
A

W
B

a

A
R
R
A
A

K
R
M
Q
M

1

i
p
t
m
a
r
t
o
o
e
v
s
o
s

o
o
m
e
r
o
o

h
0

y COREView me

er Connector 
Computers and Chemical Engineering 91 (2016) 318–328

Contents lists available at ScienceDirect

Computers  and  Chemical  Engineering

j our na l ho me  pa g e: www.elsev ier .com/ locate /compchemeng

 reliable  modifier-adaptation  strategy  for  real-time  optimization

eihua  Gao ∗, Simon  Wenzel,  Sebastian  Engell
iochemical and Chemical Engineering Department, TU Dortmund, Emil-Figge-Str. 70, 44221 Dortmund, Germany

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 14 December 2015
eceived in revised form 19 May  2016
ccepted 24 May  2016
vailable online 13 April 2016

a  b  s  t  r  a  c  t

In model-based  real-time  optimization,  plant-model  mismatch  can  be  handled  by applying  bias-  and
gradient-corrections  to the  cost  and constraint  functions  in  an iterative  optimization  procedure.  One  of
the  major  challenges  in  practice  is the  estimation  of  the  plant  gradients  from  noisy  measurement  data,
in  particular  for  several  optimization  variables.  In  this  paper  we  propose  a new  real-time  optimization
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scheme  that  explores  the  inherent  smoothness  of  the plant  mapping  to enable  a  reliable  optimization.
The  idea  here  is  to  combine  the quadratic  approximation  approach  used  in derivative-free  optimization
techniques  with  the iterative  gradient-modification  optimization  scheme.  The  convergence  of the  scheme
is analyzed.  Simulation  studies  for the  optimization  of  a ten-variable  synthetic  example  and  a reactor
benchmark  problem  with  considerable  plant-model  mismatch  show  its promising  performance.

© 2016  The  Authors.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

With increasing global competition, companies in the process
ndustries face intense pressure to improve production efficiency,
roduct quality and process safety. As a result, real-time optimiza-
ion (RTO) is attracting considerable industrial interest. RTO is a

odel based upper-level optimization system that is operated iter-
tively in closed loop and provides set-points to the lower-level
egulatory control system in order to maintain the process opera-
ion as close as possible to the economic optimum. The introduction
f the RTO system provides a clear separation between the tasks
f optimization and control. The RTO system optimizes the plant
conomics on a medium timescale while the control system pro-
ides tracking and disturbance rejection on shorter timescales from
econds to hours. The economical optimization is normally based
n a steady-state model of the plant while on the regulatory layer,
imple controllers or linear MPC  controllers are used.

As for any model and optimization based scheme, the success
f RTO depends on the quality of the model which is used in the
ptimization. The effort required for building and maintaining the
odel is the bottleneck in the deployment of RTO solutions, and

ven when sophisticated models are used, they will never exactly
epresent the real process. It is highly desirable to combine the use

f models and of the data which is collected during the operation
f the plant in order to obtain a RTO scheme that drives the plant to

∗ Corresponding author.
E-mail address: weihua.gao@bci.tu-dortmund.de (W.  Gao).
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098-1354/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article un
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

its optimal operation without having to represent each and every
phenomenon in the plant accurately in the model.

Several schemes have been proposed towards this goal, in par-
ticular the parameter adaptation or two-step scheme (Chen and
Joseph, 1987), bias update with constraints (Forbes and Marlin,
1994), tracking of necessary conditions of optimality (NCO track-
ing) which are derived from the model but are used in a model-free
scheme (Franç ois et al., 2005), extremum seeking control (Ariyur
and Krstic, 2003), and the adaptation of the optimization objective
(and constraints) using empirical gradients (Roberts, 1979; Gao and
Engell, 2005; Marchetti et al., 2010). Derivative-free optimization
(DFO) can also be considered as a RTO technique that determines
the optimum using “probing” of the response of the process (Conn
et al., 2009).

These schemes all have certain drawbacks and limitations.
Parameter adaptation only works well if the process model is struc-
turally correct and if the parameters can be estimated reliably from
the available data. NCO tracking is well suited for not too large
problems where the optimum is defined largely by the constraints.
Extremum seeking control converges slowly and is not suitable for
large problems with many degrees of freedom. DFO is known for
less efficient iterations compared with derivative-based schemes.

Gradient adaptation (or modifier adaptation) schemes can han-
dle considerable plant-model mismatch by applying empirical bias-
and gradient-corrections to the objective and constraint functions
in an iterative optimization procedure. One of the major challenges

in practice is the estimation of the process gradients from noisy
measurement data, in particular for the case of several optimiza-
tion variables. Finite-difference based approaches suffer from the
problem of choosing the right step-size, using a large step-size may

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ecrease the effect of noisy data on the one hand side, on the other
and side it leads to considerable approximation errors. In this
aper we propose a new scheme that employs a quadratic approx-

mation of the process mapping to enable an efficient and reliable
ptimization even if the data is subject to a high level of noise.
he key idea is to combine the quadratic approximation approach
sed in DFO with the iterative gradient-modification optimization
IGMO) scheme (Gao and Engell, 2005).

The rest of this paper is organized as following. Firstly the IGMO
cheme is reviewed together with a survey of approaches to esti-
ate the empirical gradients from data, and the effect of the error

f the gradients on the IGMO performance is studied. The DFO
cheme is then introduced, followed by a detailed description of the
ew scheme. Its convergence is analyzed. Simulation results for the
ptimization of a ten-variable synthetic example and the Williams-
tto reactor benchmark problem with considerable plant-model
ismatch are presented to illustrate the performance of the new

cheme.

. Iterative gradient-modification optimization and
radient estimation

.1. The IGMO scheme

The general model-based set-point optimization problem can
e stated as

min
u

Jm(u)

s.t. Cm(u) ≤ 0,
(1)

here u is a vector of manipulated variables to be optimized, Jm(u)
nd Cm(u) are the objective and the vector of constraint functions of
he model, assumed to be twice differentiable with respect to u. The
lant objective and constraints are represented by Jp(u) and Cp(u)
nd their values are only available via plant evaluations. To handle
lant-model mismatch, the optimization problem (1) is iteratively
dapted in the IGMO scheme via

min
u

J(k)
ad

(u) = Jm(u) + J(k)
p − J(k)

m +
(
∇J(k)

p − ∇J(k)
m

)T (
u − u(k)

)
s.t. C(k)

ad
(u) = Cm(u) + C(k)

p − C(k)
m +

(
∇C(k)

p − ∇C(k)
m

)T (
u − u(k)

)
≤ 0,

(2)

here the superscript (k) represents the iteration index. Note that
he bias adaptation of the objective function does not influence the
ptimum and it just corrects the objective value at u(k). Let û(k)

enote the solution of (2), then the next set-point is updated as

(k+1) = û(k) + K(u(k) − û(k)), (3)

here K is a diagonal matrix of damping factors

 ≤ kii < 1. (4)

he IGMO scheme generates a sequence of set-points that con-
erges to a Karush–Kuhn–Tucker point of the plant (Kuhn and
ucker, 1951).

.2. Estimation of empirical gradients

The use of gradient adaptation in the IGMO scheme requires the
omputation of the process gradients at the current set-point. In
rder to decrease the effort for perturbations of the process, the
ollected data at the previous set-points can be used to estimate
he gradients by a finite difference approximation[ ]−1

[  ( ) ( )  ]T
J(k)
p = S(k) · J(k)

p − J(k−1)
p · · · J(k)

p − J(k−nu)
p (5)

C(k)
p =

[
S(k)

]−1 ·
[(

C(k)
p − C(k−1)

p

)
· · ·

(
C(k)

p − C(k−nu)
p

)]T

, (6)
 Engineering 91 (2016) 318–328 319

where nu is the number of dimensions of u, and the matrix S(k) is
defined as

S(k) =
[ (

u(k) − u(k−1)
)
· · ·

(
u(k) − u(k−nu)

)  ]T
. (7)

Since the matrix S(k) can be singular, Roberts (2000) proposed to
use Broyden’s formula to evaluate the gradients. A dual control
approach that implicitly considers the requirement of the gradient
estimation in the set-point optimization was  proposed by Brdyś
and Tatjewski (1994). The kth set-point is required to additionally
satisfy a lower bound on the inverse of the condition number of the
matrix S(k)

�−1(S(k)) ≥ ıcond. (8)

Eq. (8) leads to a dual control optimization of the next set-point that
balances the convergence to the optimum with the gradient esti-
mation. Marchetti et al. (2010) extended this approach by explicitly
upper bounding the norm of the gradient estimation error that
consists of the approximation and the measurement noise errors

�max

2
‖S−1 · diag

(
S · ST

)
‖ + ınoise

lmin
≤ �upper, (9)

where the first term on the left side of (9) is the approximation
error (�max is the upper bound on the spectral radius of the Hes-
sian matrix of the process mapping), and the second term is the
error due to the measurement noise (lmin is the shortest distance
between all possible pairs of complement affine subspaces that can
be generated from the set-point set for the gradient estimation, and
ınoise is the range of the measurement noise). For simplicity, the
superscript of the iteration index was  dropped here.

In the IGMO scheme, Gao and Engell (2005) used (8) to decide
whether to perturb the process additionally. The perturbation
u(addi) is optimized by maximizing the inverse of the condition
number of Sa(k) subject to the adapted process constraints

max
u(addi)

�−1(Sa(k))

s.t.  Cm(u(addi))  +  C(k−1)
p −  C(k−1)

m +  (∇C(k−1)
p −  ∇C(k−1)

m )
T
(u(addi) −  u(k−1))  ≤  0,

(10)

where

Sa(k) =
[ (

u(k) − u(addi)
)
· · ·

(
u(k) − u(k−nu+1)

)  ]T
. (11)

2.3. Effect of gradient error on IGMO

Since the use of empirical gradients plays a critical role in the
IGMO scheme, it is important to analyze the effect of the gradient
error on the IGMO performance. From (9), the set-points should
neither be too distant nor too close to each other for a good gra-
dient estimation. How the step-size influences the IGMO can be
demonstrated by the optimization problem

min
u1,2

Jm(u1, u2) = (u1 + 2)2 + (u2 + 2)2. (12)

The data for gradient estimation are generated by the “true” process
mapping

Jp(u1, u2) = u2
1 + u2

2 + �, (13)

where � is the noise with a normal distribution N(0.0, 0.1). The
IGMO scheme starts from (−2.0, − 2.0) and for simplicity, we  con-
sider only one Newton step with the Hessian matrix computed at
Jm(u1, u2). Three different sets of set-points are compared:{ }
(i) (−2.0, 0.0), (0.0, −2.0) , ∇J(i)
p : (−2.0, −2.0)

(ii)
{

(−2.0, −1.0), (−1.0, −2.0)
}

, ∇J(ii)
p : (−3.0, −3.0)

(iii)
{

(−2.0, −1.8), (−1.8, −2.0)
}

, ∇J(iii)
p : (−3.8, −3.8)
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ig. 1. Illustration of the IGMO results on the process contours (solid lines). Dash-dot
ines: contours of the quadratic approximation. Adapted from (Gao et al., 2015).

here ∇J(i)
p , ∇J(ii)

p and ∇J(iii)
p are calculated from noise-free data.

he exact gradient is (−4.0, − 4.0) and therefore the smallest step
ize provides the most accurate gradient estimation. The results of
GMO in case of noise-free data are represented by the diamond

arkers in Fig. 1. The largest movement to the “process” optimum
t (0, 0) is obtained with the most accurate gradient estimation.
hen noisy data is used in the gradient estimation, IGMO generates

et-point moves with different levels of precision. For each set, the
radients were repeatedly estimated for 200 noise realizations and
he results of IGMO are represented by three clusters of points in
ig. 1. Now the smallest step size leads to less precise set-point
oves (mean: −0.08, − 0.12, variances: 0.12, 0.11). Some of the

alues are even worse than the IGMO results based on set (ii).
The idea of our new scheme is to regress all available data to

btain a quadratic approximation and to evaluate the gradient at
−2, − 2) analytically from it. The IGMO results for 200 noise real-
zations with this approach are shown by the square symbols in
ig. 1, leading to much better accuracy (means: 0.008, − 0.010) and
recision (variances: 0.015, 0.017) than the results using set (iii).
ompared with the finite-difference approximation, the quadratic
pproximation can, on the one hand, capture the curvature infor-
ation from more distant points to decrease the approximation

rror, and, on the other hand, provides a smooth mapping to
ecrease the influence of the noise. Note that there is a considerable
ismatch between the contours of the quadratic approximation

hat were regressed from the noise-free data and those of the pro-
ess mapping. The reason for this is explained in the next section.
n optimization only based on the quadratic approximation will

herefore also not lead to convergence to the true optimum. An
mprovement of the performance can be expected from the com-
ination of the locally accurate gradients extracted from the data
ith the globally more accurate Hessian matrix that is predicted by

he model in the IGMO scheme.

. Derivative-free optimization and its combination with
GMO

.1. Derivative-free optimization

The interpolation-based trust-region DFO methods provide reli-
ble convergence in the presence of data errors and a relatively fast
ate of convergence (Conn et al., 2009). These methods resemble
he derivative-based trust-region methods, except that the values

f the objective function are used to construct a quadratic func-
ion, on which the optimization step is based. Global convergence
s ensured via repeatedly constructing local quadratic functions so
hat a sufficient decrease of the objective function can be obtained
 Engineering 91 (2016) 318–328

within each iteration. The rate of convergence is mainly deter-
mined by how well the objective function can be represented by
the quadratic function and how many evaluations of the objective
function are used to make the approximation sufficiently accurate.
The geometry (or distribution of points) of the interpolation set is
critical to the quality of the quadratic approximation. This was  also
evident from the example in the previous section. Although the true
objective function is also quadratic, the approximating quadratic
function is not accurate because the selected points did not cover
the space of the variables sufficiently well. To ensure the so-called
well-poisedness of the data set is very important in DFO.

Improving the IGMO by gradients that are extracted from
quadratic approximations in our approach is complemented by
three additional elements:

1. Selecting points from the collected data set for a well-poised
regression set.

2. Introducing a constrained search space for the next move basing
on a covariance analysis of the regression set.

3. Tracking the prediction accuracies of the adapted model-based
mappings (Jad(u) and Cad(u)) and the approximating quadratic
functions, and switching between model-based and data-based
optimizations according to the observed accuracies.

Next the choice of the regression set and the evaluation of the
search space are discussed in detail. The accuracy tracking and the
optimization switching are presented in the algorithm section.

3.2. Selecting data for regression

The geometry of the regression set is critical for the accuracy of
the quadratic approximation. The criteria for choosing the regres-
sion set can be summarized as follows:

1. Well-distributed and sufficiently distant points are indispens-
able for capturing the curvature reliably from noisy data.

2. The use of many points in a neighborhood can improve the accu-
racy of the gradient estimation.

3. Avoid to use too old points in the presence of varying distur-
bances.

Let U  represent the set of all the collected data. According to the
criteria 1 and 2, the regression set is defined as U(k) = Unb ∪ Udist ,
where the neighboring set

Unb = {u : ‖u − u(k)‖ ≤ �u;  u ∈ U}
and the distant set Udist are determined by

min
Udist

∑
u ∈ Udist

‖u − u(k)‖
ϕ(Udist)

s.t. size(Udist) = (nu + 1)(nu + 2)/2 − 1 Udist ⊂ U  \ Unb.

(14)

�u is a parameter of the screening algorithm and ϕ(Udist) is the
minimal angle between all possible vectors that are defined by
u − u(k), where u ∈ Udist . Let Uouter = U  \ Unb. (14) can be approx-
imately solved by Algorithm 1:

Here ϕ(i)(Uouter) is the minimal angle between u(i)− u(k) and all
the other vectors u(j)− u(k), where u(j) ⊂ Uouter \ u(i). The effect of
using the screening algorithm to select points is illustrated using
an example with 2 decision variables in Fig. 2. The collected data
consists of 25 random points which are drawn from the standard
uniform distribution on the open interval (0, 1). The current point

u(k) is firstly located at (0.5, 0.5), and then is moved to (1.0, 0.5).
The screening algorithm is run with �u  = 0.1 and �u = 0.3, which
are illustrated by the circles centered at u(k). All the points within
the circles are treated as local points and are included in Unb.
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Fig. 2. Illustration of the screening of the regression set. local points, chosen outer points, © unchosen points.

Algorithm 1

1: nreg = (nu + 1)(nu + 2)/2;
2:  If dimUouter > nreg − 1 then
3: w = nreg−2

dimUouter−1 ;
4: for i = 1 : dimUouter do
5: Evaluate ϕ(i)(Uouter );

6:  �(i) =
‖u(i)−u(k)‖+w

∑
u  ∈  Uouter \u(i)

‖u−u(k)‖

ϕ(i) (Uouter )
;

7:  end for
8: Find u(worst): point with the maximal �;
9:  U ← U \ u(worst);

T
(
b
s

r
f

outer outer

10: end if
11: Udist ← Uouter ;

he points outside are screened by the proposed algorithm until
nu + 1)(nu + 2)/2 −1 = 5 points are selected for Udist . Different sym-
ols are used in Fig. 2 to differentiate Unb, Udist and the unchosen

et.

As shown in Fig. 2, the value of �u  influences the screened
egression set. In the presence of noise, a larger value of �u  is pre-
erred for reliably capturing the curvature information. However,
there is no guarantee that the plant mapping is quadratic and a
wide distribution of the regression set may  lead to a large approxi-
mation error. A practical method to choose �u  is to relate its value
to the level of noise.

With the screened regression set U(k) = {u(r1), . . .,  u(rnr )},  a
quadratic approximation of the objective function is constructed
by solving

min
P

nr∑
i=1

(
Jp

(
u(ri)

)
− J	

(
u(ri), P

))2
, (15)

where J	 (u, P) is the quadratic approximation. It is defined by

J	 (u, P) =
nu∑ i∑

ai,juiuj +
nu∑

biui + c (16)
i=1 j=1 i=1

with the coefficient set P =
{

a1,1, . . .,  anu,nu , b1, . . .,  bnu , c
}

. The
quadratic approximations of the constraint functions C	(u) are
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new probe û in the collected data. Due to the screening
ig. 3. Illustration of the covariance-based search space. current point u(k) ,
egression points.

onstructed similarly. The process gradients are then determined
y evaluating ∇J	 and ∇C	 at u(k).

.3. Covariance-based search space definition

Trust-region methods are widely used in numerical optimiza-
ion algorithms and the size of the trust-region is critical to the
ffectiveness of the optimization steps (Nocedal and Wright, 2006).
n practical algorithms, the size of the trust-region is adjusted by

 feedback mechanism according to the performance of the algo-
ithm during previous iterations. The performance of the IGMO
cheme is not only related to the model used, but also sen-
itive to the gradient modifiers, which are here extracted via
he quadratic approximation from the regression set. Consider a
-D optimization problem where the previous set-points are dis-
ributed along a specific direction. The extracted gradient along
hat direction is more reliable than that along the perpendicu-
ar direction. In this case, it is reasonable to define an elliptical
earch space rather than a circular search space. We  propose
o use the covariance matrix of the regression set M = cov(U(k))
o define a constrained search space B(k) for the next set-point

ove:

(k) : (u − u(k))
T
M−1(u − u(k)) ≤ 
2, (17)

here M is the covariance matrix and 
 is a scaling parameter. B(k)

s a nu-axial ellipsoid centered at u(k). The axes of the ellipsoid are
ligned with the eigenvectors of the covariance matrix. The semi-
xis lengths of the ellipsoid are related to the eigenvalues of the
ovariance matrix by the scaling parameter 
 .

An illustration of this idea for a 2-D optimization problem is
hown in Fig. 3, where the regression points are shown together
ith a conservative definition (
 = 1, dashed line) and a normal
efinition (
 = 3, solid line) of the search space. 
 can also be
djusted online according to prediction accuracies, as in trust-
egion approaches.

.4. Algorithm
Let U(k) and B(k) represent the regression set and the search space
t the kth iteration. �(k)

m and �(k)
	

are the prediction accuracies of the
dapted model-based mappings and the quadratic functions that
 Engineering 91 (2016) 318–328

are computed according to

�(k)
m = max

{∣∣∣∣∣1 − J(k)
ad
− J(k−1)

ad

J(k)
p − J(k−1)

p

∣∣∣∣∣ ,

∣∣∣∣∣1 −
C(k)

ad,1 − C(k−1)
ad,1

C(k)
p,1 − C(k−1)

p,1

∣∣∣∣∣ , . . .,

∣∣∣∣∣1 −
C(k)

ad,nc
− C(k−1)

ad,nc

C(k)
p,nc
− C(k−1)

p,nc

∣∣∣∣∣
}

(18)

�(k)
	
= max

{∣∣∣∣∣1 −
J(k)
	
− J(k−1)

	

J(k)
p − J(k−1)

p

∣∣∣∣∣ ,

∣∣∣∣∣1 −
C(k)

	,1 − C(k−1)
	,1

C(k)
p,1 − C(k−1)

p,1

∣∣∣∣∣ , . . .,

∣∣∣∣∣1 −
C(k)

	,nc
− C(k−1)

	,nc

C(k)
p,nc
− C(k−1)

p,nc

∣∣∣∣∣
}

, (19)

where Jad and Cad,i are the adapted objective and constraint func-
tions from (2). nc is the number of constraints. J	 and C	,i are the
regressed objective and constraint functions from the quadratic
approximation.

Step 1. Choose an initial set-point u(0) and probe the plant at
u(0) and u(0) + hei, where h is a suitable step size and ei ∈
R

nu (i = 1, . . .,  nu) are mutually orthogonal unit vectors. Use
the finite difference approach to calculate the gradients at
u(0) and run IGMO until [(nu + 1)(nu + 2)/2 set-points have
been generated. Run the screening algorithm to acquire the
regression set U(k). Initialize �(k)

m = 0 and �(k)
	
= 0.

Step 2. Calculate the quadratic functions J(k)
	

and C(k)
	

by (15). Deter-

mine the search space B(k) by (17).
Step 3. Extract the gradients from the quadratic functions. Adapt

the model-based optimization problem and determine û(k)

as follows:
a) If �(k)

m ≤ �(k)
	

, run the adapted model-based optimization

(2) under the constraint u ∈ B(k).
b) Else perform an optimization based on the quadratic

approximation

min
u

J(k)
	

(u)

s.t. C(k)
	

(u) ≤ 0

u ∈ B(k).

(20)

Step 4. If ‖û(k) − u(k)‖ < �u,  where �u  is the parameter used by
the screening algorithm to handle the influence of measure-
ment noise, and there exists at least one point u(j) ∈ U(k)

such that ‖u(j)− u(k) ‖ >2�u,  set û(k) = (u(j) + u(k))/2. Note
that this step is similar as the criticality step used in (Conn
et al., 2009) to improve the quadratic approximation by
shrinking the regression region.

Step 5. Evaluate the process at û(k) to acquire Jp(û(k)) and Cp(û(k)).
Define the next iterate by
a) Successful iteration. If Ĵ(k)

p < J(k)
p , where Ĵ(k)

p = Jp(û(k)),

define u(k+1) = û(k) and run the screening algorithm to
define the next regression set U(k+1). Update the quality
indices �(k+1)

m and �(k+1)
	

. Increase k by one and go to Step
2.

b) Unsuccessful iteration. If Ĵ(k)
p ≥ J(k)

p , run the screening
algorithm to update the regression set for u(k) with the

(k)
algorithm, û(k) will be included in the regression set to
achieve an improved quadratic approximation around
u(k). Go to Step 2.
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and consequently

‖∇J(k)
	
‖ ≥ ‖∇J(k)

p ‖ − �egmax[�(k), (�(k))
2
]

W.  Gao et al. / Computers and Ch

ote that, since the level of measurement noise influences the
hoice of the value of �u, it will indirectly influence the accuracy of
he optimum via Step 4 and ‖u(∞)− u* ‖ < �u. In case of noise-free
ptimization, we have u(∞)→ u* as �u  → 0. This will be proven in
he next section.

.5. Convergence analysis of the unconstrained optimization

In order to keep the convergence analysis simple and intuitive,
e consider an unconstrained optimization problem with the fol-

owing assumptions:

ssumption 1. Jp is twice continuously differentiable and its gradi-
nt and Hessian are bounded, which implies that there exist constants
pg > 0 and �ph > 0 such that ‖ ∇ Jp ‖ ≤ �pg and ‖ ∇ 2Jp ‖ ≤ �ph.

ssumption 2. Jp is convex and bounded from below.

ssumption 3. The Hessian of Jm is bounded, that is there exists a
onstant �mh > 0 such that ‖ ∇ 2Jm ‖ ≤ �mh.

ssumption 4. The Hessian of J(k)
	

is bounded, that is there exists a

onstant �	h > 0 such that ‖∇2J(k)
	
‖ ≤ �	h for all u ∈ B(k).

n what follows, we use the constant �h = max[�pg, �ph, �mh, �	h].
he analysis of convergence comprises two theorems, which state
hat

. The convergence to a KKT point is ensured by adequate regres-
sion sets and successful iterations.

. Adequate regression sets and successful iterations are achievable
via unsuccessful iterations.

e  use the following definition of well-poised sets in Conn et al.
2009)

Let � > 0 and a set B ∈ R
n be given. Let 	 = {	0(x), 	1(x), . . .,

	p(x)} be a basis in Pd
n. A poised set Y = {y0, y1, . . .,  yp} is said to be

�-poised in B if and only if for the basis of Lagrange polynomials
associated with Y

� ≥ max
0≤i≤p

max
x ∈ B
|i(x)|. (21)

heorem 1. Assume that Assumptions1–4 hold and consider only
uccessful iterations and that the regression set U(k) is �-poised (or
dequate) in B(k), where the definition of �-poised is given in (Conn
t al., 2009), then one has

im inf
k→∞

‖∇J(k)
p ‖ = 0 (22)

or a noise-free optimization if �u  → 0.

roof. For contradiction, suppose that there is � > 0 and an
ndex K such that ‖ ∇ Jp(u(k)) ‖ ≥ �  for all k ≥ K. Since the regression
et U(k) is adequate in B(k), from Theorem 4 in (Conn et al., 1997),
e get that

J	(û(k)) − Jp(û(k))| ≤ �e	max[(�(k))
2
, (�(k))

3
] (23)

nd

∇J	(u(k)) − ∇Jp(u(k))‖ ≤ �egmax[�(k), (�(k))
2
] (24)

or some constants �e	 , �eg > 0 independent of k. Here �(k) is the
adius of a hypersphere that includes the regression set U(k) and

he point û(k). Since û(k) ∈ B(k), which is defined by the covariance-
ased search space evaluation, we have

(k) ≈ (3 + 
)
√

D11. (25)
 Engineering 91 (2016) 318–328 323

J·(u(k)) and J · (û
(k)) are represented by J(k)

· and Ĵ(k)
· in the remaining

proof. Since û(k) can be determined either by the adapted
model-based optimization or by the quadratic function-based opti-
mization, we need to discuss both cases.

(i) If the adapted model-based mappings are more accurate than
the quadratic function approximation, we  have∣∣∣Ĵ(k)

ad
− Ĵ(k)

p

∣∣∣ ≤ ∣∣∣Ĵ(k)
	
− Ĵ(k)

p

∣∣∣ . (26)

In this case û(k) is determined by the adapted model-based
optimization and we  get that

J(k)
ad
− Ĵ(k)

ad
≥ �C ‖∇J(k)

	
‖ min

[
‖∇J(k)

	
‖

�h
, �(k)

]
, (27)

where �C is some constant in (0, 1). (27) implies that the reduc-
tion of the adapted objective function should be at least a
fraction of the maximum reduction that is achievable along the
steepest descent direction while remaining in the search space.
A proof of (27) can be found in Moré (1983). From (23) and (26),
we obtain that∣∣∣Ĵ(k)

ad
− Ĵ(k)

p

∣∣∣ ≤ �e	max[(�(k))
2
, (�(k))

3
], (28)

and consequently

Ĵ(k)
ad
≥ Ĵ(k)

p − �e	max[(�(k))
2
, (�(k))

3
]. (29)

Recall (27) and noting that J(k)
p = J(k)

ad
, we obtain that

J(k)
p − Ĵ(k)

p ≥ �C ‖∇J(k)
	
‖ min

[
‖∇J(k)

	
‖

�h
, �(k)

]

− �e	max[(�(k))
2
, (�(k))

3
]. (30)

(ii) If û(k) is determined by the quadratic function-based optimiza-
tion, we  have

J(k)
	
− Ĵ(k)

	
≥ �C ‖∇J(k)

	
‖ min

[
‖∇J(k)

	
‖

�h
, �(k)

]
. (31)

From (23), we get that

Ĵ(k)
	
≥ Ĵ(k)

p − �e	max[(�(k))
2
, (�(k))

3
]. (32)

From (31) and J(k)
p = J(k)

	
, we can also obtain (30).

(30) implies that the reduction of the plant objective value is at
least the difference between the optimization reduction and the
regression error. From (24), we  get

�egmax[�(k), (�(k))
2
] ≥ ‖∇J(k)

	
− ∇J(k)

p ‖ ≥
∣∣∣‖∇J(k)

	
‖−‖∇J(k)

p ‖
∣∣∣ , (33)
≥ � − �egmax[�(k), (�(k))
2
], (34)

where the second “≥” is due to the contradiction assumption
‖∇J(k)

p ‖ ≥ �. Recall (30), we  obtain
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(k)
p − Ĵ(k)

p ≥ �C

(
� − �egmax[�(k), (�(k))

2
]
)

× min

⎡
⎣

(
� − �egmax[�(k), (�(k))

2
]
)

�h
, �(k)

⎤
⎦

− �e	max[(�(k))
2
, (�(k))

3
]. (35)

ow we derive that �(k)→ 0 as k→ ∞.  We  first show that a
equence of set-points of successful iterations must converge. Since
p is assumed to be convex and be bounded from below, we obtain
hat

lim
→∞

J(k)
p − Ĵ(k)

p = 0. (36)

f the sequence of set-points does not converge, we  have that

u(k) − û(k)‖ ≥ ı, (37)

here ı > 0. If Jp(u) is monotonous between u(k) and û(k), the con-
exity of Jp(u) implies

∇ Ĵ(k)
p ‖ <

∣∣∣∣∣ J(k)
p − Ĵ(k)

p

u(k) − û(k)

∣∣∣∣∣ . (38)

rom (36) and (37), we have that ‖∇ Ĵ(k)
p ‖ → 0 as k → 0. It contradicts

he assumption that ‖∇J(k)
p ‖ ≥ � for k > K. Thus, Jp(u) should not be

onotonous between u(k) and û(k). Since the regression set U(k) is
dequate, the quadratic function J	(u) is also not monotonous. A
ew probe in between will be deployed and therefore (37) cannot
old. We  conclude that the sequence of set-points must converge.

Next, for contradiction suppose that there is �1 > 0 and an
ndex K1 such that �(k) ≥ �1 for all k ≥ K1. Recall (17) and (25),

e need that there exists at least one point u(j) ∈ U(k) for k ≥ K1
uch that ‖u(j)− u(k) ‖ ≥ ı(�1), where ı(�1) > 0. When the sequence
f set-points converges to u(∞), there exists an index K2 ≥ K1

uch that ‖û(k) − u(k)‖ < �u for k ≥ K2, where �u  � ı(�1)/2. Since
u(j)− u(k) ‖ ≥ ı(�1) > 2�u, the plant will be evaluated at the mid-
le point between u(k) and u(j) (see Step 4). We therefore conclude
hat if the sequence of set-points converges, the regression set must
oncentrate at u(∞). As a result of this, the assertion of �(k) ≥ �1 for
ll k ≥ K1 does not hold.

As �(k)→ 0, recall (35) and (36) we get

 ≤
(

�eg +
�e	

�C

)
�(∞). (39)

ence, our original assertion of the existence of � > 0 such that
∇J(k)

p ‖ ≥ � for all k ≥ K must be false. We  therefore obtain

im inf
k→∞

‖∇J(k)
p ‖ = 0. (40)

he proof of Theorem 1 is completed. �

heorem 2. Suppose Assumptions 1, 3 and 4 hold, then a sub-
equence of unsuccessful iterations must eventually result in a
ell-poised geometry, i.e. U(k) is adequate in B(k).

roof. We  first show that due to a combining effect of the
ovariance-based search space evaluation and the screening algo-
ithm, an unsuccessful probe û(k) is always included in the updated
egression set. This is illustrated in Fig. 4. Since the objective value at
(k) is less than at all the other regression points, the optimum from
tep 3 locates either in the region between u(k) and the other regres-

ion points (represented by A) or in the region which is uncovered
y the regression set (represented by B). When determining the
ew regression set centered at u(k), there are three possibilities for

ˆ (k) to be included in the regression set:
Fig. 4. Illustration of possible positions of unsuccessful probes. current point u(k) ,
regression points, unsuccessful probes û(k) .

(i) As a local point, i.e. ‖û(k) − u(k)‖ < �u.
(ii) As the nearest point in an existing segment, i.e. replacing the

previous point in that segment.
(iii) As an outer point in a new segment.

It is easy to see that case (iii) improves the poisedness of the regres-
sion set. We  therefore need only to prove that cases (i) and (ii) yield
an adequate regression set. For simplicity, we only consider the case
that the adapted model-based optimization is run.

For an unsuccessful iteration Ĵ(k)
p > J(k)

p , recall (27) and note that

J(k)
p = J(k)

ad
, we obtain

Ĵ(k)
p − Ĵ(k)

ad
≥ �C‖∇J(k)

	
‖min

[
‖∇J(k)

	
‖

�h
, �(k)

]
. (41)

From the Lemma  2.5 in Scheinberg and Toint (2010)

“Given B(x, �)def=
{

v ∈ R
n| ‖v − x‖ ≤ �

}
, a poised interpo-

lation set Y  ∈ B(x, �),  and its associated basis of Lagrange
polynomials

{
j(y)

}p

j=0
, there exists a constant �ef > 0 such

that, for any interpolating polynomial m(y) =
∑p

j=0f (yj)j(y)

and any given point y ∈ B(x, �),  |f (y) − m(y)| ≤ �ef

∑p
j=0‖yj −

y‖2|j(y)|”,

we get that

|Ĵ(k)
p − Ĵ(k)

	
| ≤ �ef

nr∑
i=1

‖u(ri) − û(k)‖2 |ri
(û(k))|, (42)

where nr is the number of points in the regression set and ri is the
iteration index of the ith regression point. From (26), we get that

Ĵ(k)
p − Ĵ(k)

ad
≤ �ef

nr∑
i=1

‖u(ri) − û(k)‖2 |ri
(û(k))|. (43)

From (41) and (43), we obtain

�ef

nr∑
i=1

‖u(ri) − û(k)‖2 |ri
(û(k))| ≥ �C‖∇J(k)

	
‖min

[
‖∇J(k)

	
‖

�h
, �(k)

]
.

(44)
Assume ‖u(ri)− u(k) ‖ ≤ ˇ�(k), where  ̌ > 1, we get that

‖u(ri) − û(k)‖ ≤ ‖u(ri) − u(k)‖ + ‖û(k) − u(k)‖ ≤ (  ̌ + 1)�(k). (45)
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Fig. 5. Illustration of the set-point moves of the new scheme with noise-free (a) and
noisy data (b). : initial perturbations, : regression points.

Table 1
Parameters and variables for the new scheme.

Description Symbol Value

Screening parameter �u 0.1
W.  Gao et al. / Computers and Ch

rom (44), we obtain that

nr

i=1

|ri
(û(k))| ≥

�C‖∇J(k)
	
‖ min

[
‖∇J(k)

	
‖

�h
, �(k)

]
�ef (  ̌ + 1)2(�(k))2

. (46)

ecall the three cases for û(k) to be chosen into the updated regres-
ion set. Case (i) and (ii) lead to a concentration of the regression
oints to u(k), and consequently �(k) is reduced by the covariance-
ased search space evaluation. When

(k) ≤ min

[
‖∇J(k)

	
‖

�h
,

�C‖∇J(k)
	
‖

�ef (  ̌ + 1)2nr

]
, (47)

e get that

nr

i=1

|ri
(û(k))| ≥ nr. (48)

t is easy to see that

max
=1,...,nr

|ri
(û(k))| > 1. (49)

sing Lemma 2.4 in Scheinberg and Toint (2010)

“Given a closed bounded domain B, any initial interpolation set
Y  ∈ B and a constant � > 1, consider the following procedure:
find j ∈ {0, . . .,  p} and a point x ∈ B such that |  j(x)| > � (if such
a point exists), and replace yj by x to obtain a new set Y.  Then this
procedure terminates after a finite number of iterations with a
model which is �-poised (or adequate) in B”,

e have that a subsequence of unsuccessful iterations eventually
esults in a well-poised geometry. It also leads to a successful iter-
tion because �(k) cannot become too small as long as a KKT point
s not approached.

The proof of Theorem 2 is completed. �

. Simulation studies

.1. Example 1: Application to the Williams-Otto Reactor

The Williams-Otto Reactor has been used as a benchmark prob-
em to evaluate RTO schemes in Roberts (1979), Forbes and Marlin
1994), Marchetti et al. (2010), Navia (2012). The real plant is
escribed by three irreversible reactions:

 + B
k1−→C (50a)

 + B
k2−→ P + E (50b)

 + C
k3−→G,  (50c)

here k1, k2 and k3 are the reaction constants. The mismatched
odel is based on only two reactions:

 + 2B
k̃1−→P + E (51a)

 + B + P
k̃2−→G + E. (51b)

The ignorance of the reactions which involve C leads to a struc-
ural plant-model mismatch. The optimization objective is the
teady-state profit

 = (FA + FB)
(

Pp xP + PE xE

)
− CAFA − CBFB. (52)
The variable definitions and parameter values are taken from
Marchetti et al., 2010). The optimization variables are the flow
ate FB and the reaction temperature ϑ. They are normalized by
heir operating intervals (FB: 3–6 kg/s, ϑ: 70–100 ◦C).
Search space parameter 
 3
Perturbation step size �h 0.1
Noise standard deviation � 0.5

Fig. 5a and b shows the results of the new scheme with noise-
free and noisy data. The parameters and variables used in the
simulation are listed in Table 1. The noise is assumed to be normally
distributed and is superimposed directly on the profit. Starting from
set-point (3, 70), two perturbations with step size h are applied to
generate data for an initial gradient estimation. At the 4th iteration,
an additional perturbation is added by the IGMO approach. For the
noise-free case, the optimum is reached after 9 plant evaluations.
In the presence of noise, two  data-collecting moves are taken after
the 5th iteration.

We then study the performance of the new scheme for different
values of noise, screening parameter and perturbation step size.

All cases are run for 100 realizations of the noise. To quantify the
performance, the average numbers of moves Nouter after which set-
points stays within a circle (radius: 0.1) centered at the optimum
are evaluated. The average numbers of unsuccessful moves Nunsu,
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Table  2
Performance under different levels of noise.

� 0.25 0.5 0.75 1.0

Nunsu 0.27 0.57 1.10 1.57
Nouter 8.90 9.40 10.65 11.44

Table 3
Influence of the screening parameter �u.

�u 0.05 0.075 0.1 0.125 0.15

Nunsu 1.13 0.72 0.57 0.56 0.51
Nouter 11.18 9.60 9.40 9.20 9.25

Table 4
Influence of the perturbation step size �h.

�h  0.05 0.1 0.15

Nunsu 1.08 0.57 1.06
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without noise.
In the test of the new scheme, the implicit functions f(x) and
Nouter 12.18 9.40 9.26

hich can be taken as a measure of the data-collecting moves, are
lso indicated.

Table 2 lists the performance under different levels of noise.
oth Nunsu and Nouter increase with the increasing of the noise. This

mplies that the new scheme can automatically adapt to the quality
f the data.

Table 3 lists the performance for different values of the screening
arameter �u. A small value of �u  leads to more nearby points
re chosen in the regression set. The quadratic approximation is
ore sensitive to the noise. Therefore, more data-collecting moves

re taken than a large value of �u  is used. One disadvantage of
ncreasing the value of �u  is the decrease of the accuracy of the
nal optimum.

Table 4 lists the performance for different step sizes of the initial
erturbations. A small value of the step-size leads to a low quality
f gradient estimation and later more data-collecting moves are
equired. However, a too large value of the step-size might also
ead to more data-collecting moves, since the plant mapping is not
uadratic over a large range.

.2. Example 2: Application to a synthetic example with 10
ariables

This example was used by Caballero and Grossmann (2008) to
llustrate the performance of their algorithm for a function with 10
ariables with relatively high noise

min
x

f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)

s.t. −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

10x1 − 8x2 − 17x7 + 2x8 ≤ 0

−8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

z(x1, x2, x3, x4) ≤ 0

5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

−3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

(53)
0 ≤ xi ≤ 10,  i = 1, . . .,  10.
Fig. 6. Optimization results of the synthetic example using the new scheme, (a) and
(b): evolutions of f and z (the dashed line marks the optimal solution), (c): number
of  point evaluations per iteration.

The cost function f and the constraint function z are represented
by noisy black box functions

f = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)4

+ (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2

+ (x10 − 7)2 + 45 + N(0,  0.01)

z = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 + N(0,  0.01),

(54)

where N(�, �2) is a normally distributed random variable with
mean � and standard deviation �. The optimal solution if the noise
is removed is x = (2.18, 2.37, 8.83, 5.36, 0.99, 1.43, 1.32, 9.82, 8.29,
8.37). In order to handle the noisy implicit black box functions,
Caballero and Grossmann (2008) developed an algorithm based
on fitting response surfaces. The algorithm needs more than 800
sampled points in f to reach a point which is close to the solution
z(x) correspond to Jp(u) and Cp(u) respectively, where u = x. For
simplicity, we  set Jm(u) = 0 and Cm(u) = 0. So the optimizer does not
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Fig. 7. Evolutions of the decision variables

ave explicit information about f and z and the model gradient is
nknown. The screening parameter �u  and the initial step-size h
re preliminarily set to 1, which is 10% of the operating region. The
caling parameter 
 is set to 3. The initial set-point is chosen at the
enter of the operating region, i.e. u(0) = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5).

Figs. 6 and 7 illustrate the optimization results over the itera-
ions. The new scheme converges to the optimal solution within 24
terations. 136 points were evaluated in total, compared with 800
ampled points used in Caballero and Grossmann (2008). In the
rst 6 iterations, the IGMO scheme, which is based on the finite-
ifference approximation of the gradients, is run. For simplicity,
0 mutually orthogonal perturbations with step size h are applied
round the current point in each iteration. Note that the approach
roposed in (Gao and Engell, 2005) can be used to decrease the
umber of additional perturbations. After the 6th iteration, enough
ampled points (here (nu + 1)(nu + 2)/2 =66) are available for the
uadratic approximation. Step 2 to Step 5 of the scheme are run
epeatedly. Note that the iterations in Figs. 6 and 7, after the 6th iter-
tion, correspond to the “successful” iterations, which are defined
y Ĵ(k)

p + 3� < J(k)
p − 3� in the presence of noise. All the “unsuc-

essful” iterations are counted and are illustrated by the bar plot
n Fig. 6c.

. Conclusions

This paper proposed a new scheme for using the collected
lant data together with an inaccurate model to converge to the
ptimum of the real plant in real-time optimization. The new
cheme combines the quadratic approximation of derivative-free
ptimization with the iterative gradient-modification approach
nd integrates recent advances in both areas. Compared to the
nite-difference calculation of the plant gradients, the quadratic
pproximation method can decrease the influence of the noise by
apturing the curvature information from more distant points to
rovide a smooth mapping. The screening algorithm which selects
ell-distributed and sufficiently distant points for the current iter-

te ensures a better quadratic approximation of the plant mapping
han the regression result based on all the collected data. Note that
he parameter �u of the screening algorithm is assumed to influ-
nce both the accuracy of the optimum and the number of plant
valuations to enter the vicinity of the optimum. The optimal tuning

f �u  according to the level of the noise and the curvature of the
lant can be an interesting research direction.

The use of the covariance-based restriction of the search space
valuation is twofold in the new scheme. On the one hand side,
dashed lines mark the optimal solutions).

large set-point moves along a direction, in which more data has
been collected previously, are allowed and this will lead to a fast
rate of convergence. On the other hand side, moves along a direc-
tion, in which the plant needs to be probed, are bounded to avoid
an unnecessary deterioration of the plant performance. Note that
the size parameter 
 can be adjusted according to the prediction
accuracies of the adapted objective and constraint functions.

The switching between model-based and data-based optimiza-
tions in the new scheme is also twofold. On the one hand, the
global convergence is ensured by running data-based optimizations
in case of inadequate models which are defined for the modifier
adaptation approach in Marchetti et al. (2009). Therefore, the use
of convex model approximations, which are proposed by Franç ois
et al. (2013), is not necessary. On the other hand, the accuracy
of model-predicted second-order derivatives of the cost and con-
straint functions with respect to the decision variables can be used
to achieve a faster rate of convergence than model-free schemes. A
detailed description of the accuracy-induced optimization switch-
ing was  presented in (Gao et al., 2015).

The new scheme relies on the collected data to construct
quadratic approximations. One issue is that the previously col-
lected data might be invalid in the presence of varying disturbances.
Wenzel et al. (2015) studied the effect of considering only recently
collected data in the regression set for quadratic approximations. By
adjusting an age parameter in the screening algorithm, a trade-off
between noise attenuation and rejecting time-varying disturbances
can be made.

One of the difficulties in the application of this scheme in
practice is that for each new set-point, one has to wait for the plant
to reach a steady state after the set-point change, which makes the
convergence slow. Future studies will be focused on the use of tran-
sient measurements to accelerate the steady-state optimization.
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