Cy(N) = =0.05. For i = 2,(a2,,) = (1/2,4/9), we have C3(M) = 0.515,C3(N) =
0.4625, i.e., C3(M) > C3(N). Hence M > N.

Example 4.2 Let A = {(0.1,0.3,0.4,0.45), (0,0.2,0.45,0.5)) and B = ((0.2,0.3,0.3,
0.4),(0,0.1,0.4,0.5)) be two IFNs. For i = 1,(a;,81) = (1,0), we have Ci(A) =
-0.07,C(B) = -0.19, i.e., C{(A) > C,(B). Hence A > B.

5. Significance of the Proposed Method

Ranking intuitionistic fuzzy numbers plays an important role in decision making and
information systems. All over the world many researchers have proposed differ-
ent score functions for ranking intuitionistic fuzzy numbers but unfortunately every
method produces some anti-intuitive results in certain places. In this section, sig-
nificance of our proposed method over some existing methods are explained with
an examples. Table 1 shows how the illogicalities of two different IFNs are ranked
equally by existing methods are rectified by our proposed method.

For example, let A; = ((0,0.25,0.3),1,0) & A2 = ((0.1,0.2,0.4), 1,0) be two dif-
ferent TrIFNs. Deng-Feng Li’s method ranks A; and A, equally which is illogical,
and it is rectified by our proposed method. From Table 1 we observed that the pro-
posed ranking method overcome the shortcomings of existing ranking methods ([4,
7-9, 15, 21)).

Comparision of Proposed Method with Xu [26] and Wang et al. [23]

In this subsection, our proposed method is compared with Xu [26] and Wang et al.
[23] ranking methods. Xu [26] gave total order on the collection of real valued in-
tuitionistic fuzzy numbers but his method can not be applied to IFINs and TrIFNs
(TIFNs) which are generalizations of real valued IFNs. Wang et al. [23] gave to-
tal order on the class of IFINs which supports our proposed method and it is shown
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Table 1: Significance of proposed method.

Other existing methods

Shortcomings of exisiting methods

Numerical example (shortcomings)

Proposed method

Deng-Feng Li [7]
RAD =4

A = (ar,a2,a3).1,0),
A= (@ - e,y + §.a3 - €),1,0)
RA) =R(A) = A = Ay

Ap=((0,0.25,03).1,0),
Az = ((0.1,02,04),1,0)
R(A1) = R(A2) = 0.19697 = A = Ay

Ci(Ar) = -0.44,
C1(42) = -03125
Ci(A2) > Ci(A) = Ay > Ay

Deng-Feng Li, et al. [8]
Vi(A) = V,(A) + (1 = DV,(A)
where V,(4) = @4

Vi) = ttoeion)
Ap(A) = AAL(A) + (1 = DALA)
where A,(4) =

A =

0y

Az = (@ - €.+ §,a3 - ), 1,0)
Va(Ay) = Va(A2)

and Ay(A1) = AiA) = Ay = Ay

Ay = (a1, a2,a3)

A1 =((0,025,03),1,0),
A3 =((0.1.0.2,04).1.0)

V(A1) = Vi(Ar) = 0.2167

and Ay(A1) = Ax(A2) = 0.05 = A = Ay

Ci(A1) = ~0.44,Ci(Ay) = 03125
Ci(A2) > Ci(A) = Ay > Ay

Hassan Mishmasi Nehi [15]
2

[y

A = (a1, a2,a3,a3), (b1, b, b3, by))

A =((02,03,0.5,0.6),(0,0.1,0.6,0.7))

Ci(A) = 0.05,Ci(B) = 0.04

clay = Db pe RY B={(a1+6a+€ay - €ai - €), B=((03,04,04,05),(0.1,02,05,06)  Ci(A)>C(B)=A>B
(b +eby+eby—€by—e), Ci(A) = C(B) = 0.4,C}(A) = C}(B) = 0.35
CH(A) = C(B), and Ci(A) = C}(B)
=A=B =A=8

PK. De [9]

V(A) = Vi(A) + AVy(A) = V,(A)
A@D = AA) + AA@) - @)

where V, (A) = “2entn
V8 2o
AR = e

A = Loz

A1 = (@ an,az,a0),1,0)

M= (@-ea+5a+ia-a.10
V(@A) = V(&) and AAT) = A(A)
=A=A

A= {(0.20,0.35,0.40,0.55), 1,0),
Az = {(0.10,0.40,0.45,0.45), 1,0)
V(D = V(&) = 02333

and A(A]) = A(A2) = 0.0833 = A| = A

Ci(A7) = -0.015.Cy(A3) = 0.095
Ci(A) > Ci(AD) = A2 > Ay

Amit Kumar [4]
M) =

M) = B
ke R*&Be[0,1]

A= (a2 a3, 44). (). i . )
B=((a1-€a-€as+eas+e),

(@) - e.d) - e,a, + e,d, + ©))

M) = MEA(B), and ME*(A) = MI*(B)
=A=B

A =((0.2,03,0.5,0.6).(0,0.1,0.6,0.7))
B =((0.3,0.4,04,0.5).(0.1,0.2,0.5,0.6))
MEHA) = ME4(B) = 04,

M) = MEAB) =035

=A=8B

Ci(A) = 0.05.C,(B) = 0.04
Ci(A)>Ci(B)=A>B

S.P. Wan and Y. Dong [21]
mu(A) = 5lm, (A) +m,(A)]
my(A) = $[m (A) +m,(4)]

my(A) = La+2b + 2 + dywy
mAA) = Ha+2b+2e +d)(1 —ug)

Ay = ((@1,a2,a3,a4),1,0)

Ay = (a1 - €42 ~ €, + €,a4 + €),1,0)
(A = (A1) = my(A2) = my(Az)
SA=A

Ay =((0.40,0.45,0.50.55), 1,0),
Az = ((0.30,0.35,0.60,0.65), 1,0)

mu(Ar) = my(Ar) = my(Ar) = my(A) = 0.475

=SA =

Ci(A1) = 02,C1(A) = 0215
Ci(A2) > Ci(A) = Ay > A
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in Table 2. His method also can be applied to IFINs and real valued IFNs alone, if
we are given with TrIFNs (TIFNs) (generalization of IFINs and real valued IFNs),
then our proposed method is the right choice for ranking IFNs. Hence by using
our method we are able to rank all types of IFNs such as real valued IFNs, IFINs,
TrIFNs (TIFNs) effectively. For example, let A; = ([0.1,0.4],[0.18,0.42]), A, =
([0.15,0.35],[0.26,0.34]) be two IFINs. Then using Wang et al.’s [23] score functions
we get, S(A)) = S(A2) = -0.1,H(A;) = H(Ay) = 1.1, T(A)) = T(A2) = 0.06 but
G(A)) = 0.54 and G(A;,) = 0.28 which implies that A, is better than A;. If we apply
our proposed method to A; and A,, we get C1(A;) = —0.202, C;(A,) = -0.1884 =
A, is better than A; which is supported by Wang et al.’s [23] approach.

Table 2: Comparison of proposed method with Xu [26] and Wang et al. [23].

Other existing methods Examples of existing methods Numerical example Proposed method

Xu (2007) [26]

S(A) = s —va A= (14 va) A=(03,04) Ci(A) = —0.07
H(A) = 15 + v, B=(us+€evs+e) B =(04,0.5) C(B)=0.15
where A = (14, v4) S(A) = S(B) = s —va S(A)=S(B)=-0.1 Ci(A)<Ci(B)=>A<B
with gy +vs < 1 but H(A) = 1y + v, H(A)=0.7<H(B)=09=A<B

<HB)=ps+vi+2e=>A<B
Wang et al. [23]
SAy=a+ar-as—ay A, = (a, a2, [as, as]) Ay = ([0.1,0.4],[0.18,0.42]) Ci(A) = —0.202
HA)=a +a+as+ay, Ay =([a; + €,a, — €], [a3 + €,a, — €]) Ay =([0.15,0.35],[0.26, 0.34]) C(A7) = -0.1884
TA)=ay+as—a; —as  S(A}) = S(A), H(A,) = H(Ay) S(A) = S(A 0.1, H(A}) = H(Ay) = 1.1 Ci(A}) < C1(Ay) = A; < Ay
GA)=ay+as—ay—as  T(A)=T(Ay) T(A)) = T(Ay 06
where A = ([ay, 3], [a3,a:]) but G(A}) = ay + ay — a) — a3 > G(A;) but G(A;) = 0.54 > G(A,) = 0.28 = A, < A,
witha, +as <1 =wm+as—a —az—4e

= A <A

6. Trapezoidal Intuitionistic Fuzzy Information System

In this section, we will see the application of our proposed method in information
system. Information system (IS) is a decision model that makes decisions rapidly
in the selection of best alternative from available alternatives with respect to criteria
involved in the evaluations of alternatives. In information system, dominance relation
wholly depends on ranking of information. In this section, trapezoidal intuitionistic
fuzzy information system (TrIFIS) is defined and decision making from IFIS using
a new dominance degree based on the dominance relation on the set of objects is
studied.

Definition 6.1 An information system S = (U, AT, V, f) with V = Ugear V,, where V,
is a domain of attribute a is called trapezoidal intuitionistic fuzzy information system
(IFIS) if V is a set of TrIFN.

We denote f(x,a) € V, by f(x,a) = {(a1,a2,a3,a4),(a1’,a2’,a3’,a4’)), where
a; and a; € [0,1].

Definition 6.2 A TrIFIS, S = (U, AT,V, f) together with weights W = {w,/a € AT}
is called weighted trapezoidal intuitionistic fuzzy information system (WITrIFIS) and
is denoted by S = (U, AT, V, f,W).

Definition 6.3 Let a € AT be a criterion. Let x,y € U. If Ci(x) > Ci(y) or
Ci(x) = Ci(y), Ca(x) > Ci(y) with respect to the criterion a, then x >, y which
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indicates that x is better than (outranks) y with respect to the criterion a. Also x =, y
means that x is equally good as y with respect to the criterion a, if f(x,a) = f(y,a)
with respect to the criterion a.

Definition 6.4 Let S = (U,AT,V, f,W) be a WTrIFIS and A C AT. Let Ba(x,y) =
faceAlx>,y) and let Cs(x,y) = {a€ A | x=,y}. The weighted fuzzy dominance

relation WRA(x,y) : U X U — [0, 1] is defined by
w,
acCu(x,y) “

WRA (.X, y) = Z Wy + >
a€BA(x.y)

Definition 6.5 Ler S = (U,AT,V, f,W) be a TrIFIS and A C AT. The entire domi-
nance degree of each object is defined as

1
WR4(x;) = il leli‘l WR4(x;,y;)-

6.1. Algorithm for Ranking of Objects in TrIFIS

LetS = (U,AT,V, f, W) be a TrIFIS. The objects in U are ranked using the following
algorithm.

Algorithm 6.1

1. Using Definition 4.1, Note 4.1 find C’,.s accordingly, to decide whether x;>,x;
or x;>, x; or x; =, x; forall a € A(A C AT) and for all x;, x; € U.

2. Enumerate Bs(x;, x;) using Ba(x;, x;) = {a € A | x; >4 x;} and Ca(x;, x;) using
Calxi, xp) ={a € A | x; =4 x;}.

3. Calculate the weighted fuzzy dominance relation using WR4(x,y) : U X U —

[0, 1] defined by
Wa
a€Cp(x;,xj)
WRA(xi» xj) = Z Wq + B
a€By(xi,x;)

4. Calculate the entire dominance degree of each object using

1
WRy(x;) = i Zlfi‘l WRA(x;, x}).
5. The objects are ranked using entire dominance degree. The larger the value of
WR4(x;), the better the object is.

6.2. Numerical Illustration

In this subsection, Algorithm 6.1 is illustrated by Example 6.1. In this example, we
consider a selection problem of the best supplier for an automobile company from the
available alternatives {x; | i = 1 to 10} of pre evaluated 10 suppliers, based on TrIFIS
with attributes {a; | j = 1 to 5} as product quality, relationship closeness, delivery
performance, social responsibility and legal issue.

Example 6.1 A TrIFIS with U = {x,x2,-- ,x10}, AT = {ay,ay, - ,as} is given in
Table 3, and weights for each attribute W, is given by W, = {0.3,0.2,0.15,0.17,0.18}.
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Fori = 1, (a, B) = (1,0): By Step 1, C{(f(x;,a;)) using Definition 4.1 and
Note 4.1, for all a; € AT and for all x; € U is found and tabulated in Table 4. If
Ci(f(xi,a;)) = Ci(f(xj,a;)) for any alternatives x;, x;, then find C, wherever re-
quired. The bold letters are used in Table 4 to represent the equality of scores.
From Table 4 we observe that in many places C ;,s are not distinguishable for dif-

ferent IFNs. Therefore the same procedure which is explained in Step 1 is repeated
fori=2,(a,B) = (1/2,4/9) and it is shown in Table 5.
The weighted fuzzy dominance degree of each objectusing WR4(x,y) = >, w,

a€Ba(x,y)

z Wa . .
LacCatey) Ta is calculated and is tabulated in Table 6. For example, B4(x;, X5) =

{a,, az, a4} and Cp(xz, x5) = @ and hence WR4(x, x5) = 0.2 +0.15+0.17 = 0.52.

1
il Z‘fi‘l WRa(xi,

1
y;) is found by Definition 6.4. For example, WR4(x1) = o I WRA(x2, X)) =
0.267. So by Step 5, xo is selected as the best object from the weighted trapezoidal
intuitionistic fuzzy information system is seen from Table 7.

Now the entire dominance degree of each object using WR4(x;) =

Table 3: TrIFIS to evaluate alternatives with respect to criteria.

a a az ay as

X ((0.17,0.2,0.2,0.3), {(0.17,0.19,0.23,0.41), (0.2,0.25,0.3,0.4), {(0.10,0.30,0.40,0.45), {(0.1,0.2,0.4,0.4),

(0.1,0.1,0.3,0.4)) (0.12,0.16,0.27,0.52)) ~ (0.15,0.20,0.30,0.60)) (0,0.25,0.50,0.80)) (0,0,0.45,0.50))
X {(0.1,0.1,0.15,0.2), {(0.1,0.2,0.3,0.3), {(0.10,0.20,0.40, 0.50), 0.3,0.3) {(0.17,0.26,0.29,0.41),
(0,0.10,0.15,0.20)) (0.10,0.10,0.30, 0.45)) (0,0,0.50,0.60)) (0.09,0.11,0.37,0.46))

x3 - ((0,10,0.20,0.20,0.20),  ((0.17,0.20,0.30,0.43),  ((0.31,0.41,0.52,0.71),  ((0.07,0.13,0.21,0.46), ~ ((0.10,0.20,0.35,0.40),
(0,0,0.20,0.3)) (0.10,0.20,0.40, 0.50)) (0.31,0.41,0.52,0.71)) ~ (0.06,0.11,0.25,0.51)) (0,0,0.40, 0.50))

Xy {(0.11,0.20,0.20,0.34),  ((0.20,0.20,0.20,0.45), (0.1,0.2,0.3,0.4), ((0.10,0.35,0.40,0.40)  ((0.50,0.60,0.70,0.90),
(0.07,0.20,0.70,0.80))  {(0.10,0.20,0.20,0.60))  (0.07,0.20,0.30,0.47)) ~ (0.10,0.35,0.40,0.40))  (0.50,0.60,0.70,0.90))

x5 {(0.07,0.10,0.17,0.26),  ((0.11,0.29,031,0.65),  ((0.14,0.19,0.26,0.57), ((0.01,0.30,0.40,0.45), ((0.20,0.26,0.29,0.40),
(0,005,0.21,0.60))  (0.07,0.13,0.33,0.69))  (0.10,0.10,0.40,0.60))  (0.01,0.30,0.42,047))  (0.02,0.11,0.41,0.60))

X {(0.20,0.40,0.40,0.50),  ((0.13,0.20,0.30,0.40), ((0.10,0.20,0.45,0.60), ((0.20,0.30,0.35,0.50), ((0.40,0.65,0.75,0.80),
(0.20,0.40,0.40,0.50))  (0.10,0.20,0.60,0.70))  (0,0.10,0.60,0.70))  (0.20,0.30,0.35,0.50))  (0.40,0.65,0.75,0.80))

x {(0.10,0.30,0.50,0.70),  ((0.10,0.25,0.25,0.35),  ((0.03,0.13,0.37,0.47), (0.2,0.2) ((0.10,0.20,0.30,0.40),
(0.10,0.30,0.50,0.70))  (0,0.25,0.25,0.50)) (0,0.13,0.37,0.54)) (0,0.10,0.40,0.50))

g ((0.10,0.20,0.20,0.30),  ((0.16,0.21,0.34,0.49),  ((0.40,0.50,0.60,0.70),  ((0.31,0.52,0.73,0.84),  {(0.10,0.20,0.40,0.45),
(0.05,0.15,0.30,0.40))  (0.16,0.20,0.36,0.53))  (0.30,0.40,0.70,0.80)) ~ (0.31,0.52,0.73,0.84)) ~ (0.07,0.10,0.51,0.63))

X ((0,0.35,0.55,0.60), {(0.61,0.63,0.71,0.83),  ((0.10,0.20,0.30,0.40),  {(0.10,0.40,0.50,0.60), ~ {(0.10,0.30,0.30,0.70),
(0,0.35,0.55,0.60)) (0.61,0.63,0.71,0.83)) (0,0,0.40,0.50)) (0,0.20,0.70,0.70)) (0.10,0.20,0.50, 0.60))

X10 (0.40,0.40) ((0.20,0.20,0.30,0.40),  ((0.61,0.61,0.63,0.71),  {(0.10,0.20,0.30,0.40), ~ ((0.13,0.23,0.43,0.73),
(0.10,0.20,0.30,0.95))  (0.61,0.61,0.63,0.71)) ~ (0.10,0.20,0.30,0.40))  (0.10,0.16,0.51,0.78))
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Table 4: C; and C; fori = 1, (a,B) = (1,0).

a a az ay as a a as  a, as
C, (&)
xi =044 —0.41 -025 007 -0.18 +0.76
x  -064  -031 -0.18  —-0.19  -0.25 +0.69 +0.65
x3 =044 -0.31 +0.18  -0.52  -0.31 +0.76  +0.69 -0.69
Xy -0.44 -0.44 -0.313  -0.015 -0.13 +0.76  +0.76
x5 —0.61 -044  -037 -0.07  -0.25 +0.65
Xs  +0.04  -031 -0.115 -0.13  +0.61 +0.44  +0.69
x7  —-005 -0313 -0298 -044 -0.31 +0.76
xg =044 -0.246 +0.35  +0495 -0.18 +0.76

xo  +0.158 +0.563 -0.31 +0.15 -0.19

xio  +0.04 -0.31 +0.476  -0.31 —-0.1089 +0.44  +0.69

Table 5: C3 and C, fori = 2, (a,8) = (1/2,4/9).

a a as as as a; a as a; as
G Cy
x; —0.39375  -0.3076 -0.21625 -0.1475  -0.235

x,  —0.67125 -0.37 -0.1675  —0.19 -0.22775

x;3 —0.505 —-0.242525  +0.2411 -0.381 -0.26875

x;  —0.40435 -0.2775 -0.34 -0.1525  —0.09375

xs  —0.568 —-0.4375 —-0.198 -0.196 -0.217

xs  —0.01 -0.28525  —-0.06625 —0.09375 +0.543

x7  +0.08 -0.34 -0.2836  —0.44 -0.3025

xg  —04375  -0.1768 +0.3575  +0.474 -0.2012

X9  +0.0244  +0.6076 -0.3025  +0.0625  -0.05

xjo  +0.04 —-0.245 +0.5113 -0.3025 +0.0356
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Table 6: Weighted fuzzy dominance relation between two alternatives WR4(x, y).

WRaA(x,y)  xi X2 X3 X Xs X6 X7 Xg X9 X10

X 050 0.67 065 062 067 0 0.70 030 0.15 0.17
X2 033 050 035 015 052 0 050 O 0.15 0.17
X3 035 065 050 035 065 035 070 0 0.15 0.20
Xy 038 085 065 050 085 020 055 048 0O 0.17
Xs 033 048 035 0.15 050 0 050 O 0.15 0.17
Xe 1 1 0.65 080 1 0.50 070 048 0.33 035
X7 030 050 030 045 050 030 050 030 0.15 030
Xxg 070 1 1 052 1 052 0.70 050 032 037
Xg 085 085 085 1 0.85 0.67 085 0.68 050 0.67
X10 083 0.83 080 0.83 083 065 070 063 033 050

Table 7: Total dominance degree R4 (x;).

X; X X2 X3 X4 X5 X6 X7 X3 X9 X10

Ra(x;) 0.443 0.267 0.390 0.463 0.263 0.681 0.360 0.663 0.777 0.693

7. Conclusion

A complete ranking of intuitionistic fuzzy number using upper lower dense sequence
is achieved in this paper. The ranking method introduced and discussed in this paper
consists with the natural ordering of real numbers. Actually, the complete ranking
on IFN defined in this paper generalizes the total ordering on FNs defined by W.
Wang and Z. Wang [22]. Therefore, this is a real generalization of the total ordering
on the set of all real numbers to the set of IFNs. Up to date different methods are
used in decision making and other industrial problems to obtain an optimal solution,
but all the available methods are not consistent and also not suitable in certain cases
because of its anti-intuitive ranking procedure on IFNs. This method can be the best
alternative to all other existing methods.
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